Zhihong Jiang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1371999/publications.pdf

Version: 2024-02-01

84 papers 3,232 citations

30 h-index 53 g-index

85 all docs 85 docs citations

85 times ranked 2782 citing authors

#	Article	IF	CITATIONS
1	Response of Temperature-Related Rice Disaster to Different Warming Levels Under an RCP8.5 Emission Scenario in a Major Rice Production Region of China. Frontiers in Climate, 2022, 3, .	2.8	2
2	The January 2021 Cold Air Outbreak over Eastern China: Is There a Human Fingerprint?. Bulletin of the American Meteorological Society, 2022, 103, S50-S54.	3.3	4
3	Increase of Future Summer Rainfall in the Middle and Lower Reach of the Yangtze River Basin Projected With a Nonhomogeneous Hidden Markov Model. Geophysical Research Letters, 2022, 49, .	4.0	1
4	Design of a Robot for Inspecting the Multishape Pipeline Systems. IEEE/ASME Transactions on Mechatronics, 2022, 27, 4608-4618.	5.8	7
5	Future Changes in Extreme High Temperature over China at 1.5°C–5°C Global Warming Based on CMIP6 Simulations. Advances in Atmospheric Sciences, 2021, 38, 253-267.	4.3	52
6	Multi-Model Ensemble Projection of Precipitation Changes over China under Global Warming of 1.5 and 2°C with Consideration of Model Performance and Independence. Journal of Meteorological Research, 2021, 35, 184-197.	2.4	14
7	Temperature dataset of CMIP6 models over China: evaluation, trend and uncertainty. Climate Dynamics, 2021, 57, 17-35.	3.8	91
8	On the Optimal Design of Field Significance Tests for Changes in Climate Extremes. Geophysical Research Letters, 2021, 48, e2021GL092831.	4.0	6
9	Future changes in the frequency of extreme droughts over China based on two large ensemble simulations. Journal of Climate, 2021, , 1.	3.2	8
10	Projection of climate extremes in China, an incremental exercise from CMIP5 to CMIP6. Science Bulletin, 2021, 66, 2528-2537.	9.0	88
11	Machine learning to optimize climate projection over China with multi-model ensemble simulations. Environmental Research Letters, 2021, 16, 094028.	5. 2	17
12	Divergent Responses of Summer Precipitation in China to $1.5 \hat{A}^{\circ}C$ Global Warming in Transient and Stabilized Scenarios. Earth's Future, 2021, 9, e2020EF001832.	6.3	9
13	Vegetation Greening Offsets Urbanizationâ€Induced Fast Warming in Guangdong, Hong Kong, and Macao Region (GHMR). Geophysical Research Letters, 2021, 48, e2021GL095217.	4.0	11
14	Risk changes of compound temperature and precipitation extremes in China under 1.5°C and 2°C global warming. Atmospheric Research, 2021, 264, 105838.	4.1	33
15	How well do climate models simulate regional atmospheric circulation over East Asia?. International Journal of Climatology, 2020, 40, 220-234.	3.5	17
16	A Lagrangian Analysis of Water Vapor Sources and Pathways for Precipitation in East China in Different Stages of the East Asian Summer Monsoon. Journal of Climate, 2020, 33, 977-992.	3.2	42
17	Risks of temperature extremes over China under 1.5°C and 2°C global warming. Advances in Climate Change Research, 2020, 11, 172-184.	5.1	18
18	Projected precipitation changes over China for global warming levels at 1.5°C and 2°C in an ensemble of regional climate simulations: impact of bias correction methods. Climatic Change, 2020, 162, 623-643.	3.6	16

#	Article	IF	Citations
19	Interannual variability of the summer wind energy over China: A comparison of multiple datasets. Wind Energy, 2020, 23, 1726-1738.	4.2	6
20	PVâ€Q Perspective of Cyclogenesis and Vertical Velocity Development Downstream of the Tibetan Plateau. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD030912.	3.3	26
21	Tibetan Plateau amplification of climate extremes under global warming of 1.5°C, 2°C and 3°C. Global and Planetary Change, 2020, 192, 103261.	3.5	54
22	Does CMIP6 Inspire More Confidence in Simulating Climate Extremes over China?. Advances in Atmospheric Sciences, 2020, 37, 1119-1132.	4.3	182
23	Projection and possible causes of summer precipitation in eastern China using self-organizing map. Climate Dynamics, 2020, 54, 2815-2830.	3.8	16
24	Unexpected large-scale atmospheric response to urbanization in East China. Climate Dynamics, 2019, 52, 4293-4303.	3.8	9
25	Impact of Surface Potential Vorticity Density Forcing over the Tibetan Plateau on the South China Extreme Precipitation in January 2008. Part I: Data Analysis. Journal of Meteorological Research, 2019, 33, 400-415.	2.4	11
26	A Hierarchical Safety Control Strategy for Exoskeleton Robot Based on Maximum Correntropy Kalman Filter and Bounding Box. Robotica, 2019, 37, 2165-2175.	1.9	6
27	Changes in extreme temperature over China when global warming stabilized at 1.5 °C and 2.0 °C. Scientific Reports, 2019, 9, 14982.	3.3	29
28	Contribution of Global warming and Urbanization to Changes in Temperature Extremes in Eastern China. Geophysical Research Letters, 2019, 46, 11426-11434.	4.0	40
29	Evaluation of Near-Surface Wind Speed Changes during 1979 to 2011 over China Based on Five Reanalysis Datasets. Atmosphere, 2019, 10, 804.	2.3	28
30	Downscaling and projection of summer rainfall in Eastern China using a nonhomogeneous hidden Markov model. International Journal of Climatology, 2019, 39, 1319-1330.	3.5	8
31	Bias correction and projection of surface air temperature in LMDZ multiple simulation over central and eastern China. Advances in Climate Change Research, 2018, 9, 81-92.	5.1	35
32	Additional risk in extreme precipitation in China from 1.5 °C to 2.0 °C global warming levels. Science Bulletin, 2018, 63, 228-234.	9.0	78
33	Simulation of temperature extremes in the Tibetan Plateau from CMIP5 models and comparison with gridded observations. Climate Dynamics, 2018, 51, 355-369.	3.8	68
34	Changes in temperature extremes over China under 1.5°C and 2°C global warming targets. Advances in Climate Change Research, 2018, 9, 120-129.	5.1	92
35	On the Emergence of Anthropogenic Signal in Extreme Precipitation Change Over China. Geophysical Research Letters, 2018, 45, 9179-9185.	4.0	40
36	Using a Hidden Markov Model to Analyze the Flood-Season Rainfall Pattern and Its Temporal Variation over East China. Journal of Meteorological Research, 2018, 32, 410-420.	2.4	5

#	Article	IF	CITATIONS
37	Diurnal temperature range in CMIP5 models and observations on the Tibetan Plateau. Quarterly Journal of the Royal Meteorological Society, 2017, 143, 1978-1989.	2.7	15
38	Impact of moisture source variation on decadalâ€scale changes of precipitation in North China from 1951 to 2010. Journal of Geophysical Research D: Atmospheres, 2017, 122, 600-613.	3.3	71
39	Statistical estimation of high-resolution surface air temperature from MODIS over the Yangtze River Delta, China. Journal of Meteorological Research, 2017, 31, 448-454.	2.4	19
40	Revisiting the Relationship between Observed Warming and Surface Pressure in the Tibetan Plateau. Journal of Climate, 2017, 30, 1721-1737.	3.2	38
41	Impact of Chinese Urbanization and Aerosol Emissions on the East Asian Summer Monsoon. Journal of Climate, 2017, 30, 1019-1039.	3.2	28
42	Statistical modeling of CMIP5 projected changes in extreme wet spells over China in the late 21st century. Journal of Meteorological Research, 2017, 31, 678-693.	2.4	7
43	Use of SSU/MSU Satellite Observations to Validate Upper Atmospheric Temperature Trends in CMIP5 Simulations. Remote Sensing, 2016, 8, 13.	4.0	8
44	Projection of summer precipitation over the Yangtze–Huaihe River basin using multimodel statistical downscaling based on canonical correlation analysis. Journal of Meteorological Research, 2016, 30, 867-880.	2.4	12
45	Extreme Precipitation Indices over China in CMIP5 Models. Part II: Probabilistic Projection. Journal of Climate, 2016, 29, 8989-9004.	3.2	63
46	Target-tools recognition method based on an image feature library for space station cabin service robots. Robotica, 2016, 34, 925-941.	1.9	5
47	Multi-sliding time windows based changing trend of mean temperature and its association with the global-warming hiatus. Journal of Meteorological Research, 2016, 30, 232-241.	2.4	4
48	The impact of the direct effects of sulfate and black carbon aerosols on the subseasonal march of the East Asian subtropical summer monsoon. Journal of Geophysical Research D: Atmospheres, 2016, 121, 2610-2625.	3.3	6
49	Trends in upper tropospheric water vapour over the Tibetan Plateau from remote sensing. International Journal of Climatology, 2016, 36, 4862-4872.	3.5	5
50	Impact of urban land-use change in eastern China on the East Asian subtropical monsoon: A numerical study. Journal of Meteorological Research, 2016, 30, 203-216.	2.4	6
51	Biases and improvements in three dynamical downscaling climate simulations over China. Climate Dynamics, 2016, 47, 3235-3251.	3.8	34
52	Effects of urban land-use change in East China on the East Asian summer monsoon based on the CAM5.1 model. Climate Dynamics, 2016, 46, 2977-2989.	3.8	24
53	Performance of CMIP5 models in the simulation of climate characteristics of synoptic patterns over East Asia. Journal of Meteorological Research, 2015, 29, 594-607.	2.4	9
54	The nonlinear relationship between summer precipitation in China and the sea surface temperature in preceding seasons: A statistical demonstration. Journal of Geophysical Research D: Atmospheres, 2015, 120, 12,027.	3.3	10

#	Article	IF	Citations
55	Uncertainties of the global-to-regional temperature and precipitation simulations in CMIP5 models for past and future 100Âyears. Theoretical and Applied Climatology, 2015, 122, 259-270.	2.8	12
56	Hand-eye servo and impedance control for manipulator arm to capture target satellite safely. Robotica, 2015, 33, 848-864.	1.9	23
57	Extreme Precipitation Indices over China in CMIP5 Models. Part I: Model Evaluation. Journal of Climate, 2015, 28, 8603-8619.	3.2	207
58	A kind of modified Kalman filter for visual tracking in capturing noncooperation target aircrafts. , 2014, , .		0
59	Impedance control with force signal compensation on space manipulator-assisted docking mission. , 2014, , .		2
60	Changes of precipitation intensity spectra in different regions of mainland China during 1961–2006. Journal of Meteorological Research, 2014, 28, 1085-1098.	2.4	28
61	Detection of urbanization signals in extreme winter minimum temperature changes over Northern China. Climatic Change, 2014, 122, 595-608.	3.6	29
62	The day-to-day monitoring of the 2011 severe drought in China. Climate Dynamics, 2014, 43, 1-9.	3.8	100
63	Numerical study of the effect of anthropogenic aerosols on spring persistent rain over Eastern China. Journal of Meteorological Research, 2014, 28, 341-353.	2.4	17
64	Changes of summer precipitation in China: The dominance of frequency and intensity and linkage with changes in moisture and air temperature. Journal of Geophysical Research D: Atmospheres, 2014, 119, 12,575.	3.3	42
65	Responses of the leading mode of coldwave intensity in China to a warming climate. Journal of Meteorological Research, 2013, 27, 673-683.	1.0	1
66	How does coldwave frequency in china respond to a warming climate?. Climate Dynamics, 2012, 39, 2487-2496.	3.8	28
67	Possible association of the western Tibetan Plateau snow cover with the decadal to interdecadal variations of northern China heatwave frequency. Climate Dynamics, 2012, 39, 2393-2402.	3.8	98
68	Modulation of the Tibetan Plateau Snow Cover on the ENSO Teleconnections: From the East Asian Summer Monsoon Perspective. Journal of Climate, 2012, 25, 2481-2489.	3.2	134
69	China coldwave duration in a warming winter: change of the leading mode. Theoretical and Applied Climatology, 2012, 110, 65-75.	2.8	16
70	Extreme climate events in China: IPCC-AR4 model evaluation and projection. Climatic Change, 2012, 110, 385-401.	3.6	163
71	Simulation of regional climate change under the IPCC A2 scenario in southeast China. Climate Dynamics, 2011, 36, 491-507.	3.8	53
72	Predictable climate dynamics of abnormal East Asian winter monsoon: once-in-a-century snowstorms in 2007/2008 winter. Climate Dynamics, 2011, 37, 1661-1669.	3.8	92

#	Article	IF	CITATIONS
73	An improved, downscaled, fine model for simulation of daily weather states. Advances in Atmospheric Sciences, 2011, 28, 1357-1366.	4.3	1
74	Numerical simulation of the impact of land cover change on Urban Heat Island effect in Nanjing. , 2011, , .		0
75	Probabilistic Projections of Climate Change over China under the SRES A1B Scenario Using 28 AOGCMs. Journal of Climate, 2011, 24, 4741-4756.	3.2	146
76	Can Global Warming Strengthen the East Asian Summer Monsoon?. Journal of Climate, 2010, 23, 6696-6705.	3.2	233
77	Association of North Atlantic Oscillations with Aksu River runoff in China. Journal of Chinese Geography, 2009, 19, 12-24.	3.9	15
78	Precipitation and precipitable water: Their temporalâ€spatial behaviors and use in determining monsoon onset/retreat and monsoon regions. Journal of Geophysical Research, 2009, 114, .	3.3	15
79	A newly-discovered GPD-GEV relationship together with comparing their models of extreme precipitation in summer. Advances in Atmospheric Sciences, 2008, 25, 507-516.	4.3	20
80	Characteristics of extreme temperature event and its response to regional warming in Northwest China in past 45 years. Chinese Geographical Science, 2008, 18, 70-76.	3.0	19
81	"Climate effect―of the northeast cold vortex and its influences on Meiyu. Science Bulletin, 2007, 52, 671-679.	1.7	41
82	Occurrence of droughts and floods during the normal summer monsoons in the mid- and lower reaches of the Yangtze River. Geophysical Research Letters, 2006, 33, .	4.0	62
83	Three Gorges Dam affects regional precipitation. Geophysical Research Letters, 2006, 33, .	4.0	54
84	Large-scale atmospheric singularities and summer long-cycle droughts-floods abrupt alternation in the middle and lower reaches of the Yangtze River. Science Bulletin, 2006, 51, 2027-2034.	1.7	48