
Alexander Star

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1371688/publications.pdf Version: 2024-02-01

ALEYANDED STAD

#	Article	IF	CITATIONS
1	A Carbon Nanotube Sensor Array for the Label-Free Discrimination of Live and Dead Cells with Machine Learning. Analytical Chemistry, 2022, 94, 3565-3573.	6.5	9
2	Bacterial Vaginosis Monitoring with Carbon Nanotube Field-Effect Transistors. Analytical Chemistry, 2022, 94, 3849-3857.	6.5	5
3	Nitrogen-Doped Carbon Nanotube Cups for Cancer Therapy. ACS Applied Nano Materials, 2022, 5, 13685-13696.	5.0	4
4	Cerebrospinal Fluid Leak Detection with a Carbon Nanotube-Based Field-Effect Transistor Biosensing Platform. ACS Applied Materials & Interfaces, 2022, 14, 1684-1691.	8.0	7
5	Detection of Stress Hormone with Semiconducting Single-Walled Carbon Nanotube-Based Field-Effect Transistors. Journal of the Electrochemical Society, 2022, 169, 057519.	2.9	7
6	Metal–Organic Frameworks on Palladium Nanoparticle–Functionalized Carbon Nanotubes for Monitoring Hydrogen Storage. ACS Applied Nano Materials, 2022, 5, 13779-13786.	5.0	9
7	(Invited) Cerebrospinal Fluid Leakage Detection with Carbon Nanotube-Based Field-Effect Transistors. ECS Meeting Abstracts, 2022, MA2022-01, 699-699.	0.0	0
8	Rapid Detection of SARS-CoV-2 Antigens Using High-Purity Semiconducting Single-Walled Carbon Nanotube-Based Field-Effect Transistors. ACS Applied Materials & Interfaces, 2021, 13, 10321-10327.	8.0	139
9	Breath Acetone Sensing Based on Single-Walled Carbon Nanotube–Titanium Dioxide Hybrids Enabled by a Custom-Built Dehumidifier. ACS Sensors, 2021, 6, 871-880.	7.8	22
10	Heterogeneous Growth of UiO-66-NH ₂ on Oxidized Single-Walled Carbon Nanotubes to Form "Beads-on-a-String―Composites. ACS Applied Materials & Interfaces, 2021, 13, 15482-15489.	8.0	7
11	[2Ï€ + 2Ï€] Photocycloaddition of Enones to Single-Walled Carbon Nanotubes Creates Fluorescent Quantum Defects. ACS Nano, 2021, 15, 4833-4844.	14.6	13
12	Machine learning-assisted calibration of Hg2+ sensors based on carbon nanotube field-effect transistors. Biosensors and Bioelectronics, 2021, 180, 113085.	10.1	19
13	Size Discrimination of Carbohydrates via Conductive Carbon Nanotube@Metal Organic Framework Composites. Journal of the American Chemical Society, 2021, 143, 8022-8033.	13.7	16
14	(Invited) Photoluminescence Study of Carbon Nanomaterial Interactions with the Immune System. ECS Meeting Abstracts, 2021, MA2021-01, 514-514.	0.0	0
15	Composition and Structure of Fluorescent Graphene Quantum Dots Generated by Enzymatic Degradation of Graphene Oxide. Journal of Physical Chemistry C, 2021, 125, 13361-13369.	3.1	4
16	Synthesis of Holey Graphene Nanoparticle Compounds. ACS Applied Materials & Interfaces, 2020, 12, 36513-36522.	8.0	4
17	Photoluminescence Response in Carbon Nanomaterials to Enzymatic Degradation. Analytical Chemistry, 2020, 92, 12880-12890.	6.5	11
18	Picking Flowers with Carbon Nanotube Sensors. ACS Central Science, 2020, 6, 461-463.	11.3	6

#	Article	IF	CITATIONS
19	Luminescence "Turn-On―Detection of Gossypol Using Ln ³⁺ -Based Metal–Organic Frameworks and Ln ³⁺ Salts. Journal of the American Chemical Society, 2020, 142, 2897-2904.	13.7	151
20	Characterizing the Cellular Response to Nitrogen-Doped Carbon Nanocups. Nanomaterials, 2019, 9, 887.	4.1	4
21	Tetrahydrocannabinol Detection Using Semiconductor-Enriched Single-Walled Carbon Nanotube Chemiresistors. ACS Sensors, 2019, 4, 2084-2093.	7.8	46
22	Probing Ca ²⁺ -induced conformational change of calmodulin with gold nanoparticle-decorated single-walled carbon nanotube field-effect transistors. Nanoscale, 2019, 11, 13397-13406.	5.6	16
23	Modification of Carbon Nitride/Reduced Graphene Oxide van der Waals Heterostructure with Copper Nanoparticles To Improve CO ₂ Sensitivity. ACS Applied Materials & Interfaces, 2019, 11, 41588-41594.	8.0	14
24	Growth of ZIF-8 on molecularly ordered 2-methylimidazole/single-walled carbon nanotubes to form highly porous, electrically conductive composites. Chemical Science, 2019, 10, 737-742.	7.4	34
25	Holey Graphene Metal Nanoparticle Composites via Crystalline Polymer Templated Etching. Nano Letters, 2019, 19, 2824-2831.	9.1	14
26	Machine-Learning Identification of the Sensing Descriptors Relevant in Molecular Interactions with Metal Nanoparticle-Decorated Nanotube Field-Effect Transistors. ACS Applied Materials & Interfaces, 2019, 11, 1219-1227.	8.0	25
27	Automatic Early-Onset Free Flap Failure Detection for Implantable Biomedical Devices. IEEE Transactions on Biomedical Engineering, 2018, 65, 2290-2297.	4.2	4
28	Free-Standing Nitrogen-Doped Cup-Stacked Carbon Nanotube Mats for Potassium-Ion Battery Anodes. ACS Applied Energy Materials, 2018, 1, 1703-1707.	5.1	90
29	Graphene oxide is degraded by neutrophils and the degradation products are non-genotoxic. Nanoscale, 2018, 10, 1180-1188.	5.6	148
30	Targeting myeloid regulators by paclitaxel-loaded enzymatically degradable nanocups. Nanoscale, 2018, 10, 17990-18000.	5.6	20
31	Oligomer Hydrate Crystallization Improves Carbon Nanotube Memory. Chemistry of Materials, 2018, 30, 3813-3818.	6.7	6
32	In situ Insights into the Uncorking and Oxidative Decomposition Dynamics of Gold Nanoparticle Corked Carbon Nanotube Cups for Drug Delivery. Microscopy and Microanalysis, 2018, 24, 308-309.	0.4	0
33	Polybenzobisimidazoleâ€derived twoâ€dimensional supramolecular polymer. Journal of Polymer Science Part A, 2017, 55, 1095-1101.	2.3	7
34	Fabrication of Holey Graphene: Catalytic Oxidation by Metalloporphyrinâ€Based Covalent Organic Framework Immobilized on Highly Ordered Pyrolytic Graphite. Chemistry - A European Journal, 2017, 23, 5652-5657.	3.3	19
35	Frontispiece: Fabrication of Holey Graphene: Catalytic Oxidation by Metalloporphyrinâ€Based Covalent Organic Framework Immobilized on Highly Ordered Pyrolytic Graphite. Chemistry - A European Journal, 2017, 23, .	3.3	0
36	Nanoemitters and innate immunity: the role of surfactants and bio-coronas in myeloperoxidase-catalyzed oxidation of pristine single-walled carbon nanotubes. Nanoscale, 2017, 9, 5948-5956.	5.6	9

#	Article	IF	CITATIONS
37	Defect-Induced Near-Infrared Photoluminescence of Single-Walled Carbon Nanotubes Treated with Polyunsaturated Fatty Acids. Journal of the American Chemical Society, 2017, 139, 4859-4865.	13.7	44
38	Fibrillar vs crystalline nanocellulose pulmonary epithelial cell responses: Cytotoxicity or inflammation?. Chemosphere, 2017, 171, 671-680.	8.2	84
39	Probing Biomolecular Interactions with Gold Nanoparticle-Decorated Single-Walled Carbon Nanotubes. Journal of Physical Chemistry C, 2017, 121, 20813-20820.	3.1	9
40	Uncondensed Graphitic Carbon Nitride on Reduced Graphene Oxide for Oxygen Sensing via a Photoredox Mechanism. ACS Applied Materials & Interfaces, 2017, 9, 27142-27151.	8.0	28
41	Nanoelectronic Discrimination of Nonmalignant and Malignant Cells Using Nanotube Field-Effect Transistors. ACS Sensors, 2017, 2, 1128-1132.	7.8	20
42	Pulmonary exposure to cellulose nanocrystals caused deleterious effects to reproductive system in male mice. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2016, 79, 984-997.	2.3	45
43	Carbon Nanotube Based Gas Sensors toward Breath Analysis. ChemPlusChem, 2016, 81, 1248-1265.	2.8	70
44	In Vitro Toxicity Evaluation of Lignin-(Un)coated Cellulose Based Nanomaterials on Human A549 and THP-1 Cells. Biomacromolecules, 2016, 17, 3464-3473.	5.4	33
45	A System for Simple Real-Time Anastomotic Failure Detection and Wireless Blood Flow Monitoring in the Lower Limbs. IEEE Journal of Translational Engineering in Health and Medicine, 2016, 4, 1-15.	3.7	13
46	Cyclotriveratryleneâ€Based Glycoclusters as High Affinity Ligands of Bacterial Lectins from <i>Pseudomonas aeruginosa</i> and <i>Burkholderia ambifaria</i> . ChemistrySelect, 2016, 1, 5863-5868.	1.5	6
47	Single-walled carbon nanotubes templated CuO networks for gas sensing. Journal of Materials Chemistry C, 2016, 4, 6575-6580.	5.5	49
48	Biological interactions of carbon-based nanomaterials: From coronation to degradation. Nanomedicine: Nanotechnology, Biology, and Medicine, 2016, 12, 333-351.	3.3	322
49	In Situ Grown TiO ₂ Nanospindles Facilitate the Formation of Holey Reduced Graphene Oxide by Photodegradation. ACS Applied Materials & Interfaces, 2016, 8, 7403-7410.	8.0	49
50	Enzymatic oxidative biodegradation of nanoparticles: Mechanisms, significance and applications. Toxicology and Applied Pharmacology, 2016, 299, 58-69.	2.8	89
51	Perovskite solar cells based on bottom-fused TiO ₂ nanocones. Journal of Materials Chemistry A, 2016, 4, 1520-1530.	10.3	36
52	Gender differences in murine pulmonary responses elicited by cellulose nanocrystals. Particle and Fibre Toxicology, 2015, 13, 28.	6.2	64
53	Lactoperoxidase-mediated degradation of single-walled carbon nanotubes in the presence of pulmonary surfactant. Carbon, 2015, 91, 506-517.	10.3	49
54	Nano-Gold Corking and Enzymatic Uncorking of Carbon Nanotube Cups. Journal of the American Chemical Society, 2015, 137, 675-684.	13.7	36

#	Article	IF	CITATIONS
55	Indium Oxide—Single-Walled Carbon Nanotube Composite for Ethanol Sensing at Room Temperature. Journal of Physical Chemistry Letters, 2015, 6, 712-717.	4.6	34
56	Sensors Best Paper Award 2015. Sensors, 2015, 15, 2228-2231.	3.8	0
57	Payload drug vs. nanocarrier biodegradation by myeloperoxidase- and peroxynitrite-mediated oxidations: pharmacokinetic implications. Nanoscale, 2015, 7, 8689-8694.	5.6	15
58	Oxidative Unzipping of Stacked Nitrogen-Doped Carbon Nanotube Cups. ACS Applied Materials & Interfaces, 2015, 7, 10734-10741.	8.0	10
59	MDSC and TGFÎ ² Are Required for Facilitation of Tumor Growth in the Lungs of Mice Exposed to Carbon Nanotubes. Cancer Research, 2015, 75, 1615-1623.	0.9	50
60	Corking Nitrogenâ€Đoped Carbon Nanotube Cups with Gold Nanoparticles for Biodegradable Drug Delivery Applications. Current Protocols in Chemical Biology, 2015, 7, 249-262.	1.7	6
61	Sensors Best Paper Award 2014. Sensors, 2014, 14, 1898-1901.	3.8	1
62	Electronic Detection of Bacteria Using Holey Reduced Graphene Oxide. ACS Applied Materials & Interfaces, 2014, 6, 3805-3810.	8.0	53
63	Enzymatic â€~stripping' and degradation of PEGylated carbon nanotubes. Nanoscale, 2014, 6, 14686-14690). 5.6	54
64	Block copolymer-templated nitrogen-enriched nanocarbons with morphology-dependent electrocatalytic activity for oxygen reduction. Chemical Science, 2014, 5, 3315.	7.4	40
65	Substrate placement angle-dependent growth of dandelion-like TiO ₂ nanorods for solid-state semiconductor-sensitized solar cells. RSC Advances, 2014, 4, 53335-53343.	3.6	14
66	Ultra-small TiO ₂ nanowire forests on transparent conducting oxide for solid-state semiconductor-sensitized solar cells. RSC Advances, 2014, 4, 46987-46991.	3.6	10
67	Graphene Oxide Attenuates Th2-Type Immune Responses, but Augments Airway Remodeling and Hyperresponsiveness in a Murine Model of Asthma. ACS Nano, 2014, 8, 5585-5599.	14.6	51
68	Sensing Reversible Protein–Ligand Interactions with Single-Walled Carbon Nanotube Field-Effect Transistors. Journal of Physical Chemistry C, 2014, 118, 17193-17199.	3.1	32
69	Efficient separation of nitrogen-doped carbon nanotube cups. Carbon, 2014, 80, 583-590.	10.3	8
70	Lung Macrophages "Digest―Carbon Nanotubes Using a Superoxide/Peroxynitrite Oxidative Pathway. ACS Nano, 2014, 8, 5610-5621.	14.6	127
71	Insight into the Mechanism of Graphene Oxide Degradation via the Photo-Fenton Reaction. Journal of Physical Chemistry C, 2014, 118, 10519-10529.	3.1	101
72	Extracellular entrapment and degradation of single-walled carbon nanotubes. Nanoscale, 2014, 6, 6974.	5.6	60

#	Article	IF	CITATIONS
73	Carbon Nanotube Chemiresistor for Wireless pH Sensing. Scientific Reports, 2014, 4, 4468.	3.3	95
74	Peroxidase-mediated biodegradation of carbon nanotubes in vitro and in vivo. Advanced Drug Delivery Reviews, 2013, 65, 1921-1932.	13.7	158
75	Sensors Best Paper Award 2013. Sensors, 2013, 13, 2113-2116.	3.8	2
76	Carbon Nanotubes: Biodegradation of Single-Walled Carbon Nanotubes by Eosinophil Peroxidase (Small 16/2013). Small, 2013, 9, 2720-2720.	10.0	6
77	"Zeroâ€Dimensional―Singleâ€Walled Carbon Nanotubes. Angewandte Chemie - International Edition, 2013, 52, 11308-11312.	13.8	13
78	Carbon Nanotubes for the Label-Free Detection of Biomarkers. ACS Nano, 2013, 7, 7448-7453.	14.6	43
79	Sweet carbon nanostructures: carbohydrate conjugates with carbon nanotubes and graphene and their applications. Chemical Society Reviews, 2013, 42, 4532-4542.	38.1	111
80	Understanding Interfaces in Metal–Graphitic Hybrid Nanostructures. Journal of Physical Chemistry Letters, 2013, 4, 147-160.	4.6	79
81	Rigid versus Flexible Ligands on Carbon Nanotubes for the Enhanced Sensitivity of Cobalt Ions. Macromolecules, 2013, 46, 1376-1383.	4.8	18
82	Effect of antioxidants on enzyme-catalysed biodegradation of carbon nanotubes. Journal of Materials Chemistry B, 2013, 1, 302-309.	5.8	50
83	Enzyme-Catalyzed Oxidation Facilitates the Return of Fluorescence for Single-Walled Carbon Nanotubes. Journal of the American Chemical Society, 2013, 135, 13356-13364.	13.7	18
84	Photoinduced Charge Transfer and Acetone Sensitivity of Single-Walled Carbon Nanotube–Titanium Dioxide Hybrids. Journal of the American Chemical Society, 2013, 135, 9015-9022.	13.7	77
85	Biodegradation of Singleâ€Walled Carbon Nanotubes by Eosinophil Peroxidase. Small, 2013, 9, 2721-2729.	10.0	171
86	Synthesis of One-Dimensional SiC Nanostructures from a Glassy Buckypaper. ACS Applied Materials & Interfaces, 2013, 5, 1928-1936.	8.0	16
87	The Effect of Metal Catalyst on the Electrocatalytic Activity of Nitrogen-Doped Carbon Nanotubes. Journal of Physical Chemistry C, 2013, 117, 25213-25221.	3.1	36
88	Carbon Nanotubes Enhance Metastatic Growth of Lung Carcinoma via Upâ€Regulation of Myeloidâ€Đerived Suppressor Cells. Small, 2013, 9, 1691-1695.	10.0	61
89	Graphene Oxide, But Not Fullerenes, Targets Immunoproteasomes and Suppresses Antigen Presentation by Dendritic Cells. Small, 2013, 9, 1686-1690.	10.0	75
90	Synthesis and Functionalization of Nitrogen-doped Carbon Nanotube Cups with Gold Nanoparticles as Cork Stoppers. Journal of Visualized Experiments, 2013, , e50383.	0.3	5

#	Article	IF	CITATIONS
91	Synthesis and Morphology Control of Carbon Nanotube/Polyaniline Composite for Chemical Sensing. Materials Research Society Symposia Proceedings, 2012, 1408, 119.	0.1	0
92	Detection of Lectins using Glyco-Functionalized Nanosensors. Materials Research Society Symposia Proceedings, 2012, 1451, 191-196.	0.1	1
93	Impaired Clearance and Enhanced Pulmonary Inflammatory/Fibrotic Response to Carbon Nanotubes in Myeloperoxidase-Deficient Mice. PLoS ONE, 2012, 7, e30923.	2.5	156
94	Electronic Detection of Lectins Using Carbohydrate-Functionalized Nanostructures: Graphene <i>versus</i> Carbon Nanotubes. ACS Nano, 2012, 6, 760-770.	14.6	112
95	Corking Carbon Nanotube Cups with Gold Nanoparticles. ACS Nano, 2012, 6, 6912-6921.	14.6	28
96	A Natural Vanishing Act: The Enzyme-Catalyzed Degradation of Carbon Nanomaterials. Accounts of Chemical Research, 2012, 45, 1770-1781.	15.6	141
97	Welding of Gold Nanoparticles on Graphitic Templates for Chemical Sensing. Journal of the American Chemical Society, 2012, 134, 3472-3479.	13.7	73
98	Adsorption of Surfactant Lipids by Single-Walled Carbon Nanotubes in Mouse Lung upon Pharyngeal Aspiration. ACS Nano, 2012, 6, 4147-4156.	14.6	170
99	Selecting Fruits with Carbon Nanotube Sensors. Angewandte Chemie - International Edition, 2012, 51, 7637-7638.	13.8	19
100	Direct Effects of Carbon Nanotubes on Dendritic Cells Induce Immune Suppression Upon Pulmonary Exposure. ACS Nano, 2011, 5, 5755-5762.	14.6	116
101	Nanoelectronic Detection of Lectin-Carbohydrate Interactions Using Carbon Nanotubes. Nano Letters, 2011, 11, 170-175.	9.1	96
102	Biosensors based on one-dimensional nanostructures. Journal of Materials Chemistry, 2011, 21, 8940.	6.7	70
103	Chemical Sensitivity of Graphene Edges Decorated with Metal Nanoparticles. Nano Letters, 2011, 11, 2342-2347.	9.1	177
104	Enzymatic Degradation of Multiwalled Carbon Nanotubes. Journal of Physical Chemistry A, 2011, 115, 9536-9544.	2.5	189
105	The Enzymatic Oxidation of Graphene Oxide. ACS Nano, 2011, 5, 2098-2108.	14.6	347
106	Electrochemical characterization of carbon nanotube forests grown on copper foil using transition metal catalysts. Thin Solid Films, 2011, 520, 1651-1655.	1.8	40
107	Chemical Sensing with Polyaniline Coated Singleâ€Walled Carbon Nanotubes. Advanced Materials, 2011, 23, 536-540.	21.0	101
108	Electrochemical Detection with Platinum Decorated Carbon Nanomaterials. Electroanalysis, 2011, 23, 870-877.	2.9	18

#	Article	IF	CITATIONS
109	The effect of temperature on the growth of carbon nanotubes on copper foil using a nickel thin film as catalyst. Thin Solid Films, 2011, 519, 5371-5375.	1.8	41
110	Carbon nanotubes degraded by neutrophil myeloperoxidase induce less pulmonary inflammation. Nature Nanotechnology, 2010, 5, 354-359.	31.5	698
111	Graphene versus carbon nanotubes for chemical sensor and fuel cell applications. Analyst, The, 2010, 135, 2790.	3.5	150
112	Exploring the Chemical Sensitivity of a Carbon Nanotube/Green Tea Composite. ACS Nano, 2010, 4, 6854-6862.	14.6	38
113	Long-Term Performance of Pt-Decorated Carbon Nanotube Cathodes in Phosphoric Acid Fuel Cells. Energy & Fuels, 2010, 24, 1877-1881.	5.1	25
114	Understanding the Sensor Response of Metal-Decorated Carbon Nanotubes. Nano Letters, 2010, 10, 958-963.	9.1	161
115	Controlling the volumetric parameters of nitrogen-doped carbon nanotube cups. Nanoscale, 2010, 2, 1105.	5.6	11
116	Phosphatidylserine Targets Single-Walled Carbon Nanotubes to Professional Phagocytes In Vitro and In Vivo. PLoS ONE, 2009, 4, e4398.	2.5	108
117	Growth of Carbon Nanotubes on Copper Substrates Using a Nickel Thin Film Catalyst. Materials Research Society Symposia Proceedings, 2009, 1204, 1.	0.1	1
118	Graphitic Nanocapsules. Advanced Materials, 2009, 21, 4692-4695.	21.0	0
119	Decorated carbon nanotubes with unique oxygen sensitivity. Nature Chemistry, 2009, 1, 500-506.	13.6	48
120	Electrocatalytic Activity of Nitrogen-Doped Carbon Nanotube Cups. Journal of the American Chemical Society, 2009, 131, 13200-13201.	13.7	507
121	Mechanistic Investigations of Horseradish Peroxidase-Catalyzed Degradation of Single-Walled Carbon Nanotubes. Journal of the American Chemical Society, 2009, 131, 17194-17205.	13.7	280
122	Carbon Nanotube Gas and Vapor Sensors. Angewandte Chemie - International Edition, 2008, 47, 6550-6570.	13.8	744
123	Electronically monitoring biological interactions with carbon nanotube field-effect transistors. Chemical Society Reviews, 2008, 37, 1197.	38.1	164
124	Simultaneous Spectroscopic and Solid-State Electronic Measurement of Single-Walled Carbon Nanotube Devices. Journal of Physical Chemistry C, 2008, 112, 4430-4434.	3.1	21
125	Biodegradation of Single-Walled Carbon Nanotubes through Enzymatic Catalysis. Nano Letters, 2008, 8, 3899-3903.	9.1	401
126	Synthesis, Characterization, and Manipulation of Nitrogen-Doped Carbon Nanotube Cups. ACS Nano, 2008, 2, 1914-1920.	14.6	51

#	Article	IF	CITATIONS
127	Carbon nanotube sensors for exhaled breath components. Nanotechnology, 2007, 18, 375502.	2.6	119
128	Interactions between Single-Walled Carbon Nanotubes and Tetraphenyl Metalloporphyrins: Correlation between Spectroscopic and FET Measurements. Journal of Physical Chemistry C, 2007, 111, 3539-3543.	3.1	42
129	Chemically Induced Potential Barriers at the Carbon Nanotubeâ^'Metal Nanoparticle Interface. Nano Letters, 2007, 7, 1863-1868.	9.1	122
130	Effective and Low-Cost Platinum Electrodes for Microbial Fuel Cells Deposited by Electron Beam Evaporation. Energy & Fuels, 2007, 21, 2984-2990.	5.1	42
131	Carbon Nanotube Field-Effect-Transistor-Based Biosensors. Advanced Materials, 2007, 19, 1439-1451.	21.0	726
132	Singleâ€Walled Carbonâ€Nanotube Spectroscopic and Electronic Fieldâ€Effect Transistor Measurements: A Combined Approach. Small, 2007, 3, 1324-1329.	10.0	18
133	Gas Sensor Array Based on Metal-Decorated Carbon Nanotubes. Journal of Physical Chemistry B, 2006, 110, 21014-21020.	2.6	542
134	Label-free detection of DNA hybridization using carbon nanotube network field-effect transistors. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 921-926.	7.1	646
135	Single-Walled Carbon Nanotubes Under the Influence of Dynamic Coordination and Supramolecular Chemistry. Small, 2005, 1, 452-461.	10.0	89
136	Nanotube Optoelectronic Memory Devices. Nano Letters, 2004, 4, 1587-1591.	9.1	197
137	Nanoelectronic Carbon Dioxide Sensors. Advanced Materials, 2004, 16, 2049-2052.	21.0	294
138	Sensing with Nafion Coated Carbon Nanotube Field-Effect Transistors. Electroanalysis, 2004, 16, 108-112.	2.9	66
139	Electronic Detection of the Enzymatic Degradation of Starch. Organic Letters, 2004, 6, 2089-2092.	4.6	67
140	Charge Transfer from Adsorbed Proteins. Nano Letters, 2004, 4, 253-256.	9.1	263
141	Single-Walled Carbon Nanotube Based Molecular Switch Tunnel Junctions. ChemPhysChem, 2003, 4, 1335-1339.	2.1	121
142	Amplification of Dynamic Chiral Crown Ether Complexes During Cyclic Acetal Formation. Angewandte Chemie - International Edition, 2003, 42, 4220-4224.	13.8	83
143	Interaction of Aromatic Compounds with Carbon Nanotubes:Â Correlation to the Hammett Parameter of the Substituent and Measured Carbon Nanotube FET Response. Nano Letters, 2003, 3, 1421-1423.	9.1	204
144	Electronic Detection of Specific Protein Binding Using Nanotube FET Devices. Nano Letters, 2003, 3, 459-463.	9.1	759

#	Article	IF	CITATIONS
145	Noncovalent Side-Wall Functionalization of Single-Walled Carbon Nanotubes. Macromolecules, 2003, 36, 553-560.	4.8	289
146	Influence of Mobile Ions on Nanotube Based FET Devices. Nano Letters, 2003, 3, 639-641.	9.1	113
147	Short-channel effects in contact-passivated nanotube chemical sensors. Applied Physics Letters, 2003, 83, 3821-3823.	3.3	130
148	Charge Transfer from Ammonia Physisorbed on Nanotubes. Physical Review Letters, 2003, 91, 218301.	7.8	178
149	Dispersion and Solubilization of Single-Walled Carbon Nanotubes with a Hyperbranched Polymer. Macromolecules, 2002, 35, 7516-7520.	4.8	176
150	Interactions between Conjugated Polymers and Single-Walled Carbon Nanotubes. Journal of Physical Chemistry B, 2002, 106, 3124-3130.	2.6	223
151	Starched Carbon Nanotubes. Angewandte Chemie, 2002, 114, 2618-2622.	2.0	53
152	Starched Carbon Nanotubes. Angewandte Chemie - International Edition, 2002, 41, 2508-2512.	13.8	579
153	Diazadioxadecalin and salen podands and macrocycles within dynamic combinatorial virtual libraries: structure, prototropy, complexation and enantioselective catalysis. Journal of Organometallic Chemistry, 2001, 630, 67-77.	1.8	29
154	Novel Dioxadiazadecalin Podands and Their Heavy Metal Ion Complexes. European Journal of Organic Chemistry, 2001, 2001, 729-734.	2.4	8
155	Preparation and Properties of Polymer-Wrapped Single-Walled Carbon Nanotubes. Angewandte Chemie - International Edition, 2001, 40, 1721-1725.	13.8	931
156	Dioxadiazadecalin/Salen Tautomeric Macrocycles and Complexes: Prototypal Dynamic Combinatorial Virtual Libraries. Angewandte Chemie - International Edition, 2000, 39, 2685-2689.	13.8	48
157	The Stereoisomeric Diaminobutanediol and Dioxadiazadecalin Systems: Synthesis, Structure, Stereoelectronics, and Conformation – Theory vs. Experiment. European Journal of Organic Chemistry, 1999, 1999, 2033-2043.	2.4	14
158	Mechanism of Formation and Stabilities of the New Dioxadiazadecalin Systems. Ringâ´'Chain Tautomerism1. Journal of Organic Chemistry, 1999, 64, 1166-1172.	3.2	27
159	A new class of heterobicyclic systems: Dioxadiazadecalins. Tetrahedron Letters, 1997, 38, 3573-3576.	1.4	15
160	trans- and cis-1,3,5,7-Tetraazadecalin (TAD). A New and Strong Binding Mode in cis-TAD Chelates of Heavy Metal Ions. Tetrahedron Letters, 1997, 38, 8073-8076.	1.4	14