
Visith Thongboonkerd

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1372398/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Assembly principles of the human R2TP chaperone complex reveal the presence of R2T and R2P complexes. Structure, 2022, 30, 156-171.e12.	3.3	13
2	<i>ARID1A</i> knockdown enhances carcinogenesis features and aggressiveness of Caco-2 colon cancer cells: An <i>in vitro</i> cellular mechanism study. Journal of Cancer, 2022, 13, 373-384.	2.5	10
3	Hyaluronic acid promotes calcium oxalate crystal growth, crystal-cell adhesion, and crystal invasion through extracellular matrix. Toxicology in Vitro, 2022, 80, 105320.	2.4	3
4	Gelâ€Based and Gelâ€Free Phosphoproteomics to Measure and Characterize Mitochondrial Phosphoproteins. Current Protocols, 2022, 2, e390.	2.9	7
5	Systematic analysis of modulating activities of native human urinary Tamm-Horsfall protein on calcium oxalate crystallization, growth, aggregation, crystal-cell adhesion and invasion through extracellular matrix. Chemico-Biological Interactions, 2022, 357, 109879.	4.0	18
6	Trigonelline prevents kidney stone formation processes by inhibiting calcium oxalate crystallization, growth and crystal-cell adhesion, and downregulating crystal receptors. Biomedicine and Pharmacotherapy, 2022, 149, 112876.	5.6	16
7	Induction of mesenchymal-epithelial transition (MET) by epigallocatechin-3-gallate to reverse epithelial-mesenchymal transition (EMT) in SNA11-overexpressed renal cells: A potential anti-fibrotic strategy. Journal of Nutritional Biochemistry, 2022, 107, 109066.	4.2	7
8	Oxidized forms of uromodulin promote calcium oxalate crystallization and growth, but not aggregation. International Journal of Biological Macromolecules, 2022, 214, 542-553.	7.5	6
9	Persistent Escherichia coli infection in renal tubular cells enhances calcium oxalate crystal–cell adhesion by inducing ezrin translocation to apical membranes via Rho/ROCK pathway. Cellular and Molecular Life Sciences, 2022, 79, .	5.4	6
10	The divergent roles of exosomes in kidney diseases: Pathogenesis, diagnostics, prognostics and therapeutics. International Journal of Biochemistry and Cell Biology, 2022, 149, 106262.	2.8	9
11	Exosome-inflammasome crosstalk and their roles in inflammatory responses. Theranostics, 2021, 11, 4436-4451.	10.0	83
12	What can urinary exosomes tell us?. Cellular and Molecular Life Sciences, 2021, 78, 3265-3283.	5.4	26
13	Optimization of artificial urine formula for <i>in vitro</i> cellular study compared with native urine. International Journal of Medical Sciences, 2021, 18, 3271-3279.	2.5	4
14	Exosome-Derived Mediators as Potential Biomarkers for Cardiovascular Diseases: A Network Approach. Proteomes, 2021, 9, 8.	3.5	21
15	Urinary extracellular vesicles: A position paper by the Urine Task Force of the International Society for Extracellular Vesicles. Journal of Extracellular Vesicles, 2021, 10, e12093.	12.2	182
16	ARID1A knockdown in human endothelial cells directly induces angiogenesis by regulating angiopoietin-2 secretion and endothelial cell activity. International Journal of Biological Macromolecules, 2021, 180, 1-13.	7.5	14
17	Kidney stone proteomics: an update and perspectives. Expert Review of Proteomics, 2021, 18, 557-569.	3.0	12
18	How can artificial intelligence be used for peptidomics?. Expert Review of Proteomics, 2021, 18, 527-556.	3.0	7

#	Article	IF	CITATIONS
19	Effects of secretome derived from macrophages exposed to calcium oxalate crystals on renal fibroblast activation. Communications Biology, 2021, 4, 959.	4.4	18
20	Calcium oxalate monohydrate crystal disrupts tight junction via F-actin reorganization. Chemico-Biological Interactions, 2021, 345, 109557.	4.0	8
21	Dual modulatory effects of diosmin on calcium oxalate kidney stone formation processes: Crystallization, growth, aggregation, crystal-cell adhesion, internalization into renal tubular cells, and invasion through extracellular matrix. Biomedicine and Pharmacotherapy, 2021, 141, 111903.	5.6	10
22	Peptidomics and proteogenomics: background, challenges and future needs. Expert Review of Proteomics, 2021, 18, 643-659.	3.0	6
23	Oxidative Modifications Switch Modulatory Activities of Urinary Proteins From Inhibiting to Promoting Calcium Oxalate Crystallization, Growth, and Aggregation. Molecular and Cellular Proteomics, 2021, 20, 100151.	3.8	13
24	Caffeine prevents oxalate-induced epithelial-mesenchymal transition of renal tubular cells by its anti-oxidative property through activation of Nrf2 signaling and suppression of Snail1 transcription factor. Biomedicine and Pharmacotherapy, 2021, 141, 111870.	5.6	13
25	Epigallocatechin-3-gallate plays more predominant roles than caffeine for inducing actin-crosslinking, ubiquitin/proteasome activity and glycolysis, and suppressing angiogenesis features of human endothelial cells. Biomedicine and Pharmacotherapy, 2021, 141, 111837.	5.6	10
26	Application of tandem fast protein liquid chromatography to purify intact native monomeric/aggregated Tamm–Horsfall protein from human urine and systematic comparisons with diatomaceous earth adsorption and salt precipitation: yield, purity and time-consumption. Analytical Methods, 2021, 13, 3359-3367.	2.7	5
27	Editorial: Immunity and Inflammatory Response in Kidney Stone Disease. Frontiers in Immunology, 2021, 12, 795559.	4.8	6
28	Complex systems analysis by integrative omics. Blood, 2021, 138, 2448-2450.	1.4	0
29	Epigallocatechin-3-gallate prevents TGF-β1-induced epithelial-mesenchymal transition and fibrotic changes of renal cells via CSK-3β/β-catenin/Snail1 and Nrf2 pathways. Journal of Nutritional Biochemistry, 2020, 76, 108266.	4.2	31
30	Protective roles of trigonelline against oxalate-induced epithelial-to-mesenchymal transition in renal tubular epithelial cells: An in vitro study. Food and Chemical Toxicology, 2020, 135, 110915.	3.6	25
31	Highly effective methods for expression/purification of recombinant human HSP90 and its four distinct (N-LR-M-C) domains. Analytical Biochemistry, 2020, 590, 113518.	2.4	3
32	P0131HIGH-DOSE URIC ACID ALTERS CELLULAR PROTEOME, INCREASES INTRACELLULAR ATP, ENHANCES TISSUE REPAIR CAPABILITY AND INCREASES CALCIUM OXALATE CRYSTAL-BINDING CAPABILITY OF RENAL TUBULAR CELLS: IMPLICATIONS TO HYPERURICOSURIA-INDUCED KIDNEY STONE DISEASE. Nephrology Dialysis Transplantation, 2020, 35, .	0.7	0
33	Effects of high-dose uric acid on cellular proteome, intracellular ATP, tissue repairing capability and calcium oxalate crystal-binding capability of renal tubular cells: Implications to hyperuricosuria-induced kidney stone disease. Chemico-Biological Interactions, 2020, 331, 109270.	4.0	17
34	Effects of Hyaluronic Acid on Calcium Oxalate Crystallization, Growth, Aggregation, Adhesion on Renal Tubular Cells, and Invasion Through Extracellular Matrix. Current Developments in Nutrition, 2020, 4, nzaa040_013.	0.3	2
35	Mitochondrial Dysfunction and Kidney Stone Disease. Frontiers in Physiology, 2020, 11, 566506.	2.8	39
36	StoneMod: a database for kidney stone modulatory proteins with experimental evidence. Scientific Reports, 2020, 10, 15109.	3.3	15

#	Article	IF	CITATIONS
37	Differential bound proteins and adhesive capabilities of calcium oxalate monohydrate crystals with various sizes. International Journal of Biological Macromolecules, 2020, 163, 2210-2223.	7.5	18
38	High glucose induces phosphorylation and oxidation of mitochondrial proteins in renal tubular cells: A proteomics approach. Scientific Reports, 2020, 10, 5843.	3.3	19
39	Highly effective methods for expression/purification of recombinant human HSP90 and its four distinct (N‣Râ€Mâ€C) domains. FASEB Journal, 2020, 34, 1-1.	0.5	0
40	High-glucose-induced changes in macrophage secretome: regulation of immune response. Molecular and Cellular Biochemistry, 2019, 452, 51-62.	3.1	4
41	<i>ARID1A</i> knockdown triggers epithelialâ€mesenchymal transition and carcinogenesis features of renal cells: role in renal cell carcinoma. FASEB Journal, 2019, 33, 12226-12239.	0.5	30
42	Cellular proteome datasets of human endothelial cells under physiologic state and after treatment with caffeine and epigallocatechin-3-gallate. Data in Brief, 2019, 25, 104292.	1.0	6
43	Protective effects of finasteride against testosterone-induced calcium oxalate crystallization and crystal-cell adhesion. Journal of Biological Inorganic Chemistry, 2019, 24, 973-983.	2.6	21
44	Caffeine inhibits hypoxia-induced renal fibroblast activation by antioxidant mechanism. Cell Adhesion and Migration, 2019, 13, 259-271.	2.7	28
45	Proteomic analysis of peripheral blood polymorphonuclear cells (PBMCs) reveals alteration of neutrophil extracellular trap (NET) components in uncontrolled diabetes. Molecular and Cellular Biochemistry, 2019, 461, 1-14.	3.1	11
46	Protective Cellular Mechanism of Estrogen Against Kidney Stone Formation: A Proteomics Approach and Functional Validation. Proteomics, 2019, 19, 1900095.	2.2	25
47	FP080Epigallocatechin-3-gallate prevents TCF-β1-induced epithelial-mesenchymal transition and fibrotic changes of renal cells via CSK-3β/β-catenin/Snail1 and Nrf2 pathways. Nephrology Dialysis Transplantation, 2019, 34, .	0.7	0
48	Flagellum Is Responsible for Promoting Effects of Viable Escherichia coli on Calcium Oxalate Crystallization, Crystal Growth, and Crystal Aggregation. Frontiers in Microbiology, 2019, 10, 2507.	3.5	31
49	Proteomics of Crystal–Cell Interactions: A Model for Kidney Stone Research. Cells, 2019, 8, 1076.	4.1	46
50	Molecular Mechanisms of Epigallocatechin-3-Gallate for Prevention of Chronic Kidney Disease and Renal Fibrosis: Preclinical Evidence. Current Developments in Nutrition, 2019, 3, nzz101.	0.3	25
51	Modulatory effects of fibronectin on calcium oxalate crystallization, growth, aggregation, adhesion on renal tubular cells, and invasion through extracellular matrix. Journal of Biological Inorganic Chemistry, 2019, 24, 235-246.	2.6	27
52	Comparative proteomics reveals concordant and discordant biochemical effects of caffeine versus epigallocatechin-3-gallate in human endothelial cells. Toxicology and Applied Pharmacology, 2019, 378, 114621.	2.8	13
53	Proteomics in Psoriasis. International Journal of Molecular Sciences, 2019, 20, 1141.	4.1	19

54 Caffeine and Kidney Diseases. , 2019, , 235-256.

#	Article	IF	CITATIONS
55	Protective Effects of Epigallocatechin-3-Gallate from Green Tea in Various Kidney Diseases. Advances in Nutrition, 2019, 10, 112-121.	6.4	56
56	Roles for Exosome in Various Kidney Diseases and Disorders. Frontiers in Pharmacology, 2019, 10, 1655.	3.5	88
57	Heat Shock Protein 90 in Kidney Stone Disease. Heat Shock Proteins, 2019, , 575-589.	0.2	0
58	Heat Shock Protein 60 in Skin Diseases. Heat Shock Proteins, 2019, , 347-359.	0.2	0
59	Modulatory effects of fibronectin on calcium oxalate crystallization, growth, aggregation, adhesion on renal tubular cells, and invasion through extracellular matrix. FASEB Journal, 2019, 33, 631.41.	0.5	1
60	Protein Network Analysis and Functional Studies of Calcium Oxalate Crystalâ€Induced Cytotoxicity in Renal Tubular Epithelial Cells. Proteomics, 2018, 18, e1800008.	2.2	38
61	Quantitative peptidomics of endogenous peptides involved in TGF-β1-induced epithelial mesenchymal transition of renal epithelial cells. Cell Death Discovery, 2018, 4, 9.	4.7	13
62	Differential proteomics of lesional vs. non-lesional biopsies revealed non-immune mechanisms of alopecia areata. Scientific Reports, 2018, 8, 521.	3.3	19
63	Heat Shock Protein 70 (HSP70) Family in Dengue Virus Infection. Heat Shock Proteins, 2018, , 395-409.	0.2	4
64	Lime powder treatment reduces urinary excretion of total protein and transferrin but increases uromodulin excretion in patients with urolithiasis. Urolithiasis, 2018, 46, 257-264.	2.0	13
65	K ⁺ deficiency caused defects in renal tubular cell proliferation, oxidative stress response, tissue repair and tight junction integrity, but enhanced energy production, proteasome function and cellular K ⁺ uptake. Cell Adhesion and Migration, 2018, 12, 247-258.	2.7	12
66	Characterizations of PMCA2-interacting complex and its role as a calcium oxalate crystal-binding protein. Cellular and Molecular Life Sciences, 2018, 75, 1461-1482.	5.4	23
67	Cell cycle shift from G0/G1 to S and G2/M phases is responsible for increased adhesion of calcium oxalate crystals on repairing renal tubular cells at injured site. Cell Death Discovery, 2018, 4, 106.	4.7	25
68	Characterizations of HSP90â€Interacting Complex in Renal Cells Using Tandem Affinity Purification and Its Potential Role in Kidney Stone Formation. Proteomics, 2018, 18, e1800004.	2.2	8
69	More complete polarization of renal tubular epithelial cells by artificial urine. Cell Death Discovery, 2018, 4, 47.	4.7	20
70	The humoral immunity to epidermal and dermal antigens in psoriasis: a downstream rather than an upstream event. Clinical and Experimental Medicine, 2018, 18, 453-456.	3.6	2
71	SP056ROLES OF MACROPHAGE EXOSOMES IN IMMUNE RESPONSE TO CALCIUM OXALATE MONOHYDRATE CRYSTALS IN KIDNEY STONE DISEASE. Nephrology Dialysis Transplantation, 2018, 33, i364-i364.	0.7	0
72	Exosomes derived from calcium oxalate-exposed macrophages enhance IL-8 production from renal cells, neutrophil migration and crystal invasion through extracellular matrix. Journal of Proteomics, 2018, 185, 64-76.	2.4	54

#	Article	IF	CITATIONS
73	Roles of Macrophage Exosomes in Immune Response to Calcium Oxalate Monohydrate Crystals. Frontiers in Immunology, 2018, 9, 316.	4.8	77
74	Chaperonomics in leptospirosis. Expert Review of Proteomics, 2018, 15, 569-579.	3.0	0
75	Caffeine in Kidney Stone Disease: Risk or Benefit?. Advances in Nutrition, 2018, 9, 419-424.	6.4	30
76	Molecular functional analyses revealed essential roles of HSP90 and lamin A/C in growth, migration, and self-aggregation of dermal papilla cells. Cell Death Discovery, 2018, 4, 53.	4.7	9
77	Urinary Lipidomics. Translational Bioinformatics, 2018, , 97-111.	0.0	1
78	Prolonged K+ deficiency increases intracellular ATP, cell cycle arrest and cell death in renal tubular cells. Metabolism: Clinical and Experimental, 2017, 74, 47-61.	3.4	17
79	Prospects for proteomics in kidney stone disease. Expert Review of Proteomics, 2017, 14, 185-187.	3.0	24
80	Role of HSP60 (HSPD1) in diabetesâ€induced renal tubular dysfunction: regulation of intracellular protein aggregation, ATP production, and oxidative stress. FASEB Journal, 2017, 31, 2157-2167.	0.5	38
81	Response of renal tubular cells to differential types and doses of calcium oxalate crystals: Integrative proteome network analysis and functional investigations. Proteomics, 2017, 17, 1700192.	2.2	31
82	Differential colony size, cell length, and cellular proteome of Escherichia coli isolated from urine vs. stone nidus of kidney stone patients. Clinica Chimica Acta, 2017, 466, 112-119.	1.1	22
83	Physiologic changes of urinary proteome by caffeine and excessive water intake. Clinical Chemistry and Laboratory Medicine, 2017, 55, 993-1002.	2.3	12
84	Front Cover: Response of renal tubular cells to differential types and doses of calcium oxalate crystals: Integrative proteome network analysis and functional investigations. Proteomics, 2017, 17, 1770121.	2.2	1
85	Targeted functional investigations guided by integrative proteome network analysis revealed significant perturbations of renal tubular cell functions induced by high glucose. Proteomics, 2017, 17, 1700151.	2.2	7
86	Systematic evaluation for effects of urine pH on calcium oxalate crystallization, crystal-cell adhesion and internalization into renal tubular cells. Scientific Reports, 2017, 7, 1798.	3.3	76
87	Development and evaluation of an immunochromatographic assay to detect serum anti-leptospiral lipopolysaccharide IgM in acute leptospirosis. Scientific Reports, 2017, 7, 2309.	3.3	10
88	Elongation factor Tu on Escherichia coli isolated from urine of kidney stone patients promotes calcium oxalate crystal growth and aggregation. Scientific Reports, 2017, 7, 2953.	3.3	52
89	Microvillar injury in renal tubular epithelial cells induced by calcium oxalate crystal and the protective role of epigallocatechinâ€3â€gallate. FASEB Journal, 2017, 31, 120-131.	0.5	30
90	Hypobaric hypoxia down-regulated junctional protein complex: Implications to vascular leakage. Cell Adhesion and Migration, 2017, 11, 360-366.	2.7	8

#	Article	IF	CITATIONS
91	Heat Shock Proteins in Leptospirosis. Heat Shock Proteins, 2017, , 361-374.	0.2	1
92	Defining and Systematic Analyses of Aggregation Indices to Evaluate Degree of Calcium Oxalate Crystal Aggregation. Frontiers in Chemistry, 2017, 5, 113.	3.6	23
93	MP502TARGETED FUNCTIONAL INVESTIGATIONS GUIDED BY INTEGRATIVE PROTEOME NETWORK ANALYSIS REVEALED SIGNIFICANT PERTURBATIONS OF RENAL TUBULAR CELL FUNCTIONS INDUCED BY HIGH-GLUCOSE: IMPLICATIONS TO DIABETIC NEPHROPATHY. Nephrology Dialysis Transplantation, 2017, 32, iii613-iii613.	0.7	0
94	Differential human urinary lipid profiles using various lipid-extraction protocols: MALDI-TOF and LIFT-TOF/TOF analyses. Scientific Reports, 2016, 6, 33756.	3.3	22
95	Caffeine prevents kidney stone formation by translocation of apical surface annexin A1 crystal-binding protein into cytoplasm: In vitro evidence. Scientific Reports, 2016, 6, 38536.	3.3	48
96	Caveolae-mediated albumin transcytosis is enhanced in dengue-infected human endothelial cells: A model of vascular leakage in dengue hemorrhagic fever. Scientific Reports, 2016, 6, 31855.	3.3	23
97	Alpha-tubulin enhanced renal tubular cell proliferation and tissue repair but reduced cell death and cell-crystal adhesion. Scientific Reports, 2016, 6, 28808.	3.3	27
98	Surface heat shock protein 90 serves as a potential receptor for calcium oxalate crystal on apical membrane of renal tubular epithelial cells. Journal of Biological Inorganic Chemistry, 2016, 21, 463-474.	2.6	31
99	Cellufine sulfate column chromatography as a simple, rapid, and effective method to purify dengue virus. Journal of Virological Methods, 2016, 234, 174-177.	2.1	8
100	Phenotypic characteristics and comparative proteomics of Staphylococcus aureus strains with different vancomycin-resistance levels. Diagnostic Microbiology and Infectious Disease, 2016, 86, 340-344.	1.8	7
101	Alpha-enolase on apical surface of renal tubular epithelial cells serves as a calcium oxalate crystal receptor. Scientific Reports, 2016, 6, 36103.	3.3	23
102	Calcium oxalate crystals increased enolase-1 secretion from renal tubular cells that subsequently enhanced crystal and monocyte invasion through renal interstitium. Scientific Reports, 2016, 6, 24064.	3.3	28
103	Protective effect of epigallocatechin-3-gallate (EGCG) via Nrf2 pathway against oxalate-induced epithelial mesenchymal transition (EMT) of renal tubular cells. Scientific Reports, 2016, 6, 30233.	3.3	86
104	MP076AN IN VITRO EVIDENCE OF PROMOTING EFFECT OF TESTOSTERONE IN KIDNEY STONE DISEASE: A PROTEOMICS APPROACH AND FUNCTIONAL VALIDATION. Nephrology Dialysis Transplantation, 2016, 31, i368-i368.	0.7	0
105	In vitro evidence of the promoting effect of testosterone in kidney stone disease: A proteomics approach and functional validation. Journal of Proteomics, 2016, 144, 11-22.	2.4	24
106	Alterations of proteins in MDCK cells during acute potassium deficiency. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2016, 1864, 683-696.	2.3	2
107	Characterizations of heparin-binding proteins in human urine by affinity purification-mass spectrometry and defining "L-x(2,3)-A-x(0,1)-L―as a novel heparin-binding motif. Journal of Proteomics, 2016, 142, 53-61.	2.4	12
108	EGCG decreases binding of calcium oxalate monohydrate crystals onto renal tubular cells via decreased surface expression of alpha-enolase. Journal of Biological Inorganic Chemistry, 2016, 21, 339-346.	2.6	22

#	Article	IF	CITATIONS
109	Characterization of calcium oxalate crystal-induced changes in the secretome of U937 human monocytes. Molecular BioSystems, 2016, 12, 879-889.	2.9	11
110	Calcium oxalate monohydrate crystals internalized into renal tubular cells are degraded and dissolved by endolysosomes. Chemico-Biological Interactions, 2016, 246, 30-35.	4.0	28
111	Lamin A/C in renal tubular cells is important for tissue repair, cell proliferation, and calcium oxalate crystal adhesion, and is associated with potential crystal receptors. FASEB Journal, 2016, 30, 3368-3377.	0.5	32
112	Unraveling epigenetic regulation of epithelial mesenchymal transition. Translational Cancer Research, 2016, 5, S1177-S1180.	1.0	3
113	SP094ROLES OF ALPHA-TUBULIN IN RENAL TUBULAR EPITHELIAL CELL FOR CELL VIABILITY, PROLIFERATION, TISSUE REPAIR AND CRYSTAL ADHESION IN CALCIUM OXALATE KIDNEY STONE DISEASE. Nephrology Dialysis Transplantation, 2015, 30, iii409-iii410.	0.7	0
114	Activated Status and Altered Functions of Neutrophils in Poorly Controlled Diabetes. Journal of the ASEAN Federation of Endocrine Societies, 2015, 30, 9-17.	0.2	5
115	Recent Advances of Proteomics Applied to Human Diseases. Journal of Proteome Research, 2014, 13, 4493-4496.	3.7	9
116	Genome-wide Proteomics, Chromosome-centric Human Proteome Project (C-HPP), Part II. Journal of Proteome Research, 2014, 13, 1-4.	3.7	21
117	Identification and Characterization of Proteins Encoded by Chromosome 12 as Part of Chromosome-centric Human Proteome Project. Journal of Proteome Research, 2014, 13, 3166-3177.	3.7	11
118	Chromosome-centric Human Proteome Project: Deciphering Proteins Associated with Glioma and Neurodegenerative Disorders on Chromosome 12. Journal of Proteome Research, 2014, 13, 3178-3190.	3.7	23
119	Chromosome-centric Human Proteome Project (C-HPP): Chromosome 12. Journal of Proteome Research, 2014, 13, 3160-3165.	3.7	4
120	Enamelâ€renalâ€gingival syndrome and <i>FAM20A</i> mutations. American Journal of Medical Genetics, Part A, 2014, 164, 1-9.	1.2	47
121	Profiling the Mitochondrial Proteome of Leber's Hereditary Optic Neuropathy (LHON) in Thailand: Down-Regulation of Bioenergetics and Mitochondrial Protein Quality Control Pathways in Fibroblasts with the 11778G>A Mutation. PLoS ONE, 2014, 9, e106779.	2.5	16
122	Secreted Products of Macrophages Exposed to Calcium Oxalate Crystals Induce Epithelial Mesenchymal Transition of Renal Tubular Cells via RhoA-Dependent TGF-β1 Pathway. Cell Biochemistry and Biophysics, 2013, 67, 1207-1215.	1.8	26
123	Macropinocytosis is the Major Mechanism for Endocytosis of Calcium Oxalate Crystals into Renal Tubular Cells. Cell Biochemistry and Biophysics, 2013, 67, 1171-1179.	1.8	45
124	Differential plasma proteome profiles of mild versus severe Î ² -thalassemia/Hb E. Annals of Hematology, 2013, 92, 365-377.	1.8	12
125	Bacteria can promote calcium oxalate crystal growth and aggregation. Journal of Biological Inorganic Chemistry, 2013, 18, 299-308.	2.6	65
126	Cellular adaptive response of distal renal tubular cells to high-oxalate environment highlights surface alpha-enolase as the enhancer of calcium oxalate monohydrate crystal adhesion. Journal of Proteomics, 2013, 80, 55-65.	2.4	31

#	Article	IF	CITATIONS
127	Alterations in Macrophage Cellular Proteome Induced by Calcium Oxalate Crystals: The Association of HSP90 and F-Actin Is Important for Phagosome Formation. Journal of Proteome Research, 2013, 12, 3561-3572.	3.7	24
128	The promise and challenge of systems biology in translational medicine. Clinical Science, 2013, 124, 389-390.	4.3	4
129	Characterization of Monoclonal Antibodies Against a Human Chondrocyte Surface Antigen. Monoclonal Antibodies in Immunodiagnosis and Immunotherapy, 2013, 32, 180-186.	1.6	5
130	p38 MAPK mediates calcium oxalate crystal-induced tight junction disruption in distal renal tubular epithelial cells. Scientific Reports, 2013, 3, 1041.	3.3	51
131	Protective Effects of Mangosteen Extract on H2O2-Induced Cytotoxicity in SK-N-SH Cells and Scopolamine-Induced Memory Impairment in Mice. PLoS ONE, 2013, 8, e85053.	2.5	39
132	Human Body Fluid. BioMed Research International, 2013, 2013, 1-2.	1.9	13
133	Serum proteins in chronic hepatitis B patients treated with peginterferon alfa-2b. World Journal of Gastroenterology, 2013, 19, 5067.	3.3	5
134	Phosphate inhibits calcium oxalate crystal growth and crystallization through reducing free calcium ions: a morphological analysis and calcium consumption assay. Clinical Chemistry and Laboratory Medicine, 2012, 50, 1697-8.	2.3	3
135	Extensive characterizations of bacteria isolated from catheterized urine and stone matrices in patients with nephrolithiasis. Nephrology Dialysis Transplantation, 2012, 27, 4125-4130.	0.7	89
136	Characterizations and proteome analysis of platelet-free plasma-derived microparticles in β-thalassemia/hemoglobin E patients. Journal of Proteomics, 2012, 76, 239-250.	2.4	39
137	High Calcium Enhances Calcium Oxalate Crystal Binding Capacity of Renal Tubular Cells via Increased Surface Annexin A1 but Impairs Their Proliferation and Healing. Journal of Proteome Research, 2012, 11, 3650-3663.	3.7	31
138	Systematic comparisons of various spectrophotometric and colorimetric methods to measure concentrations of protein, peptide and amino acid: Detectable limits, linear dynamic ranges, interferences, practicality and unit costs. Talanta, 2012, 98, 123-129.	5.5	67
139	Urinary proteomics revealed prostaglandin H2D-isomerase, not Zn-α2-glycoprotein, as a biomarker for active lupus nephritis. Journal of Proteomics, 2012, 75, 3240-3247.	2.4	36
140	Isolation and characterizations of oxalate-binding proteins in the kidney. Biochemical and Biophysical Research Communications, 2012, 424, 629-634.	2.1	15
141	The variability in tissue proteomics. Proteomics - Clinical Applications, 2012, 6, 340-342.	1.6	6
142	A novel assay to evaluate promoting effects of proteins on calcium oxalate crystal invasion through extracellular matrix based on plasminogen/plasmin activity. Talanta, 2012, 101, 240-245.	5.5	18
143	Marked changes in red cell membrane proteins in hereditary spherocytosis: a proteomics approach. Molecular BioSystems, 2012, 8, 2312.	2.9	7
144	Changes in Mitochondrial Proteome of Renal Tubular Cells Induced by Calcium Oxalate Monohydrate Crystal Adhesion and Internalization Are Related to Mitochondrial Dysfunction. Journal of Proteome Research, 2012, 11, 3269-3280.	3.7	57

#	Article	IF	CITATIONS
145	Citrate, not phosphate, can dissolve calcium oxalate monohydrate crystals and detach these crystals from renal tubular cells. European Journal of Pharmacology, 2012, 689, 219-225.	3.5	17
146	Implementation of proteomic biomarkers: making it work. European Journal of Clinical Investigation, 2012, 42, 1027-1036.	3.4	151
147	Calcium oxalate dihydrate crystal induced changes in glycoproteome of distal renal tubular epithelial cells. Molecular BioSystems, 2011, 7, 1917.	2.9	9
148	Comprehensive Proteome Analysis of Hippocampus, Brainstem, and Spinal Cord from Paralytic and Furious Dogs Naturally Infected with Rabies. Journal of Proteome Research, 2011, 10, 4911-4924.	3.7	29
149	Large-scale Identification of Calcium Oxalate Monohydrate Crystal-binding Proteins on Apical Membrane of Distal Renal Tubular Epithelial Cells. Journal of Proteome Research, 2011, 10, 4463-4477.	3.7	47
150	Ceftriaxone crystallization and its potential role in kidney stone formation. Biochemical and Biophysical Research Communications, 2011, 406, 396-402.	2.1	40
151	Subcellular localizations and time-course expression of dengue envelope and non-structural 1 proteins in human endothelial cells. Microbial Pathogenesis, 2011, 51, 225-229.	2.9	11
152	Effects of calcium oxalate monohydrate crystals on expression and function of tight junction of renal tubular epithelial cells. Laboratory Investigation, 2011, 91, 97-105.	3.7	50
153	Urine proteomics in kidney and urogenital diseases: Moving towards clinical applications. Proteomics - Clinical Applications, 2011, 5, 256-268.	1.6	20
154	Renal and Urinary Proteomics. Proteomics - Clinical Applications, 2011, 5, 211-213.	1.6	3
155	Identification of Brugia malayi immunogens by an immunoproteomics approach. Journal of Proteomics, 2011, 74, 1607-1613.	2.4	13
156	Study of Diabetic Nephropathy in the Proteomic Era. Contributions To Nephrology, 2011, 170, 172-183.	1.1	27
157	Renal tubular cell membranes inhibit growth but promote aggregation of calcium oxalate monohydrate crystals. Chemico-Biological Interactions, 2010, 188, 421-426.	4.0	12
158	Proteomics in extracorporeal blood purification and peritoneal dialysis. Journal of Proteomics, 2010, 73, 521-526.	2.4	25
159	Alterations in cellular proteome and secretome upon differentiation from monocyte to macrophage by treatment with phorbol myristate acetate: Insights into biological processes. Journal of Proteomics, 2010, 73, 602-618.	2.4	50
160	Systematic comparisons of artificial urine formulas for in vitro cellular study. Analytical Biochemistry, 2010, 402, 110-112.	2.4	154
161	Plasma proteome profiling of von Hippel-Lindau disease after total and subtotal nephrectomy: A preliminary study. Clinical Biochemistry, 2010, 43, 142-149.	1.9	0
162	Comprehensive human urine standards for comparability and standardization in clinical proteome analysis. Proteomics - Clinical Applications, 2010, 4, 464-478.	1.6	139

#	Article	IF	CITATIONS
163	Current status of renal and urinary proteomics: ready for routine clinical application?. Nephrology Dialysis Transplantation, 2010, 25, 11-16.	0.7	39
164	Association of Alix with Late Endosomal Lysobisphosphatidic Acid Is Important for Dengue Virus Infection in Human Endothelial Cells. Journal of Proteome Research, 2010, 9, 4640-4648.	3.7	33
165	Protective Effect of Mangosteen Extract against β-Amyloid-Induced Cytotoxicity, Oxidative Stress and Altered Proteome in SK-N-SH Cells. Journal of Proteome Research, 2010, 9, 2076-2086.	3.7	37
166	Proteome Changes in Human Monocytes upon Interaction with Calcium Oxalate Monohydrate Crystals. Journal of Proteome Research, 2010, 9, 3980-3988.	3.7	17
167	Establishment of a novel colorimetric assay for high-throughput analysis of calcium oxalate crystal growth modulation. Analyst, The, 2010, 135, 1309.	3.5	10
168	The Ubiquitinâ^'Proteasome Pathway Is Important for Dengue Virus Infection in Primary Human Endothelial Cells. Journal of Proteome Research, 2010, 9, 4960-4971.	3.7	89
169	Naturally Occurring Human Urinary Peptides for Use in Diagnosis of Chronic Kidney Disease. Molecular and Cellular Proteomics, 2010, 9, 2424-2437.	3.8	434
170	Red Blood Cell Membrane Fragments but Not Intact Red Blood Cells Promote Calcium Oxalate Monohydrate Crystal Growth and Aggregation. Journal of Urology, 2010, 184, 743-749.	0.4	11
171	Recommendations for Biomarker Identification and Qualification in Clinical Proteomics. Science Translational Medicine, 2010, 2, 46ps42.	12.4	273
172	Non-radioactive labelling of calcium oxalate crystals for investigations of crystal-cell interactions and internalization. Analytical Methods, 2010, 2, 1536-1541.	2.7	24
173	Development of an oxalate-affinity chromatographic column to isolate oxalate-binding proteins. Analytical Methods, 2010, 2, 1051.	2.7	6
174	Vimentin interacts with heterogeneous nuclear ribonucleoproteins and dengue nonstructural protein 1 and is important for viral replication and release. Molecular BioSystems, 2010, 6, 795.	2.9	71
175	Characterizations of urinary sediments precipitated after freezing and their effects on urinary protein and chemical analyses. American Journal of Physiology - Renal Physiology, 2009, 296, F1346-F1354.	2.7	41
176	Specific adsorption of some complement activation proteins to polysulfone dialysis membranes during hemodialysis. Kidney International, 2009, 76, 404-413.	5.2	69
177	Analysis of differential proteomes in pathogenic and nonâ€pathogenic <i>Leptospira</i> : Potential pathogenic and virulence factors. Proteomics, 2009, 9, 3522-3534.	2.2	19
178	2nd Combined Working Group and Management Committee Meeting of Urine and Kidney Proteomics COST Action 29–30 March 2009, Nafplio, Greece. Proteomics - Clinical Applications, 2009, 3, 1017-1022.	1.6	9
179	A comparative study of different dyes for the detection of proteomes derived from Escherichia coli and MDCK cells: Sensitivity and selectivity. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2009, 877, 1433-1439.	2.3	5
180	Comparative analyses of cell disruption methods for mitochondrial isolation in high-throughput proteomics study. Analytical Biochemistry, 2009, 394, 249-258.	2.4	46

#	Article	IF	CITATIONS
181	Peeling as a novel, simple, and effective method for isolation of apical membrane from intact polarized epithelial cells. Analytical Biochemistry, 2009, 395, 25-32.	2.4	31
182	Altered secretome of Burkholderia pseudomallei induced by salt stress. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2009, 1794, 898-904.	2.3	26
183	Are Protease Inhibitors Required for Gel-Based Proteomics of Kidney and Urine?. Journal of Proteome Research, 2009, 8, 3109-3117.	3.7	47
184	C-Terminal Hemocyanin from Hemocytes of <i>Penaeus vannamei</i> Interacts with ERK1/2 and Undergoes Serine Phosphorylation. Journal of Proteome Research, 2009, 8, 2476-2483.	3.7	33
185	Should Urine pH Be Adjusted Prior to Gel-Based Proteome Analysis?. Journal of Proteome Research, 2009, 8, 3206-3211.	3.7	33
186	Identification and Characterization of RpoS Regulon and RpoS-Dependent Promoters in Burkholderia pseudomallei. Journal of Proteome Research, 2009, 8, 3118-3131.	3.7	30
187	Metabolic Enzymes, Antioxidants, and Cytoskeletal Proteins Are Significantly Altered in Vastus Lateralis Muscle of K-Depleted Cadaveric Subjects. Journal of Proteome Research, 2009, 8, 2586-2593.	3.7	9
188	Alterations in Actin Cytoskeletal Assembly and Junctional Protein Complexes in Human Endothelial Cells Induced by Dengue Virus Infection and Mimicry of Leukocyte Transendothelial Migration. Journal of Proteome Research, 2009, 8, 2551-2562.	3.7	85
189	Proteomic Analysis of Proteins Bound to Adsorption Units of Extracorporeal Liver Support System under Clinical Conditions. Journal of Proteome Research, 2009, 8, 1756-1764.	3.7	11
190	Altered plasma proteome during an early phase of peritonitis-induced sepsis. Clinical Science, 2009, 116, 721-730.	4.3	27
191	RECENT PROGRESS OF PROTEOMICS IN CRITICAL ILLNESS. Shock, 2009, 31, 545-552.	2.1	20
192	Glomerular Disorders. , 2009, , 1056-1066.		0
193	Inactivation of Burkholderia pseudomallei bsaQ results in decreased invasion efficiency and delayed escape of bacteria from endocytic vesicles. Archives of Microbiology, 2008, 190, 623-631.	2.2	61
194	Proteomic analysis of altered proteins in distal renal tubular cells in response to calcium oxalate monohydrate crystal adhesion: Implications for kidney stone disease. Proteomics - Clinical Applications, 2008, 2, 1099-1109.	1.6	23
195	Biomarker discovery in glomerular diseases using urinary proteomics. Proteomics - Clinical Applications, 2008, 2, 1413-1421.	1.6	20
196	Renal and Urinary Proteomics. Proteomics - Clinical Applications, 2008, 2, 947-949.	1.6	8
197	Proteomic analysis of altered proteins in lymphoid organ of yellow head virus infected Penaeus monodon. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2008, 1784, 504-511.	2.3	46
198	The <i>rpoE</i> operon regulates heat stress response in <i>Burkholderia pseudomallei</i> . FEMS Microbiology Letters, 2008, 284, 191-196.	1.8	22

#	Article	IF	CITATIONS
199	Human Proteinpedia enables sharing of human protein data. Nature Biotechnology, 2008, 26, 164-167.	17.5	155
200	Identification of human hnRNP C1/C2 as a dengue virus NS1-interacting protein. Biochemical and Biophysical Research Communications, 2008, 372, 67-72.	2.1	54
201	Serial analyses of postmortem changes in human skeletal muscle: A case study of alterations in proteome profile, histology, electrolyte contents, water composition, and enzyme activity. Proteomics - Clinical Applications, 2008, 2, 1255-1264.	1.6	26
202	Proteomics in leptospirosis research: towards molecular diagnostics and vaccine development. Expert Review of Molecular Diagnostics, 2008, 8, 53-61.	3.1	24
203	Urinary Trefoil Factor 1 is a Novel Potent Inhibitor of Calcium Oxalate Crystal Growth and Aggregation. Journal of Urology, 2008, 179, 1615-1619.	0.4	58
204	Altered Proteins in MDCK Renal Tubular Cells in Response to Calcium Oxalate Dihydrate Crystal Adhesion: A Proteomics Approach. Journal of Proteome Research, 2008, 7, 2889-2896.	3.7	43
205	Urinary proteomics: towards biomarker discovery, diagnostics and prognostics. Molecular BioSystems, 2008, 4, 810.	2.9	66
206	Proteomic Analysis of Calcium Oxalate Monohydrate Crystal-Induced Cytotoxicity in Distal Renal Tubular Cells. Journal of Proteome Research, 2008, 7, 4689-4700.	3.7	66
207	Proteomics and Kidney Stone Disease. , 2008, 160, 142-158.		33
208	Searching for Novel Biomarkers and NewTherapeutic Targets of Diabetic Nephropathy Using Proteomics Approaches. , 2008, 160, 37-52.		13
209	Proteomics. Forum of Nutrition, 2007, 60, 80-90.	3.7	15
210	Renal magnesium wasting and tubular dysfunction in leptospirosis. Nephrology Dialysis Transplantation, 2007, 23, 952-958.	0.7	35
211	Use of immunoblotting as an alternative method for serogrouping Leptospira. Journal of Medical Microbiology, 2007, 56, 587-592.	1.8	8
212	Advances in Urinary Proteome Analysis and Biomarker Discovery. Journal of the American Society of Nephrology: JASN, 2007, 18, 1057-1071.	6.1	264
213	Clinical proteomics: towards diagnostics and prognostics. Blood, 2007, 109, 5075-5076.	1.4	4
214	Enrichment of the Basic/Cationic Urinary Proteome Using Ion Exchange Chromatography and Batch Adsorption. Journal of Proteome Research, 2007, 6, 1209-1214.	3.7	15
215	Body Fluid Proteomics for Biomarker Discovery: Lessons from the Past Hold the Key to Success in the Future. Journal of Proteome Research, 2007, 6, 4549-4555.	3.7	216
216	Urinary Proteome Profiling Using Microfluidic Technology on a Chip. Journal of Proteome Research, 2007, 6, 2011-2018.	3.7	37

#	Article	IF	CITATIONS
217	Proteomic Analysis of Peritoneal Dialysate Fluid in Patients with Different Types of Peritoneal Membranes. Journal of Proteome Research, 2007, 6, 4356-4362.	3.7	49
218	Markedly Increased Urinary Preprohaptoglobin and Haptoglobin in Passive Heymann Nephritis:  A Differential Proteomics Approach. Journal of Proteome Research, 2007, 6, 3313-3320.	3.7	29
219	Altered Proteome inBurkholderia pseudomalleirpoEOperon Knockout Mutant:Â Insights into Mechanisms ofrpoEOperon in Stress Tolerance, Survival, and Virulence. Journal of Proteome Research, 2007, 6, 1334-1341.	3.7	29
220	Bacterial Overgrowth Affects Urinary Proteome Analysis:  Recommendation for Centrifugation, Temperature, Duration, and the Use of Preservatives during Sample Collection. Journal of Proteome Research, 2007, 6, 4173-4181.	3.7	53
221	Practical Points in Urinary Proteomics. Journal of Proteome Research, 2007, 6, 3881-3890.	3.7	190
222	Proteomic Analysis of Host Responses in HepG2 Cells during Dengue Virus Infection. Journal of Proteome Research, 2007, 6, 4592-4600.	3.7	51
223	K+, Na+, Mg2+, Ca2+, and water contents in human skeletal muscle: correlations among these monovalent and divalent cations and their alterations in K+-depleted subjects. Translational Research, 2007, 150, 357-366.	5.0	7
224	Proteomics of Human Urine. , 2007, , 225-268.		0
225	A database of naturally occurring human urinary peptides and proteins for use in clinical applications. Nature Precedings, 2007, , .	0.1	0
226	Clinical proteomics: A need to define the field and to begin to set adequate standards. Proteomics - Clinical Applications, 2007, 1, 148-156.	1.6	274
227	Application of immunoproteomics to leptospirosis: towards clinical diagnostics and vaccine discovery. Proteomics - Clinical Applications, 2007, 1, 400-409.	1.6	17
228	Recent progress in urinary proteomics. Proteomics - Clinical Applications, 2007, 1, 780-791.	1.6	57
229	Proteomic analysis of differentially expressed proteins in <i>Penaeus vannamei</i> hemocytes upon Taura syndrome virus infection. Proteomics, 2007, 7, 3592-3601.	2.2	92
230	IgA nephropathy associated with Hodgkin's disease in children: a case report, literature review and urinary proteome analysis. Pediatric Nephrology, 2007, 22, 541-546.	1.7	12
231	Systematic Evaluation of Sample Preparation Methods for Gel-Based Human Urinary Proteomics: Quantity, Quality, and Variability. Journal of Proteome Research, 2006, 5, 183-191.	3.7	152
232	Proteomic Identification of Altered Proteins in Skeletal Muscle During Chronic Potassium Depletion:Â Implications for Hypokalemic Myopathy. Journal of Proteome Research, 2006, 5, 3326-3335.	3.7	27
233	Serial Changes in Urinary Proteome Profile of Membranous Nephropathy:  Implications for Pathophysiology and Biomarker Discovery. Journal of Proteome Research, 2006, 5, 3038-3047.	3.7	56
234	Factors determining types and morphologies of calcium oxalate crystals: Molar concentrations, buffering, pH, stirring and temperature. Clinica Chimica Acta, 2006, 367, 120-131.	1.1	113

#	Article	IF	CITATIONS
235	Proteomic identification of alterations in metabolic enzymes and signaling proteins in hypokalemic nephropathy. Proteomics, 2006, 6, 2273-2285.	2.2	26
236	Quantitative analysis and evaluation of the solubility of hydrophobic proteins recovered from brain, heart and urine using UV-visible spectrophotometry. Analytical and Bioanalytical Chemistry, 2006, 384, 964-971.	3.7	3
237	Proteomics for diabetes research: an update and future perspectives. Expert Review of Endocrinology and Metabolism, 2006, 1, 507-515.	2.4	1
238	Identification of a Novel IL7RA Mutation (444_450insA) Caused Marked Reduction in CD127 Expression from a Cohort Molecular Analysis of Severe Combined Immunodeficiency (Tâ^', B+, NK+ SCID) in Thailand Blood, 2006, 108, 1247-1247.	1.4	1
239	Proteomics in the Investigation of Diabetic Nephropathy. , 2006, , 255-275.		0
240	Genomics, proteomics and integrative â€~omics' in hypertension research. Current Opinion in Nephrology and Hypertension, 2005, 14, 133-139.	2.0	23
241	γ-Amino Butyric Acid Type B Receptors Stimulate Neutrophil Chemotaxis during Ischemia-Reperfusion. Journal of Immunology, 2005, 174, 7242-7249.	0.8	58
242	Redox proteomics analysis of oxidatively modified proteins in G93A-SOD1 transgenic mice—a model of familial amyotrophic lateral sclerosis. Free Radical Biology and Medicine, 2005, 39, 453-462.	2.9	129
243	Renal and urinary proteomics: Current applications and challenges. Proteomics, 2005, 5, 1033-1042.	2.2	224
244	Identification of human urinary trefoil factor 1 as a novel calcium oxalate crystal growth inhibitor. Journal of Clinical Investigation, 2005, 115, 3613-3622.	8.2	65
245	Proteomic analysis of renal diseases: unraveling the pathophysiology and biomarker discovery. Expert Review of Proteomics, 2005, 2, 349-366.	3.0	45
246	Proteomics analysis of human astrocytes expressing the HIV protein Tat. Molecular Brain Research, 2005, 133, 307-316.	2.3	42
247	Proteomic analysis of specific brain proteins in aged SAMP8 mice treated with alpha-lipoic acid: implications for aging and age-related neurodegenerative disorders. Neurochemistry International, 2005, 46, 159-168.	3.8	117
248	Proteomic Identification and Immunolocalization of Increased Renal Calbindin-D28k Expression in OVE26 Diabetic Mice. Review of Diabetic Studies, 2005, 2, 19-19.	1.3	26
249	Alterations in the Renal Elastin-Elastase System in Type 1 Diabetic Nephropathy Identified by Proteomic Analysis. Journal of the American Society of Nephrology: JASN, 2004, 15, 650-662.	6.1	102
250	Proteomics in Nephrology: Current Status and Future Directions. American Journal of Nephrology, 2004, 24, 360-378.	3.1	78
251	Cardiac mitochondrial damage and biogenesis in a chronic model of type 1 diabetes. American Journal of Physiology - Endocrinology and Metabolism, 2004, 287, E896-E905.	3.5	232
252	Proteomic analysis of brain proteins in the gracile axonal dystrophy (<i>gad</i>) mouse, a syndrome that emanates from dysfunctional ubiquitin carboxylâ€ŧerminal hydrolase Lâ€1, reveals oxidation of key proteins. Journal of Neurochemistry, 2004, 88, 1540-1546.	3.9	89

#	Article	IF	CITATIONS
253	Quantitative proteomics analysis of specific protein expression and oxidative modification in aged senescence-accelerated-prone 8 mice brain. Neuroscience, 2004, 126, 915-926.	2.3	148
254	Proteomics and hypertension. Contributions To Nephrology, 2004, 141, 245-56.	1.1	1
255	Proteomic identification of nitrated proteins in Alzheimer's disease brain. Journal of Neurochemistry, 2003, 85, 1394-1401.	3.9	514
256	Protein kinase C-dependent phosphorylation and mitochondrial translocation of aldose reductase. FEBS Letters, 2003, 534, 175-179.	2.8	17
257	Proteomic identification of a novel protein regulated in CA1 and CA3 hippocampal regions during intermittent hypoxia. Respiratory Physiology and Neurobiology, 2003, 136, 91-103.	1.6	32
258	Practical Bioinformatics for Proteomics. , 2003, 141, 79-92.		9
259	Proteomic Identification of a Large Complement of Rat Urinary Proteins. Nephron Experimental Nephrology, 2003, 95, e69-e78.	2.2	43
260	Sodium loading changes urinary protein excretion: a proteomic analysis. American Journal of Physiology - Renal Physiology, 2003, 284, F1155-F1163.	2.7	42
261	Sample Preparation for 2-D Proteomic Analysis. , 2003, 141, 11-24.		16
262	Urinary Proteomics and Biomarker Discovery for Glomerular Diseases. , 2003, 141, 292-307.		39
263	Two-Dimensional Gel Electrophoresis: A Fundamental Tool for Expression Proteomics Studies. , 2003, 141, 25-39.		23
264	Overview of Proteomics. , 2003, 141, 1-10.		21
265	Proteomics and Diabetic Nephropathy. , 2003, 141, 142-154.		12
266	Renal and Urinary Proteomics. , 2003, , 375-395.		0
267	Fluoride Exposure Attenuates Expression of Streptococcus pyogenes Virulence Factors. Journal of Biological Chemistry, 2002, 277, 16599-16605.	3.4	87
268	Proteomic Analysis Reveals Alterations in the Renal Kallikrein Pathway during Hypoxia-Induced Hypertension. Journal of Biological Chemistry, 2002, 277, 34708-34716.	3.4	65
269	Proteomic identification of oxidatively modified proteins in alzheimer's disease brain. part I: creatine kinase BB, glutamine synthase, and ubiquitin carboxy-terminal hydrolase L-1. Free Radical Biology and Medicine, 2002, 33, 562-571.	2.9	545
270	Proteomic identification of oxidatively modified proteins in Alzheimer's disease brain. Part II: dihydropyrimidinaseâ€related protein 2, αâ€enolase and heat shock cognate 71. Journal of Neurochemistr 2002, 82, 1524-1532.	y,3.9	528

#	Article	IF	CITATIONS
271	Proteomic analysis of CA1 and CA3 regions of rat hippocampus and differential susceptibility to intermittent hypoxia. Journal of Neurochemistry, 2002, 83, 331-345.	3.9	98
272	Proteomic analysis of normal human urinary proteins isolated by acetone precipitation or ultracentrifugation. Kidney International, 2002, 62, 1461-1469.	5.2	324
273	Differential expression of proteins in renal cortex and medulla: A proteomic approach11See Editorial by Bonventre, p. 1470 Kidney International, 2002, 62, 1314-1321.	5.2	62
274	Differential expression of proteins in renal cortex and medulla: A proteomic approach1. Kidney International, 2002, 62, 1314-1321.	5.2	3
275	Better Correction of Metabolic Acidosis, Blood Pressure Control, and Phagocytosis with Bicarbonate Compared to Lactate Solution in Acute Peritoneal Dialysis. Artificial Organs, 2001, 25, 99-108.	1.9	24
276	Isolation and Enrichment of Glomeruli Using Sieving Techniques. , 0, , 1-7.		7
277	Enrichment and Analysis of Concanavalin A-Captured Urinary Clycoproteins. , 0, , 233-241.		0
278	Isolation and Enrichment of Glomeruli Using Laser Microdissection and Magnetic Microbeads for Proteomic Analysis. , 0, , 9-18.		0
279	Proteomic Analysis of the Renal Inner Medulla and Collecting Ducts. , 0, , 39-51.		Ο
280	Selective Tissue Procurement for Renal Tumor Proteomics. , 0, , 131-147.		0
281	In Vivo Labeling of the Kidney by Means of CyDye DIGE Fluors prior to Proteomic Analysis. , 0, , 181-188.		0
282	Simple Methods for Sample Preparation in Gel-Based Urinary Proteomics. , 0, , 189-200.		0
283	Gold Nanoparticle-Assisted Protein Enrichment for Urinary Proteomics. , 0, , 219-222.		0
284	Enrichment of Human Urinary Proteins Using Solid-Phase Extraction Column Chromatography. , 0, , 223-232.		0
285	Isolation and Enrichment of Urinary Exosomes for Biomarker Discovery. , 0, , 243-252.		Ο
286	Liquid Chromatography Coupled to Mass Spectrometry for Analysis of the Urinary Proteome. , 0, , 271-279.		1
287	Proteomic Analysis of Dialysate Fluid and Adsorbed Proteins on Dialysis Membranes during Renal Replacement Therapy. , 0, , 367-378.		0
288	Proteomic Analysis of Podocytes. , 0, , 67-76.		0

#	Article	IF	CITATIONS
289	Proteomics of Renal Peroxisomes. , 0, , 77-95.		Ο
290	Proteomic and Mass Spectrometric Analyses of Formalin-Fixed Paraffin-Embedded Tissue. , 0, , 119-130.		0
291	Proteomic Analysis of Primary and Established Cell Lines for the Investigation of Renal Cell Carcinoma. , 0, , 149-166.		0