
Armando Zarrelli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1373221/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Plant Polyphenols and Their Anti-Cariogenic Properties: A Review. Molecules, 2011, 16, 1486-1507.	3.8	244
2	A Randomized Clinical Trial Evaluating the Efficacy of an Anthocyanin–Maqui Berry Extract (Delphinol®) on Oxidative Stress Biomarkers. Journal of the American College of Nutrition, 2015, 34, 28-33.	1.8	117
3	Dietary phytochemicals and neuro-inflammaging: from mechanistic insights to translational challenges. Immunity and Ageing, 2016, 13, 16.	4.2	90
4	Lignans and Neolignans from Brassica fruticulosa:  Effects on Seed Germination and Plant Growth. Journal of Agricultural and Food Chemistry, 2003, 51, 6165-6172.	5.2	88
5	Isolation and Phytotoxicity of Apocarotenoids fromChenopodiumalbum. Journal of Natural Products, 2004, 67, 1492-1495.	3.0	86
6	ls Stevia rebaudiana Bertoni a Non Cariogenic Sweetener? A Review. Molecules, 2016, 21, 38.	3.8	74
7	Inhibition of Aβ Amyloid Growth and Toxicity by Silybins: The Crucial Role of Stereochemistry. ACS Chemical Neuroscience, 2017, 8, 1767-1778.	3.5	72
8	Fatty Acids Released by Chlorella vulgaris and Their Role in Interference with Pseudokirchneriella subcapitata: Experiments and Modelling. Journal of Chemical Ecology, 2010, 36, 339-349.	1.8	69
9	Selenium Biofortification Impacts the Nutritive Value, Polyphenolic Content, and Bioactive Constitution of Variable Microgreens Genotypes. Antioxidants, 2020, 9, 272.	5.1	67
10	Terpenoids and phenol derivatives from Malva silvestris. Phytochemistry, 2006, 67, 481-485.	2.9	66
11	Cinnamic acid amides from Chenopodium album: effects on seeds germination and plant growth. Phytochemistry, 2003, 64, 1381-1387.	2.9	64
12	Potential allelochemicals from Sambucus nigra. Phytochemistry, 2001, 58, 1073-1081.	2.9	63
13	Low-molecular-weight components of olive oil mill waste-waters. Phytochemical Analysis, 2004, 15, 184-188.	2.4	60
14	Triterpenoids from Gymnema sylvestre and Their Pharmacological Activities. Molecules, 2014, 19, 10956-10981.	3.8	52
15	Phenanthrenoids from the wetland Juncus acutus. Phytochemistry, 2002, 60, 633-638.	2.9	48
16	Ecotoxicological evaluation of caffeine and its derivatives from a simulated chlorination step. Science of the Total Environment, 2014, 470-471, 453-458.	8.0	46
17	C-4 Gem-Dimethylated Oleanes of Gymnema sylvestre and Their Pharmacological Activities. Molecules, 2013, 18, 14892-14919.	3.8	45
18	Cinnamic acid amides and lignanamides from Aptenia cordifolia. Tetrahedron, 2006, 62, 2877-2882.	1.9	44

#	Article	IF	CITATIONS
19	Phenols and lignans fromChenopodium album. Phytochemical Analysis, 2006, 17, 344-349.	2.4	43
20	Short-term supplementation with flavanol-rich cocoa improves lipid profile, antioxidant status and positively influences the AA/EPA ratio in healthy subjects. Journal of Nutritional Biochemistry, 2018, 61, 33-39.	4.2	43
21	New dimeric phenanthrenoids from the rhizomes of Juncus acutus. Structure determination and antialgal activity. Tetrahedron, 2003, 59, 2317-2324.	1.9	41
22	Antialgal ent-labdane diterpenes from Ruppia maritima. Phytochemistry, 2000, 55, 909-913.	2.9	40
23	Fat Quality Influences the Obesogenic Effect of High Fat Diets. Nutrients, 2015, 7, 9475-9491.	4.1	40
24	Structural characterization of phytotoxic terpenoids from Cestrum parqui. Phytochemistry, 2005, 66, 2681-2688.	2.9	39
25	Determination of the <i>In Vitro</i> and <i>In Vivo</i> Antimicrobial Activity on Salivary Streptococci and Lactobacilli and Chemical Characterisation of the Phenolic Content of a <i>Plantago lanceolata</i> Infusion. BioMed Research International, 2015, 2015, 1-8.	1.9	39
26	Phytotoxic activity of Cleome arabica L. and its principal discovered active compounds. South African Journal of Botany, 2013, 88, 341-351.	2.5	38
27	A new dimeric 9,10-dihydrophenanthrenoid from the rhizome of Juncus acutus. Tetrahedron Letters, 2002, 43, 2573-2575.	1.4	37
28	Antialgal furano-diterpenes from Potamogeton natans L Phytochemistry, 2001, 58, 299-304.	2.9	36
29	Low Molecular Weight Phenols from the Bioactive Aqueous Fraction of Cestrum parqui. Journal of Agricultural and Food Chemistry, 2004, 52, 4101-4108.	5.2	36
30	Effusides I-V: 9,10-dihydrophenanthrene glucosides from Juncus effusus. Phytochemistry, 1995, 40, 533-535.	2.9	35
31	Bioactivity of Phenanthrenes from Juncus acutus on Selenastrum capricornutum. Journal of Chemical Ecology, 2004, 30, 867-879.	1.8	35
32	Phytotoxicity of Secondary Metabolites fromAptenia cordifolia. Chemistry and Biodiversity, 2007, 4, 118-128.	2.1	35
33	Lactone diterpenes from the aquatic plant Potamogeton natans. Phytochemistry, 2001, 56, 469-473.	2.9	32
34	Antioxidant and Radical Scavenging Properties of <i>Malva Sylvestris</i> . Natural Product Communications, 2009, 4, 1934578X0900400.	0.5	31
35	Chenoalbicin, a Novel Cinnamic Acid Amide Alkaloid fromChenopodium album. Chemistry and Biodiversity, 2004, 1, 1579-1583.	2.1	30
36	Cinnamic Ester Derivatives from <i>Oxalis pes-caprae</i> (Bermuda Buttercup). Journal of Natural Products, 2007, 70, 1664-1667.	3.0	30

#	Article	IF	CITATIONS
37	New C-23 modified of silybin and 2,3-dehydrosilybin: Synthesis and preliminary evaluation of antioxidant properties. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 4389-4392.	2.2	30
38	Chemical fate and genotoxic risk associated with hypochlorite treatment of nicotine. Science of the Total Environment, 2012, 426, 132-138.	8.0	29
39	Effect of ent-labdane diterpenes from Potamogetonaceae on Selenastrum capricornutum and other aquatic organisms. Journal of Chemical Ecology, 2002, 28, 1091-1102.	1.8	28
40	Hairpin oligonucleotides forming G-quadruplexes: New aptamers with anti-HIV activity. European Journal of Medicinal Chemistry, 2015, 89, 51-58.	5.5	27
41	Minor Bioactive Dihydrophenanthrenes from Juncus effusus. Journal of Natural Products, 1997, 60, 1265-1268.	3.0	26
42	Lignans, neolignans and sesquilignans from Cestrum parqui l'Her Biochemical Systematics and Ecology, 2007, 35, 392-396.	1.3	26
43	Traditional uses, chemical composition and biological activities of <i>Sideritis raeseri</i> Boiss. & Heldr Journal of the Science of Food and Agriculture, 2017, 97, 373-383.	3.5	26
44	A Rapid and Simple Chromatographic Separation of Diastereomers of Silibinin and Their Oxidation to Produce 2,3-Dehydrosilybin Enantiomers in an Optically Pure Form. Planta Medica, 2013, 79, 1077-1080.	1.3	25
45	Polyphenolic Profile and Targeted Bioactivity of Methanolic Extracts from Mediterranean Ethnomedicinal Plants on Human Cancer Cell Lines. Molecules, 2016, 21, 395.	3.8	25
46	Tryptophan and tryptophan-like substances in cloud water: Occurrence and photochemical fate. Atmospheric Environment, 2016, 137, 53-61.	4.1	25
47	Disinfection by-products and ecotoxic risk associated with hypochlorite treatment of irbesartan. Science of the Total Environment, 2020, 712, 135625.	8.0	25
48	Benzocoumarins from the rhizomes of Juncus acutus. Tetrahedron, 2003, 59, 4821-4825.	1.9	24
49	Protein tyrosine phosphatase 1B inhibitors isolated from <i>Artemisia roxburghiana</i> . Journal of Enzyme Inhibition and Medicinal Chemistry, 2016, 31, 563-567.	5.2	24
50	Gymnema sylvestre R. Br., an Indian Medicinal Herb: Traditional Uses, Chemical Composition, and Biological Activity. Current Pharmaceutical Biotechnology, 2015, 16, 506-516.	1.6	24
51	Bioactive Compounds of Aristotelia chilensis Stuntz and their Pharmacological Effects. Current Pharmaceutical Biotechnology, 2016, 17, 513-523.	1.6	24
52	Synthesis, biophysical characterization and anti-HIV activity of d(TG3AG) Quadruplexes bearing hydrophobic tails at the 5′-end. Bioorganic and Medicinal Chemistry, 2014, 22, 960-966.	3.0	23
53	Determination of photostability and photodegradation products of indomethacin in aqueous media. Journal of Pharmaceutical and Biomedical Analysis, 2011, 56, 678-683.	2.8	22
54	New silibinin glyco-conjugates: Synthesis and evaluation of antioxidant properties. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 5147-5149.	2.2	21

#	Article	IF	CITATIONS
55	Chemical and organoleptic characteristics of tomato purée enriched with lyophilized tomato pomace. Journal of the Science of Food and Agriculture, 2016, 96, 1953-1958.	3.5	21
56	Phosphate-Linked Silibinin Dimers (PLSd): New Promising Modified Metabolites. Molecules, 2017, 22, 1323.	3.8	21
57	Impact of foliar potassium fertilization on biochemical composition and antioxidant activity of fig (Ficus carica L.). Scientia Horticulturae, 2019, 253, 111-119.	3.6	21
58	Lignans from Phillyrea angustifolia L Phytochemistry Letters, 2011, 4, 118-121.	1.2	20
59	Trehalose Conjugates of Silybin as Prodrugs for Targeting Toxic AÎ ² Aggregates. ACS Chemical Neuroscience, 2020, 11, 2566-2576.	3.5	20
60	Structure Elucidation and Phytotoxicity of Ecdysteroids fromChenopodium album. Chemistry and Biodiversity, 2005, 2, 457-462.	2.1	19
61	Toxin levels in different variety of potatoes: Alarming contents of α-chaconine. Phytochemistry Letters, 2016, 16, 103-107.	1.2	19
62	Pioppino mushroom in southern Italy: an undervalued source of nutrients and bioactive compounds. Journal of the Science of Food and Agriculture, 2017, 97, 5388-5397.	3.5	19
63	Modulating Aβ aggregation by tyrosol-based ligands: The crucial role of the catechol moiety. Biophysical Chemistry, 2020, 265, 106434.	2.8	19
64	Peracetic Acid vs. Sodium Hypochlorite: Degradation and Transformation of Drugs in Wastewater. Molecules, 2020, 25, 2294.	3.8	19
65	Productive and Morphometric Traits, Mineral Composition and Secondary Metabolome Components of Borage and Purslane as Underutilized Species for Microgreens Production. Horticulturae, 2021, 7, 211.	2.8	19
66	Toxicity evaluation of natural and synthetic phenanthrenes in aquatic systems. Environmental Toxicology and Chemistry, 2001, 20, 1824-1830.	4.3	18
67	Structures of new phenylphenalene-related compounds from Eichhornia crassipes (water hyacinth). Tetrahedron, 2009, 65, 8206-8208.	1.9	18
68	Silybin-Phosphatidylcholine Complex Protects Human Gastric and Liver Cells from Oxidative Stress. In Vivo, 2015, 29, 569-75.	1.3	18
69	Apteniols A–F, oxyneolignans from the leaves of Aptenia cordifolia. Tetrahedron, 2005, 61, 11924-11929.	1.9	17
70	Isolation and characterization of new lignans from the leaves of Cestrum parqui. Natural Product Research, 2006, 20, 293-298.	1.8	17
71	Lignans by photo-oxidation of propenyl phenols. Photochemical and Photobiological Sciences, 2008, 7, 28-32.	2.9	17
72	A novel synthetic strategy for monosubstituted cyclodextrin derivatives. Chemical Communications, 2012, 48, 3875.	4.1	17

5

#	Article	IF	CITATIONS
73	Silibinin phosphodiester glyco-conjugates: Synthesis, redox behaviour and biological investigations. Bioorganic Chemistry, 2018, 77, 349-359.	4.1	17
74	Disinfection by-Products and Ecotoxic Risk Associated with Hypochlorite Treatment of Tramadol. Molecules, 2019, 24, 693.	3.8	17
75	C13 Norisoprenoids from Brassica Fruticulosa. Natural Product Research, 2005, 19, 99-103.	1.8	16
76	New Triterpenes from <i>Gymnema sylvestre</i> . Helvetica Chimica Acta, 2013, 96, 1036-1045.	1.6	16
77	Kinetic ESI-MS Studies of Potent Anti-HIV Aptamers Based on the G-Quadruplex Forming Sequence d(TGGGAG). ACS Medicinal Chemistry Letters, 2016, 7, 256-260.	2.8	16
78	Oxidation of diclofenac in water by sodium hypochlorite: Identification of new degradation by-products and their ecotoxicological evaluation. Journal of Pharmaceutical and Biomedical Analysis, 2021, 194, 113762.	2.8	16
79	Revised structures of phenylphenalene derivatives from Eichhornia crassipes. Tetrahedron Letters, 2008, 49, 3268-3272.	1.4	15
80	Phytotoxic Aromatic Constituents of <i>Oxalis pesâ€caprae</i> . Chemistry and Biodiversity, 2009, 6, 459-465.	2.1	15
81	Valle Agricola lentil, an unknown lentil (Lens culinaris Medik.) seed from Southern Italy as a novel antioxidant and prebiotic source. Food and Function, 2015, 6, 3155-3164.	4.6	15
82	Molecular insights to explore abietane diterpenes as new LOX inhibitors. Medicinal Chemistry Research, 2013, 22, 5809-5813.	2.4	14
83	Ontogenetic Variation in the Mineral, Phytochemical and Yield Attributes of Brassicaceous Microgreens. Foods, 2021, 10, 1032.	4.3	14
84	A New Class of Synthetic Flavonolignan-Like Dimers: Still Few Molecules, but with Attractive Properties. Molecules, 2019, 24, 108.	3.8	13
85	Dihydrophenanthrene and Phenanthrene Mimics of Natural Compounds—Synthesis and Antialgal Activity. Journal of Chemical Ecology, 2000, 26, 587-600.	1.8	12
86	Chemical Characterization of New Oxylipins from <i>Cestrum parqui</i> , and Their Effects on Seed Germination and Early Seedling Growth. Chemistry and Biodiversity, 2008, 5, 1780-1791.	2.1	12
87	Photochemical behaviour of musk tibetene. Environmental Science and Pollution Research, 2008, 15, 182-187.	5.3	12
88	Isolation of lignans as seed germination and plant growth inhibitors from Mediterranean plants and chemical synthesis of some analogues. Phytochemistry Reviews, 2013, 12, 717-731.	6.5	12
89	Evaluation of new strategies to reduce the total content of α-solanine and α-chaconine in potatoes. Phytochemistry Letters, 2018, 23, 116-119.	1.2	12
90	Synthesis and antialgal activity of dihydrophenanthrenes and phenanthrenes II: mimics of naturally occurring compounds in Juncus effusus. Journal of Chemical Ecology, 2001, 27, 257-271.	1.8	11

#	Article	IF	CITATIONS
91	New Silybin Scaffold for Chemical Diversification: Synthesis of Novel 23-Phosphodiester Silybin Conjugates. Synlett, 2012, 24, 45-48.	1.8	11
92	Regiodivergent synthesis of trisubstituted furans through Tf2O-catalyzed Friedel–Crafts acylation: a tool for access to tetrahydrofuranlignan analogues. Organic and Biomolecular Chemistry, 2012, 10, 1219-1224.	2.8	11
93	Microwave-assisted oxidation of silibinin: a simple and preparative method for the synthesis of improved radical scavengers. Tetrahedron Letters, 2013, 54, 6279-6282.	1.4	11
94	New findings on the d(TGGCAG) sequence: Surprising anti-HIV-1 activity. European Journal of Medicinal Chemistry, 2018, 145, 425-430.	5.5	11
95	Litter Inhibitory Effects on Soil Microbial Biomass, Activity, and Catabolic Diversity in Two Paired Stands of Robinia pseudoacacia L. and Pinus nigra Arn Forests, 2018, 9, 766.	2.1	11
96	Olive Wastes as a High-Potential by-Product: Variability of Their Phenolic Profiles, Antioxidant and Phytotoxic Properties. Waste and Biomass Valorization, 2021, 12, 3657-3669.	3.4	11
97	Sartans: What they are for, how they degrade, where they are found and how they transform. Sustainable Chemistry and Pharmacy, 2021, 20, 100409.	3.3	11
98	Solid-State Photodimerization of Steroid Enones. Journal of Organic Chemistry, 2002, 67, 9011-9015.	3.2	10
99	A new xyloside from Chenopodium album. Natural Product Research, 2005, 19, 87-90.	1.8	10
100	Dimeric phenanthrenoids from Juncus acutus. Natural Product Research, 2005, 19, 69-74.	1.8	10
101	Phenyl Cinnamate Derivatives from <i>Oxalis pes aprae</i> . Chemistry and Biodiversity, 2008, 5, 2408-2414.	2.1	10
102	Sildenafil and tadalafil in simulated chlorination conditions: Ecotoxicity of drugs and their derivatives. Science of the Total Environment, 2013, 463-464, 366-373.	8.0	10
103	Silybins inhibit human IAPP amyloid growth and toxicity through stereospecific interactions. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2022, 1870, 140772.	2.3	10
104	New Acylated Oleanane and Lupane Triterpenes from <i>Gymnema sylvestre</i> . Helvetica Chimica Acta, 2013, 96, 2200-2206.	1.6	9
105	Optimisation of artemisinin and scopoletin extraction from Artemisia annua with a new modern pressurised cyclic solid–liquid (PCSL) extraction technique. Phytochemical Analysis, 2019, 30, 564-571.	2.4	9
106	TG, FT-IR and NMR characterization of n-C16H34 contaminated alumina and silica after mechanochemical treatment. Chemosphere, 2008, 70, 1068-1076.	8.2	8
107	Synthesis of New Silybin Derivatives and Evaluation of Their Antioxidant Properties. Helvetica Chimica Acta, 2015, 98, 399-409.	1.6	8
108	Hotoda's Sequence and Anti-HIV Activity: Where Are We Now?. Molecules, 2019, 24, 1417.	3.8	8

Armando Zarrelli

#	Article	IF	CITATIONS
109	Silymarin from Silybum marianum by Naviglio's extractor: a new and very efficient approach. Natural Product Research, 2019, 35, 1-7.	1.8	7
110	Amoxicillin in Water: Insights into Relative Reactivity, Byproduct Formation, and Toxicological Interactions during Chlorination. Applied Sciences (Switzerland), 2021, 11, 1076.	2.5	7
111	Tetrahydropyrene Glucosides from <i>Juncus effusus</i> . Natural Product Research, 1995, 7, 85-92.	0.4	6
112	Two New Polyhydroxylated Sterols from Ruppia maritima. Natural Product Research, 2001, 15, 111-118.	0.4	6
113	A new aromatic component from <i>Oxalis pes-caprae</i> . Natural Product Research, 2010, 24, 958-961.	1.8	6
114	Novosphingobium sp. PP1Y as a novel source of outer membrane vesicles. Journal of Microbiology, 2019, 57, 498-508.	2.8	6
115	Synthesis of Degraded Cyanogenic Glycosides From Sambucus Nigra. Natural Product Research, 2003, 17, 177-181.	1.8	5
116	History of Gymnemic acid, a Molecule that does not Exist. Natural Product Communications, 2014, 9, 1934578X1400901.	0.5	5
117	Solid-phase synthesis of curcumin mimics and their anticancer activity against human pancreatic, prostate, and colorectal cancer cell lines. Bioorganic and Medicinal Chemistry, 2021, 42, 116249.	3.0	5
118	Macro and trace element mineral composition of six hemp varieties grown as microgreens. Journal of Food Composition and Analysis, 2022, 114, 104750.	3.9	5
119	Stratioside II - a C13 Norterpene Glucoside from <i>Pistia stratiotes</i> . Natural Product Research, 1996, 8, 83-86.	0.4	4
120	Solid-State Photodimerization of Cholest-4-en-3-one. Journal of Organic Chemistry, 2001, 66, 2057-2060.	3.2	4
121	Phenanthrene Dimers: Promising Source of Biologically Active Molecules. Current Topics in Medicinal Chemistry, 2022, 22, 939-956.	2.1	4
122	Isolation of Seed Germination and Plant Growth Inhibitors from Mediterranean Plants: Their Potential Use as Herbicides. ACS Symposium Series, 2006, , 24-36.	0.5	3
123	A mild approach to diarylfuranones via functionalized 2-arylfurans. Tetrahedron, 2013, 69, 4725-4730.	1.9	3
124	Synthesis of β-l-2′-Fluoro-3′-thiacytidine (F-3TC) Stereoisomers: Toward a New Class of Oxathiolanyl Nucleosides?. Synthesis, 2017, 49, 998-1008.	2.3	3
125	New phosphorylating reagents for deoxyribonucleosides and oligonucleotides. Tetrahedron Letters, 2017, 58, 1227-1229.	1.4	3
126	LC and NMR Studies for Identification and Characterization of Degradation Byproducts of Olmesartan Acid, Elucidation of Their Degradation Pathway and Ecotoxicity Assessment. Molecules, 2021, 26, 1769.	3.8	3

#	Article	IF	CITATIONS
127	Silybins are stereospecific regulators of the 20S Proteasome. Bioorganic and Medicinal Chemistry, 2022, 66, 116813.	3.0	3
128	Environmental Fate of Organic Sunscreens during Water Disinfection Processes: The Formation of Degradation By-Products and Their Toxicological Profiles. Molecules, 2022, 27, 4467.	3.8	3
129	Synthesis of dimeric phenylethanoids isolated from olive oil mill wastewaters. Natural Product Research, 2006, 20, 792-797.	1.8	2
130	Shifts in soil chemical and microbial properties across forest chronosequence on recent volcanic deposits. Applied Soil Ecology, 2021, 161, 103880.	4.3	2
131	Secondary Effects of Hypochlorite Treatment on the Emerging Pollutant Candesartan: The Formation of Degradation Byproducts and Their Toxicological Profiles. Molecules, 2021, 26, 3422.	3.8	2
132	Cytotoxicity of an Innovative Pressurised Cyclic Solid–Liquid (PCSL) Extract from Artemisia annua. Toxins, 2021, 13, 886.	3.4	2
133	Complete Characterization of Degradation Byproducts of Olmesartan Acid, Degradation Pathway, and Ecotoxicity Assessment. Applied Sciences (Switzerland), 2021, 11, 5393.	2.5	1
134	Investigation on the solid-phase synthesis of silybin prodrugs and their timed-release. Bioorganic and Medicinal Chemistry, 2021, 50, 116478.	3.0	1
135	Plants as Biofactories to Produce Food, Medicines, and Materials for a True Green Revolution. International Journal of Molecular Sciences, 2022, 23, 5827.	4.1	1
136	Synthesis of Oligonucleotide Conjugates and Phosphorylated Nucleotide Analogues: An Improvement to a Solid Phase Synthetic Approach. Journal of Chemistry, 2013, 2013, 1-8.	1.9	0
137	Synthesis of new riboflavin modified ODNs: Effect of riboflavin moiety on the G-quadruplex arrangement and stability. Bioorganic Chemistry, 2020, 104, 104213.	4.1	0
138	Phosphodiester Silybin Dimers Powerful Radical Scavengers: A Antiproliferative Activity on Different Cancer Cell Lines. Molecules, 2022, 27, 1702.	3.8	0
139	Known or Never before Identified Phenanthrenes: Where It Is Possible to Isolate Them and Why. Chemistry and Biodiversity, 2022, , .	2.1	0