Emmanuel J P Douzery

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/137123/publications.pdf

Version: 2024-02-01

99 papers 9,685

53 h-index 94 g-index

102 all docs

102 docs citations

102 times ranked

13315 citing authors

#	Article	IF	CITATIONS
1	The timing of eukaryotic evolution: Does a relaxed molecular clock reconcile proteins and fossils?. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 15386-15391.	7.1	566
2	MACSE: Multiple Alignment of Coding SEquences Accounting for Frameshifts and Stop Codons. PLoS ONE, 2011, 6, e22594.	2.5	546
3	Comparison of Bayesian and Maximum Likelihood Bootstrap Measures of Phylogenetic Reliability. Molecular Biology and Evolution, 2003, 20, 248-254.	8.9	460
4	A glimpse on the pattern of rodent diversification: a phylogenetic approach. BMC Evolutionary Biology, 2012, 12, 88.	3.2	390
5	MACSE v2: Toolkit for the Alignment of Coding Sequences Accounting for Frameshifts and Stop Codons. Molecular Biology and Evolution, 2018, 35, 2582-2584.	8.9	330
6	Rodent Phylogeny and a Timescale for the Evolution of Glires: Evidence from an Extensive Taxon Sampling Using Three Nuclear Genes. Molecular Biology and Evolution, 2002, 19, 1053-1065.	8.9	305
7	Phylogenetic relationships of artiodactyls and cetaceans as deduced from the comparison of cytochrome b and 12S rRNA mitochondrial sequences. Molecular Biology and Evolution, 1997, 14, 550-559.	8.9	245
8	Molecular and Morphological Phylogenies of Ruminantia and the Alternative Position of the Moschidae. Systematic Biology, 2003, 52, 206-228.	5.6	224
9	Molecular Phylogeny of Living Xenarthrans and the Impact of Character and Taxon Sampling on the Placental Tree Rooting. Molecular Biology and Evolution, 2002, 19, 1656-1671.	8.9	214
10	From the Old World to the New World: A Molecular Chronicle of the Phylogeny and Biogeography of Hystricognath Rodents. Molecular Phylogenetics and Evolution, 2001, 20, 238-251.	2.7	196
11	Contrasting GC-content dynamics across 33 mammalian genomes: Relationship with life-history traits and chromosome sizes. Genome Research, 2010, 20, 1001-1009.	5.5	195
12	Arrival and Diversification of Caviomorph Rodents and Platyrrhine Primates in South America. Systematic Biology, 2006, 55, 228-244.	5.6	194
13	Patterns of macroevolution among Primates inferred from a supermatrix of mitochondrial and nuclear DNA. Molecular Phylogenetics and Evolution, 2009, 53, 808-825.	2.7	194
14	The Tribal Radiation of the Family Bovidae (Artiodactyla) and the Evolution of the Mitochondrial Cytochrome b Gene. Molecular Phylogenetics and Evolution, 1999, 13, 227-243.	2.7	192
15	Molecular phylogenetics of Diseae (Orchidaceae): a contribution from nuclear ribosomal ITS sequences. American Journal of Botany, 1999, 86, 887-899.	1.7	190
16	Influence of Tertiary paleoenvironmental changes on the diversification of South American mammals: a relaxed molecular clock study within xenarthrans. BMC Evolutionary Biology, 2004, 4, 11.	3.2	174
17	The mitochondrial control region of Cervidae: evolutionary patterns and phylogenetic content. Molecular Biology and Evolution, 1997, 14, 1154-1166.	8.9	171
18	Less Is More in Mammalian Phylogenomics: AT-Rich Genes Minimize Tree Conflicts and Unravel the Root of Placental Mammals. Molecular Biology and Evolution, 2013, 30, 2134-2144.	8.9	158

#	Article	IF	Citations
19	Evidence for genetic exchange and hybridization in Trypanosoma cruzi based on nucleotide sequences and molecular karyotype. Infection, Genetics and Evolution, 2003, 2, 173-183.	2.3	138
20	The evolution of armadillos, anteaters and sloths depicted by nuclear and mitochondrial phylogenies: implications for the status of the enigmatic fossil <i>Eurotamandua</i> . Proceedings of the Royal Society B: Biological Sciences, 2001, 268, 1605-1615.	2.6	137
21	Ecomorphological diversification among South American spiny rats (Rodentia; Echimyidae): a phylogenetic and chronological approach. Molecular Phylogenetics and Evolution, 2005, 34, 601-615.	2.7	133
22	An updated 18S rRNA phylogeny of tunicates based on mixture and secondary structure models. BMC Evolutionary Biology, 2009, 9, 187.	3.2	133
23	A phylogenomic framework and timescale for comparative studies of tunicates. BMC Biology, 2018, 16, 39.	3.8	133
24	Molecular phylogenetic reconstructions identify East Asia as the cradle for the evolution of the cosmopolitan genus Myotis (Mammalia, Chiroptera). Molecular Phylogenetics and Evolution, 2013, 69, 437-449.	2.7	128
25	A New Malaria Agent in African Hominids. PLoS Pathogens, 2009, 5, e1000446.	4.7	127
26	Protected and Threatened Components of Fish Biodiversity in the Mediterranean Sea. Current Biology, 2011, 21, 1044-1050.	3.9	125
27	Variance of molecular datings, evolution of rodents and the phylogenetic affinities between Ctenodactylidae and Hystricognathi. Proceedings of the Royal Society B: Biological Sciences, 2000, 267, 393-402.	2.6	117
28	A mitochondrial DNA control region phylogeny of the Cervinae: speciation in Cervus and implications for conservation. Animal Conservation, 2001, 4, 1-11.	2.9	113
29	The evolutionary radiation of Arvicolinae rodents (voles and lemmings): relative contribution of nuclear and mitochondrial DNA phylogenies. BMC Evolutionary Biology, 2006, 6, 80.	3.2	100
30	Molecular evolution of the nuclear von Willebrand factor gene in mammals and the phylogeny of rodents. Molecular Biology and Evolution, 1999, 16, 577-589.	8.9	95
31	Primate phylogeny, evolutionary rate variations, and divergence times: A contribution from the nuclear gene IRBP. American Journal of Physical Anthropology, 2004, 124, 01-16.	2.1	93
32	Local Molecular Clocks in Three Nuclear Genes: Divergence Times for Rodents and Other Mammals and Incompatibility Among Fossil Calibrations. Journal of Molecular Evolution, 2003, 57, S201-S213.	1.8	92
33	Acetylcholinesterase genes within the Diptera: takeover and loss in true flies. Proceedings of the Royal Society B: Biological Sciences, 2006, 273, 2595-2604.	2.6	92
34	Molecular phylogenetics unveils the ancient evolutionary origins of the enigmatic fairy armadillos. Molecular Phylogenetics and Evolution, 2012, 62, 673-680.	2.7	90
35	ANISEED 2017: extending the integrated ascidian database to the exploration and evolutionary comparison of genome-scale datasets. Nucleic Acids Research, 2018, 46, D718-D725.	14.5	90
36	Molecular Phylogeny of Families Related to Celastrales Based on rbcL 5′ Flanking Sequences. Molecular Phylogenetics and Evolution, 1994, 3, 27-37.	2.7	89

#	Article	IF	Citations
37	Rodents of the Caribbean: origin and diversification of hutias unravelled by next-generation museomics. Biology Letters, 2014, 10, 20140266.	2.3	87
38	Retroposed Elements and Their Flanking Regions Resolve the Evolutionary History of Xenarthran Mammals (Armadillos, Anteaters, and Sloths). Molecular Biology and Evolution, 2007, 24, 2573-2582.	8.9	82
39	Genetic variability in MCF-7 sublines: evidence of rapid genomic and RNA expression profile modifications. BMC Cancer, 2003, 3, 13.	2.6	77
40	Molecular estimation of eulipotyphlan divergence times and the evolution of "Insectivora― Molecular Phylogenetics and Evolution, 2003, 28, 285-296.	2.7	77
41	OrthoMaM v8: A Database of Orthologous Exons and Coding Sequences for Comparative Genomics in Mammals. Molecular Biology and Evolution, 2014, 31, 1923-1928.	8.9	77
42	Molecular systematics of armadillos (Xenarthra, Dasypodidae): contribution of maximum likelihood and Bayesian analyses of mitochondrial and nuclear genes. Molecular Phylogenetics and Evolution, 2003, 28, 261-275.	2.7	76
43	Multigenic phylogeny and analysis of tree incongruences in Triticeae (Poaceae). BMC Evolutionary Biology, 2011, 11, 181.	3.2	72
44	SDM: A Fast Distance-Based Approach for (Super)Tree Building in Phylogenomics. Systematic Biology, 2006, 55, 740-755.	5.6	69
45	Evolutionary affinities of the enigmatic saola (Pseudoryx nghetinhensis) in the context of the molecular phylogeny of Bovidae. Proceedings of the Royal Society B: Biological Sciences, 1999, 266, 893-900.	2.6	68
46	ANISEED 2015: a digital framework for the comparative developmental biology of ascidians. Nucleic Acids Research, 2016, 44, D808-D818.	14.5	68
47	Genetic clustering of Trypanosoma cruzi I lineage evidenced by intergenic miniexon gene sequencing. Infection, Genetics and Evolution, 2007, 7, 587-593.	2.3	64
48	OrthoMaM v10: Scaling-Up Orthologous Coding Sequence and Exon Alignments with More than One Hundred Mammalian Genomes. Molecular Biology and Evolution, 2019, 36, 861-862.	8.9	64
49	New DNA data from a transthyretin nuclear intron suggest an Oligocene to Miocene diversification of living South America opossums (Marsupialia: Didelphidae). Molecular Phylogenetics and Evolution, 2005, 35, 363-379.	2.7	61
50	Evolution under domestication: contrasting functional morphology of seedlings in domesticated cassava and its closest wild relatives. New Phytologist, 2005, 166, 305-318.	7.3	60
51	Diversification of South American spiny rats (Echimyidae): a multigene phylogenetic approach. Zoologica Scripta, 2013, 42, 117-134.	1.7	59
52	Phylogeography and the origin of cassava: New insights from the northern rim of the Amazonian basin. Molecular Phylogenetics and Evolution, 2009, 53, 329-334.	2.7	58
53	Representing taxonomic, phylogenetic and functional diversity: new challenges for <scp>M</scp> editerranean marineâ€protected areas. Diversity and Distributions, 2015, 21, 175-187.	4.1	57
54	Interordinal Mammalian Relationships: Evidence for Paenungulate Monophyly Is Provided by Complete Mitochondrial 12S rRNA Sequences. Molecular Phylogenetics and Evolution, 1996, 6, 245-258.	2.7	56

#	Article	IF	CITATIONS
55	Efficient Selection of Branch-Specific Models of Sequence Evolution. Molecular Biology and Evolution, 2012, 29, 1861-1874.	8.9	56
56	Genomic Evidence for Large, Long-Lived Ancestors to Placental Mammals. Molecular Biology and Evolution, 2013, 30, 5-13.	8.9	56
57	Deep Sequencing of Mixed Total DNA without Barcodes Allows Efficient Assembly of Highly Plastic Ascidian Mitochondrial Genomes. Genome Biology and Evolution, 2013, 5, 1185-1199.	2.5	56
58	Next-generation sequencing and phylogenetic signal of complete mitochondrial genomes for resolving the evolutionary history of leaf-nosed bats (Phyllostomidae). Molecular Phylogenetics and Evolution, 2013, 69, 728-739.	2.7	55
59	Molecular evolution of the mitochondrial 12S rRNA in Ungulata (mammalia). Journal of Molecular Evolution, 1995, 41, 622-36.	1.8	54
60	Title is missing!. Journal of Mammalian Evolution, 2002, 9, 225-252.	1.8	53
61	rbcL Phylogeny of the Fern Genus Trichomanes (Hymenophyllaceae), with Special Reference to Neotropical Taxa. International Journal of Plant Sciences, 2003, 164, 753-761.	1.3	52
62	S <scp>uper</scp> T <scp>riplets</scp> : a triplet-based supertree approach to phylogenomics. Bioinformatics, 2010, 26, i115-i123.	4.1	51
63	A Phylogenetic Perspective on the Evolution of Mediterranean Teleost Fishes. PLoS ONE, 2012, 7, e36443.	2.5	50
64	PhySIC: A Veto Supertree Method with Desirable Properties. Systematic Biology, 2007, 56, 798-817.	5.6	49
65	Fast and Robust Characterization of Time-Heterogeneous Sequence Evolutionary Processes Using Substitution Mapping. PLoS ONE, 2012, 7, e33852.	2.5	47
66	Rabbits, if anything, are likely Glires. Molecular Phylogenetics and Evolution, 2004, 33, 922-935.	2.7	45
67	Molecular Systematics of Hystricognath Rodents: The Contribution of Sciurognath Mitochondrial 12S rRNA Sequences. Molecular Phylogenetics and Evolution, 1995, 4, 357-360.	2.7	44
68	PhySIC_IST: cleaning source trees to infer more informative supertrees. BMC Bioinformatics, 2008, 9, 413.	2.6	42
69	Conserved Features and Evolutionary Shifts of the EDA Signaling Pathway Involved in Vertebrate Skin Appendage Development. Molecular Biology and Evolution, 2008, 25, 912-928.	8.9	42
70	Taxonomy, molecular phylogeny and evolution of plant reverse transcribing viruses (family) Tj ETQq0 0 0 rgBT /Ov Virology, 2008, 153, 1085-1102.	erlock 10 2.1	Tf 50 147 To 41
71	Armadillos exhibit less genetic polymorphism in North America than in South America: nuclear and mitochondrial data confirm a founder effect in Dasypus novemcinctus (Xenarthra). Molecular Ecology, 1999, 8, 1743-1748.	3.9	40
72	Accelerated Evolutionary Rate of Housekeeping Genes in Tunicates. Journal of Molecular Evolution, 2010, 71, 153-167.	1.8	40

#	Article	IF	Citations
73	Mitogenomic phylogeny, diversification, and biogeography of South American spiny rats. Molecular Biology and Evolution, 2017, 34, msw261.	8.9	40
74	Ascidian Mitogenomics: Comparison of Evolutionary Rates in Closely Related Taxa Provides Evidence of Ongoing Speciation Events. Genome Biology and Evolution, 2014, 6, 591-605.	2.5	39
75	Differentiation in a geographical mosaic of plants coevolving with ants: phylogeny of the Leonardoxa africana complex (Fabaceae: Caesalpinioideae) using amplified fragment length polymorphism markers. Molecular Ecology, 2004, 13, 1157-1171.	3.9	36
76	Convergent Acquisition of Nonembryonic Development in Styelid Ascidians. Molecular Biology and Evolution, 2018, 35, 1728-1743.	8.9	35
77	<i>Salmo macrostigma</i> (Teleostei, Salmonidae): Nothing more than a brown trout (<scp><i>S.) Tj ETQq1 1 0.</i></scp>	.784314 r 1.6	igBJ_∕Overlo <mark>c</mark> i
78	A cost-effective straightforward protocol for shotgun Illumina libraries designed to assemble complete mitogenomes from non-model species. Conservation Genetics Resources, 2015, 7, 37-40.	0.8	32
79	Digging for the spiny rat and hutia phylogeny using a gene capture approach, with the description of a new mammal subfamily. Molecular Phylogenetics and Evolution, 2019, 136, 241-253.	2.7	32
80	Developing nuclear DNA phylogenetic markers in the angiosperm genus Leucadendron (Proteaceae): A next-generation sequencing transcriptomic approach. Molecular Phylogenetics and Evolution, 2014, 70, 37-46.	2.7	31
81	ANISEED 2019: 4D exploration of genetic data for an extended range of tunicates. Nucleic Acids Research, 2020, 48, D668-D675.	14.5	30
82	CONVERGENT AND CORRELATED EVOLUTION OF MAJOR LIFE-HISTORY TRAITS IN THE ANGIOSPERM GENUS <i>LEUCADENDRON</i> (PROTEACEAE). Evolution; International Journal of Organic Evolution, 2014, 68, 2775-2792.	2.3	25
83	Projected impacts of climate warming on the functional and phylogenetic components of coastal Mediterranean fish biodiversity. Ecography, 2015, 38, 681-689.	4.5	25
84	Thrice better than once: quality control guidelines to validate new mitogenomes. Mitochondrial DNA, 2016, 27, 449-454.	0.6	24
85	Fast and accurate branch lengths estimation for phylogenomic trees. BMC Bioinformatics, 2016, 17, 23.	2.6	23
86	7. Ancient Fossil Record and Early Evolution (ca.Â3.8 to 0.5ÂGa). Earth, Moon and Planets, 2006, 98, 247-290.	0.6	22
87	In Cold Blood: Compositional Bias and Positive Selection Drive the High Evolutionary Rate of Vampire Bats Mitochondrial Genomes. Genome Biology and Evolution, 2018, 10, 2218-2239.	2.5	22
88	Trypanosoma cruzi: New insights on ecophylogeny and hybridization by multigene sequencing of three nuclear and one maxicircle genes. Experimental Parasitology, 2009, 122, 328-337.	1.2	20
89	Environment drives high phylogenetic turnover among oceanic bacterial communities. Biology Letters, 2012, 8, 562-566.	2.3	19
90	What is a Suiforme (Artiodactyla)?. Molecular Phylogenetics and Evolution, 1998, 9, 528-532.	2.7	17

#	Article	IF	CITATIONS
91	Astrocladistics: A Phylogenetic Analysis of Galaxy Evolution I. Character Evolutions and Galaxy Histories. Journal of Classification, 2006, 23, 31-56.	2.2	17
92	Is the Newly Described Vietnamese Bovid Pseudonovibos spiralis a Chamois (Genus Rupicapra)?. Die Naturwissenschaften, 2000, 87, 122-124.	1.6	15
93	Jumping and gliding rodents: Mitogenomic affinities of Pedetidae and Anomaluridae deduced from an RNA-Seq approach. Gene, 2013, 531, 388-397.	2.2	14
94	Identification of autophagy genes in <i> Ciona intestinalis</i> : A new experimental model to study autophagy mechanism. Autophagy, 2009, 5, 805-815.	9.1	12
95	Flightless scalyâ€ŧailed squirrels never learned how to fly: A reappraisal of Anomaluridae phylogeny. Zoologica Scripta, 2018, 47, 404-417.	1.7	12
96	Testing the generation time hypothesis using DNA/DNA hybridization between artiodactyls. Journal of Evolutionary Biology, 1995, 8, 511-529.	1.7	11
97	Life-History Traits Evolved Jointly with Climatic Niche and Disturbance Regime in the Genus <i>Leucadendron</i> (Proteaceae). American Naturalist, 2018, 191, 220-234.	2.1	11
98	Molecular evidence for hybridisation between the two living species of South American ratites: potential conservation implications. Conservation Genetics, 2007, 8, 503-507.	1.5	6
99	2. Dating Methods and Corresponding Chronometers in Astrobiology. Earth, Moon and Planets, 2006, 98, 11-38.	0.6	O