Robert Liska

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1372462/publications.pdf

Version: 2024-02-01

208 papers 11,160 citations

54 h-index 98 g-index

229 all docs 229 docs citations

times ranked

229

9797 citing authors

#	Article	IF	CITATIONS
1	Approaching new biomaterials: copolymerization characteristics of vinyl esters with norbornenes, allyl esters and allyl ethers. Polymer International, 2022, 71, 790-796.	3.1	1
2	Photo-chemically induced polycondensation of a pure phenolic resin for additive manufacturing. Polymer Chemistry, 2022, 13, 768-777.	3.9	9
3	Regulated acrylate networks as tough photocurable materials for additive manufacturing. Polymer International, 2022, 71, 897-905.	3.1	5
4	A disulfide-based linker for thiol–norbornene conjugation: formation and cleavage of hydrogels by the use of light. Polymer Chemistry, 2022, 13, 1158-1168.	3.9	4
5	A systematic study of temperatureâ€dependent cationic photopolymerization of cyclic esters. Polymer International, 2022, 71, 797-803.	3.1	6
6	Introduction to the themed collection on photopolymer science dedicated to Ewa Andrezejewska. Polymer Chemistry, 2022, 13, 1151-1151.	3.9	0
7	Beyond the Threshold: A Study of Chalcogenophene-Based Two-Photon Initiators. Chemistry of Materials, 2022, 34, 3042-3052.	6.7	14
8	Cationic photopolymerization of cyclic esters at elevated temperatures and their application in hot lithography. Polymer International, 2022, 71, 1062-1071.	3.1	5
9	Hot-lithography 3D printing of biobased epoxy resins. Polymer, 2022, 254, 125097.	3.8	10
10	Biomimetic adhesion motifs based on RAFT polymers with phosphonate groups. European Polymer Journal, 2021, 143, 110188.	5.4	3
11	Functionalized Bead Assay to Measure Three-dimensional Traction Forces during T-cell Activation. Nano Letters, 2021, 21, 507-514.	9.1	28
12	Heterotelechelic poly(propylene oxide) as migration-inhibited toughening agent in hot lithography based additive manufacturing. Polymer Chemistry, 2021, 12, 1260-1272.	3.9	4
13	Radical-induced cationic frontal polymerisation for prepreg technology. Monatshefte FÃ $\frac{1}{4}$ r Chemie, 2021, 152, 151-165.	1.8	16
14	Photopolymerization of difunctional cyclopolymerizable monomers with low shrinkage behavior. Journal of Polymer Science, 2021, 59, 519-531.	3.8	7
15	Low volatile monofunctional reactive diluents for radiation curable formulations. Journal of Polymer Science, 2021, 59, 2154-2169.	3.8	5
16	Bismuthonium―and pyryliumâ€based radical induced cationic frontal polymerization of epoxides. Journal of Polymer Science, 2021, 59, 1841-1854.	3.8	6
17	Photopolymerizable precursors for degradable biomaterials based on acetal moieties. European Polymer Journal, 2021, 154, 110536.	5.4	10
18	Synthesis of allyl sulfones bearing urethane groups as efficient addition-fragmentation chain transfer agents for the development of low-shrinkage composites. European Polymer Journal, 2021, 158, 110672.	5.4	4

#	Article	lF	Citations
19	Polymer Networks for Enrichment of Calcium Ions. Polymers, 2021, 13, 3506.	4.5	1
20	Thiol–Ene Cross-linking of Poly(ethylene glycol) within High Internal Phase Emulsions: Degradable Hydrophilic PolyHIPEs for Controlled Drug Release. Macromolecules, 2021, 54, 10370-10380.	4.8	16
21	Hard Block Degradable Polycarbonate Urethanes: Promising Biomaterials for Electrospun Vascular Prostheses. Biomacromolecules, 2020, 21, 376-387.	5.4	21
22	Revival of Cyclopolymerizable Monomers as Low-Shrinkage Cross-Linkers. Macromolecules, 2020, 53, 8374-8381.	4.8	11
23	Assessment of a long-term in vitro model to characterize the mechanical behavior and macrophage-mediated degradation of a novel, degradable, electrospun poly-urethane vascular graft. Journal of the Mechanical Behavior of Biomedical Materials, 2020, 112, 104077.	3.1	9
24	Single-Molecule Force Spectroscopy Reveals Adhesion-by-Demand in Statherin at the Protein–Hydroxyapatite Interface. Langmuir, 2020, 36, 13292-13300.	3. 5	4
25	Novel synthesis routes for the preparation of low toxic vinyl ester and vinyl carbonate monomers. Synthetic Communications, 2020, 50, 3629-3641.	2.1	3
26	Hotâ€Lithography SLAâ€3D Printing of Epoxy Resin. Macromolecular Materials and Engineering, 2020, 305, 2000325.	3 . 6	32
27	Hyaluronic acid vinyl esters: A toolbox toward controlling mechanical properties of hydrogels for 3D microfabrication. Journal of Polymer Science, 2020, 58, 1288-1298.	3.8	20
28	UV-Induced Cationic Ring-Opening Polymerization of 2-Oxazolines for Hot Lithography. ACS Macro Letters, 2020, 9, 546-551.	4.8	25
29	Radical induced cationic frontal polymerization for preparation of epoxy composites. Composites Part A: Applied Science and Manufacturing, 2020, 132, 105855.	7.6	36
30	Biocompatible photoinitiators based on polyâ€î±â€ketoesters. Journal of Polymer Science, 2020, 58, 242-253.	3.8	16
31	Bioinspired Precision Engineering of Threeâ€Dimensional Epithelial Stem Cell Microniches. Advanced Biology, 2020, 4, e2000016.	3.0	10
32	Solvent tuning of photochemistry upon excited-state symmetry breaking. Nature Communications, 2020, 11, 1925.	12.8	54
33	Cleavable Unimolecular Photoinitiators Based on Oximeâ€Ester Chemistry for Twoâ€Photon Threeâ€Dimensional Printing. ChemPhotoChem, 2019, 3, 1090-1094.	3.0	40
34	Enhanced reduction of polymerization-induced shrinkage stress <i>via</i> combination of radical ring opening and addition fragmentation chain transfer. Polymer Chemistry, 2019, 10, 1357-1366.	3.9	25
35	Pore Morphology Tailoring in Polymerâ€Derived Ceramics Generated through Photopolymerizationâ€Assisted Solidification Templating. Advanced Engineering Materials, 2019, 21, 1900052.	3.5	9
36	\hat{l}_{\pm} -Ketoesters as Nonaromatic Photoinitiators for Radical Polymerization of (Meth)acrylates. Macromolecules, 2019, 52, 2814-2821.	4.8	24

#	Article	IF	Citations
37	Ester-Activated Vinyl Ethers as Chain Transfer Agents in Radical Photopolymerization of Methacrylates. Macromolecules, 2019, 52, 2691-2700.	4.8	11
38	Radical induced cationic frontal polymerization in thin layers. Journal of Polymer Science Part A, 2019, 57, 1155-1159.	2.3	27
39	Visible light induced free radical promoted cationic polymerization using acylsilanes. Progress in Organic Coatings, 2019, 132, 139-143.	3.9	37
40	Oxygen Management at the Microscale: A Functional Biochip Material with Long-Lasting and Tunable Oxygen Scavenging Properties for Cell Culture Applications. ACS Applied Materials & Samp; Interfaces, 2019, 11, 9730-9739.	8.0	42
41	Towards efficient initiators for two-photon induced polymerization: fine tuning of the donor/acceptor properties. Molecular Systems Design and Engineering, 2019, 4, 437-448.	3.4	16
42	Toughness enhancers for bone scaffold materials based on biocompatible photopolymers. Journal of Polymer Science Part A, 2019, 57, 110-119.	2.3	9
43	Porous polysilazane-derived ceramic structures generated through photopolymerization-assisted solidification templating. Journal of the European Ceramic Society, 2019, 39, 838-845.	5.7	26
44	Fully automated z-scan setup based on a tunable fs-oscillator. Optical Materials Express, 2019, 9, 3567.	3.0	12
45	Debonding on Demand with Highly Cross-Linked Photopolymers: A Combination of Network Regulation and Thermally Induced Gas Formation. Macromolecules, 2018, 51, 660-669.	4.8	17
46	A highly efficient waterborne photoinitiator for visible-light-induced three-dimensional printing of hydrogels. Chemical Communications, 2018, 54, 920-923.	4.1	77
47	Vinylsulfonatester: Effiziente Kettenübertragungsreagenzien für verzögerungsfreien 3Dâ€Druck schlagzÃĦer Photopolymere. Angewandte Chemie, 2018, 130, 9305-9310.	2.0	4
48	Vinyl Sulfonate Esters: Efficient Chain Transfer Agents for the 3D Printing of Tough Photopolymers without Retardation. Angewandte Chemie - International Edition, 2018, 57, 9165-9169.	13.8	44
49	Hot Lithography vs. room temperature DLP 3D-printing of a dimethacrylate. Additive Manufacturing, 2018, 21, 209-214.	3.0	72
50	Synthesis and polymerization of vinylcyclopropanes bearing urethane groups for the development of low-shrinkage composites. European Polymer Journal, 2018, 98, 439-447.	5.4	19
51	Photopolymerization of Cyclopolymerizable Monomers and Their Application in Hot Lithography. Macromolecules, 2018, 51, 9344-9353.	4.8	17
52	Wavelength-optimized Two-Photon Polymerization Using Initiators Based on Multipolar Aminostyryl-1,3,5-triazines. Scientific Reports, 2018, 8, 17273.	3.3	32
53	Difunctional vinyl sulfonate esters for the fabrication of tough methacrylate-based photopolymer networks. Polymer, 2018, 158, 149-157.	3.8	12
54	A Modular Approach to Sensitized Twoâ€Photon Patterning of Photodegradable Hydrogels. Angewandte Chemie, 2018, 130, 15342-15347.	2.0	15

#	Article	IF	Citations
55	A Modular Approach to Sensitized Twoâ€Photon Patterning of Photodegradable Hydrogels. Angewandte Chemie - International Edition, 2018, 57, 15122-15127.	13.8	68
56	A structural reconsideration: Linear aliphatic or alicyclic hard segments for biodegradable thermoplastic polyurethanes?. Journal of Polymer Science Part A, 2018, 56, 2214-2224.	2.3	13
57	Dispersive white light continuum single Z-scan for rapid determination of degenerate two-photon absorption spectra. Applied Physics B: Lasers and Optics, 2018, 124, 142.	2.2	5
58	Acylstannanes: Cleavable and Highly Reactive Photoinitiators for Radical Photopolymerization at Wavelengths above 500â€nm with Excellent Photobleaching Behavior. Angewandte Chemie - International Edition, 2018, 57, 12146-12150.	13.8	61
59	A biocompatible diazosulfonate initiator for direct encapsulation of human stem cells <i>via</i> two-photon polymerization. Polymer Chemistry, 2018, 9, 3108-3117.	3.9	55
60	Acylstannane: Spaltbare und hochreaktive Photoinitiatoren fÃ⅓r radikalische Photopolymerisationen bei WellenlÃ ¤ gen Ã⅓ber 500 nm mit exzellentem Photobleaching. Angewandte Chemie, 2018, 130, 12323-12327.	2.0	3
61	Fabrication of biomimetic placental barrier structures within a microfluidic device utilizing two-photon polymerization. International Journal of Bioprinting, 2018, 4, 144.	3.4	69
62	Tetraacylgermanes: Highly Efficient Photoinitiators for Visibleâ€Lightâ€Induced Freeâ€Radical Polymerization. Angewandte Chemie - International Edition, 2017, 56, 3103-3107.	13.8	97
63	Tetraacylgermane: hochwirksame Photoinitiatoren f $\tilde{A}\frac{1}{4}$ r die radikalische Polymerisation mit sichtbarem Licht. Angewandte Chemie, 2017, 129, 3150-3154.	2.0	16
64	Real Time-NIR/MIR-Photorheology: A Versatile Tool for the <i>in Situ</i> Characterization of Photopolymerization Reactions. Analytical Chemistry, 2017, 89, 4958-4968.	6.5	90
65	Evaluation of Difunctional Vinylcyclopropanes as Reactive Diluents for the Development of Lowâ€6hrinkage Composites. Macromolecular Materials and Engineering, 2017, 302, 1700021.	3.6	14
66	3D high-resolution two-photon crosslinked hydrogel structures for biological studies. Acta Biomaterialia, 2017, 55, 373-384.	8.3	72
67	Tetrakis(2,4,6â€Trimethylbenzoyl)Silane—A Novel Photoinitiator for Visible Light Curing. Macromolecular Materials and Engineering, 2017, 302, 1600536.	3.6	22
68	A biocompatible macromolecular two-photon initiator based on hyaluronan. Polymer Chemistry, 2017, 8, 451-460.	3.9	49
69	Direct Observation of a Photochemical Alkyne–Allene Reaction and of a Twisted and Rehybridized Intramolecular Charge-Transfer State in a Donor–Acceptor Dyad. Journal of the American Chemical Society, 2017, 139, 16885-16893.	13.7	35
70	Durch sichtbares Licht und Nahinfrarotstrahlung abbaubare supramolekulare Metalloâ€Gele. Angewandte Chemie, 2017, 129, 16071-16075.	2.0	12
71	Measurement of degenerate two-photon absorption spectra of a series of developed two-photon initiators using a dispersive white light continuum Z-scan. Applied Physics Letters, 2017, 111, .	3.3	14
72	Cross-Linkable Gelatins with Superior Mechanical Properties Through Carboxylic Acid Modification: Increasing the Two-Photon Polymerization Potential. Biomacromolecules, 2017, 18, 3260-3272.	5.4	104

#	Article	IF	CITATIONS
73	Metalloâ€Supramolecular Gels that are Photocleavable with Visible and Nearâ€Infrared Irradiation. Angewandte Chemie - International Edition, 2017, 56, 15857-15860.	13.8	62
74	Novel photoacid generators for cationic photopolymerization. Polymer Chemistry, 2017, 8, 4414-4421.	3.9	67
75	Polymers for 3D Printing and Customized Additive Manufacturing. Chemical Reviews, 2017, 117, 10212-10290.	47.7	2,383
76	Successful UVâ€Induced RICFP of Epoxyâ€Composites. Macromolecular Chemistry and Physics, 2017, 218, 1700313.	2.2	34
77	Hydrogel with Orthogonal Reactive Units: 2D and 3D Crossâ€Linking Modulation. Macromolecular Rapid Communications, 2017, 38, 1600570.	3.9	9
78	Visible Light Photoinitiator for 3D-Printing of Tough Methacrylate Resins. Materials, 2017, 10, 1445.	2.9	96
79	Tough photopolymers based on vinyl esters for biomedical applications. Journal of Polymer Science Part A, 2016, 54, 1987-1997.	2.3	20
80	Highly efficient water-soluble visible light photoinitiators. Journal of Polymer Science Part A, 2016, 54, 473-479.	2.3	107
81	Allyl sulfides and αâ€substituted acrylates as addition–fragmentation chain transfer agents for methacrylate polymer networks. Journal of Polymer Science Part A, 2016, 54, 394-406.	2.3	24
82	Modular material system for the microfabrication of biocompatible hydrogels based on thiol-ene-modified poly(vinyl alcohol). Journal of Polymer Science Part A, 2016, 54, 2060-2070.	2.3	36
83	Multilength Scale Patterning of Functional Layers by Roll-to-Roll Ultraviolet-Light-Assisted Nanoimprint Lithography. ACS Nano, 2016, 10, 4926-4941.	14.6	94
84	Vinyl carbonate photopolymers with improved mechanical properties for biomedical applications. Designed Monomers and Polymers, 2016, 19, 437-444.	1.6	9
85	Biocompatibility Assessment of a New Biodegradable Vascular Graft via In Vitro Co-culture Approaches and In Vivo Model. Annals of Biomedical Engineering, 2016, 44, 3319-3334.	2.5	20
86	Exploring Network Formation of Tough and Biocompatible Thiolâ€yne Based Photopolymers. Macromolecular Rapid Communications, 2016, 37, 1701-1706.	3.9	33
87	Radical induced cationic frontal polymerization as a versatile tool for epoxy curing and composite production. Journal of Polymer Science Part A, 2016, 54, 3751-3759.	2.3	47
88	New Radiopaque Bromine ontaining Monomers for Dental Restorative Materials. Macromolecular Materials and Engineering, 2016, 301, 733-742.	3.6	1
89	The influence of vinyl activating groups on β-allyl sulfone-based chain transfer agents for tough methacrylate networks. Journal of Polymer Science Part A, 2016, 54, 1417-1427.	2.3	22
90	Macroporous alumina with cellular interconnected morphology from emulsion templated polymer composite precursors. Journal of the European Ceramic Society, 2016, 36, 1045-1051.	5.7	12

#	Article	IF	Citations
91	Direct Visualization of Excited-State Symmetry Breaking Using Ultrafast Time-Resolved Infrared Spectroscopy. Journal of the American Chemical Society, 2016, 138, 4643-4649.	13.7	157
92	Rapid formation of regulated methacrylate networks yielding tough materials for lithography-based 3D printing. Polymer Chemistry, 2016, 7, 2009-2014.	3.9	74
93	Toughening of photo-curable polymer networks: a review. Polymer Chemistry, 2016, 7, 257-286.	3.9	308
94	Variation of the crosslinking density in cluster-reinforced polymers. Materials Today Communications, 2015, 5, 10-17.	1.9	13
95	Development of Synthetic Plateletâ€Activating Hydrogel Matrices to Induce Local Hemostasis. Advanced Functional Materials, 2015, 25, 6606-6617.	14.9	43
96	3D Printable Biophotopolymers for in Vivo Bone Regeneration. Materials, 2015, 8, 3685-3700.	2.9	21
97	Imidazole-based ionic liquids for free radical photopolymerization. Designed Monomers and Polymers, 2015, 18, 262-270.	1.6	13
98	UV-Initiated Bubble-Free Frontal Polymerization in Aqueous Conditions. Macromolecules, 2015, 48, 8738-8745.	4.8	18
99	Hybrid Tissue Engineering Scaffolds by Combination of Three-Dimensional Printing and Cell Photoencapsulation. Journal of Nanotechnology in Engineering and Medicine, 2015, 6, 0210011-210017.	0.8	59
100	Microcellular Open Porous Monoliths for Cell Growth by Thiol-Ene Polymerization of Low-Toxicity Monomers in High Internal Phase Emulsions. Macromolecular Bioscience, 2015, 15, 253-261.	4.1	33
101	Exploring the benefits of \hat{l}^2 -allyl sulfones for more homogeneous dimethacrylate photopolymer networks. Polymer Chemistry, 2015, 6, 2038-2047.	3.9	60
102	Degradable Glycineâ€Based Photoâ€Polymerizable Polyphosphazenes for Use as Scaffolds for Tissue Regeneration. Macromolecular Bioscience, 2015, 15, 351-363.	4.1	35
103	Evidence of concentration dependence of the two-photon absorption cross section: Determining the "true―cross section value. Optical Materials, 2015, 47, 524-529.	3.6	11
104	Mass spectrometric imaging of in vivo protein and lipid adsorption on biodegradable vascular replacement systems. Analyst, The, 2015, 140, 6089-6099.	3.5	9
105	Successful radical induced cationic frontal polymerization of epoxy-based monomers by C–C labile compounds. Polymer Chemistry, 2015, 6, 8161-8167.	3.9	70
106	Laser 3D Printing with Subâ€Microscale Resolution of Porous Elastomeric Scaffolds for Supporting Human Bone Stem Cells. Advanced Healthcare Materials, 2015, 4, 739-747.	7.6	65
107	Biodegradable, thermoplastic polyurethane grafts for small diameter vascular replacements. Acta Biomaterialia, 2015, 11, 104-113.	8.3	107
108	Additive manufacturing of photosensitive hydrogels for tissue engineering applications. BioNanoMaterials, 2014, 15, .	1.4	76

#	Article	IF	Citations
109	3D optical waveguides produced by two photon photopolymerisation of a flexible silanol terminated polysiloxane containing acrylate functional groups. Optical Materials Express, 2014, 4, 486.	3.0	27
110	Novel cross-linkers for asymmetric poly-AMPS-based proton exchange membranes for fuel cells. Designed Monomers and Polymers, 2014, 17, 372-379.	1.6	8
111	Laser Photofabrication of Cell-Containing Hydrogel Constructs. Langmuir, 2014, 30, 3787-3794.	3.5	159
112	Strategies to Reduce Oxygen Inhibition in Photoinduced Polymerization. Chemical Reviews, 2014, 114, 557-589.	47.7	520
113	β-Allyl Sulfones as Addition–Fragmentation Chain Transfer Reagents: A Tool for Adjusting Thermal and Mechanical Properties of Dimethacrylate Networks. Macromolecules, 2014, 47, 7327-7336.	4.8	60
114	Enzymatic synthesis of hyaluronic acid vinyl esters for two-photon microfabrication of biocompatible and biodegradable hydrogel constructs. Polymer Chemistry, 2014, 5, 6523-6533.	3.9	68
115	The formulator's guide to anti-oxygen inhibition additives. Progress in Organic Coatings, 2014, 77, 1789-1798.	3.9	70
116	Cytotoxicity of post and core composites as a function of environmental conditions. Dental Materials, 2014, 30, 1179-1186.	3.5	8
117	Benzoyl Phenyltelluride as Highly Reactive Visible-Light TERP-Reagent for Controlled Radical Polymerization. Macromolecules, 2014, 47, 5526-5531.	4.8	23
118	Two-photon-induced thiol-ene polymerization as a fabrication tool for flexible optical waveguides. Designed Monomers and Polymers, 2014, 17, 390-400.	1.6	23
119	Tissue engineering of vascular grafts. European Surgery - Acta Chirurgica Austriaca, 2013, 45, 187-193.	0.7	19
120	3D alkyne–azide cycloaddition: spatiotemporally controlled by combination of aryl azide photochemistry and two-photon grafting. Chemical Communications, 2013, 49, 7635.	4.1	18
121	Three-dimensional microfabrication of protein hydrogels via two-photon-excited thiol-vinyl ester photopolymerization. Journal of Polymer Science Part A, 2013, 51, 4799-4810.	2.3	74
122	Initiation efficiency and cytotoxicity of novel water-soluble two-photon photoinitiators for direct 3D microfabrication of hydrogels. RSC Advances, 2013, 3, 15939.	3.6	117
123	Acylgermanes: Photoinitiators and Sources for Ge-Centered Radicals. Insights into their Reactivity. Journal of the American Chemical Society, 2013, 135, 17314-17321.	13.7	95
124	Efficient stabilization of thiol-ene formulations in radical photopolymerization. Journal of Polymer Science Part A, 2013, 51, 4261-4266.	2.3	77
125	A Straightforward Synthesis and Structure–Activity Relationship of Highly Efficient Initiators for Two-Photon Polymerization. Macromolecules, 2013, 46, 352-361.	4.8	158
126	Hydrogels for Twoâ€Photon Polymerization: A Toolbox for Mimicking the Extracellular Matrix. Advanced Functional Materials, 2013, 23, 4542-4554.	14.9	191

#	Article	IF	Citations
127	Hierarchically Porous Materials from Layerâ€byâ€Layer Photopolymerization of High Internal Phase Emulsions. Macromolecular Rapid Communications, 2013, 34, 938-943.	3.9	68
128	3D photografting with aromatic azides: A comparison between three-photon and two-photon case. Optical Materials, 2013, 35, 1846-1851.	3.6	13
129	Thiolâ€ene photopolymerization for efficient curing of vinyl esters. Journal of Polymer Science Part A, 2013, 51, 203-212.	2.3	61
130	Young $\widehat{a} \in \mathbb{T}^M$ s modulus measurement of two-photon polymerized micro-cantilevers by using nanoindentation equipment. Journal of Applied Physics, 2012, 112, .	2.5	42
131	Flexible Optical Interconnects via Thiol-ene Two-photon-induced Polymerization. Materials Research Society Symposia Proceedings, 2012, 1438, 1.	0.1	1
132	Engineering 3D cell-culture matrices: multiphoton processing technologies for biological and tissue engineering applications. Expert Review of Medical Devices, 2012, 9, 613-633.	2.8	140
133	Vinyl carbonates, vinyl carbamates, and related monomers: synthesis, polymerization, and application. Chemical Society Reviews, 2012, 41, 2395-2405.	38.1	62
134	Photoinitiators with \hat{l}^2 -Phenylogous Cleavage: An Evaluation of Reaction Mechanisms and Performance. Macromolecules, 2012, 45, 1737-1745.	4.8	18
135	3D Photografting: Selective Functionalization of 3D Matrices Via Multiphoton Grafting and Subsequent Click Chemistry (Adv. Funct. Mater. 16/2012). Advanced Functional Materials, 2012, 22, 3527-3527.	14.9	5
136	Efficient Curing of Vinyl Carbonates by Thiolâ€Ene Polymerization. Macromolecular Rapid Communications, 2012, 33, 2046-2052.	3.9	29
137	Initiators Based on Benzaldoximes: Bimolecular and Covalently Bound Systems. Macromolecules, 2012, 45, 8648-8657.	4.8	16
138	Photo-sensitive hydrogels for three-dimensional laser microfabrication in the presence of whole organisms. Journal of Biomedical Optics, 2012, 17, 1.	2.6	117
139	Hardâ€block degradable thermoplastic urethaneâ€elastomers for electrospun vascular prostheses. Journal of Polymer Science Part A, 2012, 50, 1272-1280.	2.3	42
140	Lithographyâ€Based Additive Manufacturing of Cellular Ceramic Structures. Advanced Engineering Materials, 2012, 14, 1052-1058.	3.5	161
141	Selective Functionalization of 3D Matrices Via Multiphoton Grafting and Subsequent Click Chemistry. Advanced Functional Materials, 2012, 22, 3429-3433.	14.9	34
142	3D grafting via three-photon induced photolysis of aromatic azides. Applied Physics A: Materials Science and Processing, 2012, 108, 29-34.	2.3	10
143	Processing of 45S5 Bioglass® by lithography-based additive manufacturing. Materials Letters, 2012, 74, 81-84.	2.6	150
144	Elastomeric degradable biomaterials by photopolymerization-based CAD-CAM for vascular tissue engineering. Biomedical Materials (Bristol), 2011, 6, 055003.	3.3	51

#	Article	IF	CITATIONS
145	Polymerizable Hydrogels for Rapid Prototyping: Chemistry, Photolithography, and Mechanical Properties., 2011,, 161-182.		3
146	Evaluation of 3D structures fabricated with two-photon-photopolymerization by using FTIR spectroscopy. Journal of Applied Physics, 2011, 110, .	2.5	47
147	Vinylcarbonates and vinylcarbamates: Biocompatible monomers for radical photopolymerization. Journal of Polymer Science Part A, 2011, 49, 650-661.	2.3	44
148	Synthesis and structureâ€activity relationship of several aromatic ketoneâ€based twoâ€photon initiators. Journal of Polymer Science Part A, 2011, 49, 3688-3699.	2.3	80
149	Biomaterials based on low cytotoxic vinyl esters for bone replacement application. Journal of Polymer Science Part A, 2011, 49, 4927-4934.	2.3	33
150	Frontal Polymerization: Polymerization Induced Destabilization of Peracrylates. Macromolecular Rapid Communications, 2011, 32, 1096-1100.	3.9	20
151	Two-photon-induced Microfabrication of Flexible Optical Waveguides. Journal of Laser Micro Nanoengineering, 2011, 6, 195-198.	0.1	6
152	Synthesis of bis(3-{[2-(allyloxy)ethoxy]methyl}-2,4,6-trimethylbenzoyl)(phenyl)phosphine oxide – a tailor-made photoinitiator for dental adhesives. Beilstein Journal of Organic Chemistry, 2010, 6, 26.	2.2	27
153	Photoinitiated polymerization of \hat{I}^2 -cyclodextrin/methyl methacrylate host/guest complex in the presence of water soluble photoinitiator, thioxanthone-catechol-O,Oâ \in 2-diacetic acid. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2010, 68, 147-153.	1.6	9
154	Silicaâ∈Based, Organically Modified Host Material for Waveguide Structuring by Twoâ€Photonâ€Induced Photopolymerization. Advanced Functional Materials, 2010, 20, 811-819.	14.9	14
155	Photopolymerization of biocompatible phosphorusâ€containing vinyl esters and vinyl carbamates. Journal of Polymer Science Part A, 2010, 48, 2916-2924.	2.3	23
156	Alternative initiators for bimolecular photoinitiating systems. Journal of Polymer Science Part A, 2010, 48, 5865-5871.	2.3	20
157	Photopolymerizable Elastomers for Vascular Tissue Regeneration. Macromolecular Symposia, 2010, 296, 121-126.	0.7	10
158	3D-printing of Urethane-based Photoelastomers for Vascular Tissue Regeneration. Materials Research Society Symposia Proceedings, 2009, 1239, 1.	0.1	1
159	(Bio)degradable Urethane-Elastomers for Electrospun Vascular Grafts. Materials Research Society Symposia Proceedings, 2009, 1235, 1.	0.1	1
160	3D-structuring of Optical Waveguides with Two Photon Polymerization. Materials Research Society Symposia Proceedings, 2009, 1179 , 1 .	0.1	5
161	Additive Manufacturing Technologies for the 3D Fabrication of Biocompatible and Biodegradable Photopolymers. Materials Research Society Symposia Proceedings, 2009, 1239, 1.	0.1	1
162	Novel Highly Potential Initiators for the Two-Photon-Induced Photopolymerization Process. Materials Research Society Symposia Proceedings, 2009, 1179, 27.	0.1	0

#	Article	lF	Citations
163	New 3D-Biophotopolymers with Selective Surface-cell Interactions for Regenerative Medicine. Materials Research Society Symposia Proceedings, 2009, 1235, 1.	0.1	1
164	Biocompatible Phosphorus-based Monomers for Radical Polymerization. Materials Research Society Symposia Proceedings, 2009, 1235, 1.	0.1	0
165	Decisive Reaction Steps at Initial Stages of Photoinitiated Radical Polymerizations. Angewandte Chemie - International Edition, 2009, 48, 9359-9361.	13.8	31
166	Photoinitiating monomers based on di―and triacryloylated hydroxylamine derivatives. Journal of Polymer Science Part A, 2009, 47, 392-403.	2.3	27
167	(Meth)acrylateâ€based photoelastomers as tailored biomaterials for artificial vascular grafts. Journal of Polymer Science Part A, 2009, 47, 2664-2676.	2.3	42
168	Photochemistry and initiation behavior of phenylethynyl onium salts as cationic photoinitiators. Journal of Polymer Science Part A, 2009, 47, 3419-3430.	2.3	18
169	Vinyl esters: Low cytotoxicity monomers for the fabrication of biocompatible 3D scaffolds by lithography based additive manufacturing. Journal of Polymer Science Part A, 2009, 47, 6941-6954.	2.3	133
170	Gelatinâ€based photopolymers for bone replacement materials. Journal of Polymer Science Part A, 2009, 47, 7078-7089.	2.3	44
171	Toward the Photoinduced Reactivity of 1,5-Diphenylpenta-1,4-diyn-3-one (DPD): Real-Time Investigations by Magnetic Resonance. Macromolecules, 2009, 42, 8034-8038.	4.8	21
172	Structureâ^'Activity Relationship in D-Ï€-A-Ï€-D-Based Photoinitiators for the Two-Photon-Induced Photopolymerization Process. Macromolecules, 2009, 42, 6519-6528.	4.8	92
173	Photoinitiators with double and triple bonds. Journal of Polymer Science Part A, 2008, 46, 289-301.	2.3	11
174	ROMP based photoinitiator oinitiator systems with improved migration stability. Journal of Polymer Science Part A, 2008, 46, 3648-3661.	2.3	21
175	Oxygen scavengers and sensitizers for reduced oxygen inhibition in radical photopolymerization. Journal of Polymer Science Part A, 2008, 46, 6916-6927.	2.3	38
176	New Photocleavable Structures, 4. Macromolecular Rapid Communications, 2008, 29, 57-62.	3.9	88
177	Benzoyl germanium derivatives as novel visible light photoinitiators for dental materials. Dental Materials, 2008, 24, 901-907.	3.5	260
178	Photopolymers with tunable mechanical properties processed by laser-based high-resolution stereolithography. Journal of Micromechanics and Microengineering, 2008, 18, 125014.	2.6	191
179	New Photocleavable Structures. Diacylgermane-Based Photoinitiators for Visible Light Curing. Macromolecules, 2008, 41, 2394-2400.	4.8	164
180	Photoinitiating Monomers Based on Diacrylamides. Macromolecules, 2008, 41, 7953-7958.	4.8	19

#	Article	IF	CITATIONS
181	Photoinitiators with Functional Groups 9: New Derivatives of Covalently Linked Benzophenone-amine Based Photoinitiators. Journal of Macromolecular Science - Pure and Applied Chemistry, 2008, 45, 804-810.	2.2	10
182	Mechanistic Investigations on a Diynone Type Photoinitiator. Macromolecular Chemistry and Physics, 2007, 208, 44-54.	2.2	15
183	3D-shaping of biodegradable photopolymers for hard tissue replacement. Applied Surface Science, 2007, 254, 1131-1134.	6.1	24
184	One- and two-photon activity of cross-conjugated photoinitiators with bathochromic shift. Journal of Polymer Science Part A, 2007, 45, 3280-3291.	2.3	36
185	Evaluation of Biocompatible Photopolymers II: Further Reactive Diluents. Monatshefte FÃ $\frac{1}{4}$ r Chemie, 2007, 138, 261-268.	1.8	38
186	Functional polymers by two-photon 3D lithography. Applied Surface Science, 2007, 254, 836-840.	6.1	78
187	Phenylglycine derivatives as coinitiators for the radical photopolymerization of acidic aqueous formulations. Journal of Polymer Science Part A, 2006, 44, 115-125.	2.3	56
188	Photoinitiators with functional groups. IX. Hydrophilic bisacylphosphine oxides for acidic aqueous formulations. Journal of Polymer Science Part A, 2006, 44, 1686-1700.	2.3	67
189	Surface modification of imide containing polymers I: Catalytic groups. European Polymer Journal, 2006, 42, 638-654.	5.4	8
190	Surface modification of imide containing polymers II: Co-reactive groups. European Polymer Journal, 2006, 42, 869-882.	5.4	3
191	New photocleavable structures III: Photochemistry and photophysics of pyridinoyl and benzoyl-based photoinitiators. Journal of Photochemistry and Photobiology A: Chemistry, 2006, 180, 109-117.	3.9	18
192	Photopolymers for Rapid Prototyping of Soluble Mold Materials and Molding of Cellular Biomaterials. Monatshefte FÃ $\frac{1}{4}$ r Chemie, 2006, 137, 843-853.	1.8	8
193	Peroxide-initiated grafting of maleimides onto hydrocarbon substrates. European Polymer Journal, 2005, 41, 2240-2254.	5.4	7
194	Water-soluble photopolymers for rapid prototyping of cellular materials. Journal of Applied Polymer Science, 2005, 97, 2286-2298.	2.6	56
195	New Materials for Rapid Prototyping Applications. Macromolecular Chemistry and Physics, 2005, 206, 1253-1256.	2.2	52
196	Photoinitiators with Functional Groups, 8. Macromolecular Rapid Communications, 2005, 26, 1687-1692.	3.9	55
197	1,5-Diphenyl-1,4-diyn-3-one: A highly efficient photoinitiator. Journal of Polymer Science Part A, 2005, 43, 101-111.	2.3	24
198	Fabrication and moulding of cellular materials by rapid prototyping. International Journal of Materials and Product Technology, 2004, 21, 285.	0.2	48

ROBERT LISKA

#	Article	IF	CITATION
199	New photocleavable structures. II. ?-Cleavable photoinitiators based on pyridines. Journal of Polymer Science Part A, 2004, 42, 752-764.	2.3	35
200	Photoinitiators with functional groups. VI. Chemically bound sensitizers. Journal of Polymer Science Part A, 2004, 42, 2285-2301.	2.3	18
201	Photoinitiators with functional groups. VII. Covalently bonded camphorquinone?amines. Journal of Polymer Science Part A, 2004, 42, 4948-4963.	2.3	36
202	Water Soluble, Photocurable Resins for Rapid Prototyping Applications. Macromolecular Symposia, 2004, 217, 99-108.	0.7	12
203	Photoinitiators with functional groups. V. New water-soluble photoinitiators containing carbohydrate residues and copolymerizable derivatives thereof. Journal of Polymer Science Part A, 2002, 40, 1504-1518.	2.3	80
204	Grafting of functional maleimides onto oligo- and polyolefins. Macromolecular Symposia, 2001, 176, 155-166.	0.7	5
205	Novel Photocleavable Structures I: Synthesis of Hydroxyalkylphenone Analogues Electron-rich Heterocycles. Heterocycles, 2001, 55, 1475.	0.7	16
206	Toughening of Photopolymers for Stereolithography (SL). Materials Science Forum, 0, 825-826, 53-59.	0.3	12
207	Maleimideâ€styreneâ€butadiene terpolymers: acrylonitrileâ€butadieneâ€styrene inspired photopolymers for additive manufacturing. Polymer International, 0, , .	3.1	1
208	Evaluation of suitable onium tetrafluoroborates for cationic polymerization of epoxides. Polymer	3.1	2