Mr Saeb

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1370204/publications.pdf

Version: 2024-02-01

74163 38742 8,103 199 50 75 h-index citations g-index papers 200 200 200 4621 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Electrically conductive carbonâ€based (bio)â€nanomaterials for cardiac tissue engineering. Bioengineering and Translational Medicine, 2023, 8, .	7.1	29
2	Structure–propertiesâ€performance relationships in complex epoxy nanocomposites: A complete picture applying chemorheological and thermoâ€mechanical kinetic analyses. Journal of Applied Polymer Science, 2022, 139, 51446.	2.6	7
3	Green composites in bone tissue engineering. Emergent Materials, 2022, 5, 603-620.	5.7	11
4	Green carbon-based nanocompositeÂbiomaterials through the lens of microscopes. Emergent Materials, 2022, 5, 665-671.	5.7	12
5	Green products from herbal medicine wastes by subcritical water treatment. Journal of Hazardous Materials, 2022, 424, 127294.	12.4	26
6	Crystalline polysaccharides: A review. Carbohydrate Polymers, 2022, 275, 118624.	10.2	41
7	Green porous benzamide-like nanomembranes for hazardous cations detection, separation, and concentration adjustment. Journal of Hazardous Materials, 2022, 423, 127130.	12.4	34
8	Integration of antifouling properties into epoxy coatings: a review. Journal of Coatings Technology Research, 2022, 19, 269-284.	2.5	21
9	Human Organsâ€onâ€Chips: A Review of the Stateâ€ofâ€theâ€Art, Current Prospects, and Future Challenges. Advanced Biology, 2022, 6, e2000526.	2.5	21
10	Green metal-organic frameworks (MOFs) for biomedical applications. Microporous and Mesoporous Materials, 2022, 335, 111670.	4.4	65
11	Chitosan-based inks for 3D printing and bioprinting. Green Chemistry, 2022, 24, 62-101.	9.0	76
12	Polysaccharide-based electroconductive hydrogels: Structure, properties and biomedical applications. Carbohydrate Polymers, 2022, 278, 118998.	10.2	22
13	Hyperbranched polyethylenimine functionalized silica/polysulfone nanocomposite membranes for water purification. Chemosphere, 2022, 290, 133363.	8.2	43
14	Highly antifouling polymer-nanoparticle-nanoparticle/polymer hybrid membranes. Science of the Total Environment, 2022, 810, 152228.	8.0	41
15	Polysaccharides in fabrication of membranes: A review. Carbohydrate Polymers, 2022, 281, 119041.	10.2	47
16	A facile approach to fabricate load-bearing porous polymer scaffolds for bone tissue engineering. Advanced Composites and Hybrid Materials, 2022, 5, 1376-1384.	21.1	34
17	Pressure-induced flow processing behind the superior mechanical properties and heat-resistance performance of poly(butylene succinate). E-Polymers, 2022, 22, 156-164.	3.0	7
18	Dynamics of Antimicrobial Peptide Encapsulation in Carbon Nanotubes: The Role of Hydroxylation. International Journal of Nanomedicine, 2022, Volume 17, 125-136.	6.7	11

#	Article	IF	CITATIONS
19	GTR/Thermoplastics Blends: How Do Interfacial Interactions Govern Processing and Physico-Mechanical Properties?. Materials, 2022, 15, 841.	2.9	13
20	Experimental and theoretical mechanical behaviorÂof compatibilized polylactic acid/polyolefin elastomer blends for potentialÂpackaging applications. Iranian Polymer Journal (English Edition), 2022, 31, 651-663.	2.4	9
21	Folic Acid-Adorned Curcumin-Loaded Iron Oxide Nanoparticles for Cervical Cancer. ACS Applied Bio Materials, 2022, 5, 1305-1318.	4.6	65
22	Cell-Seeded Biomaterial Scaffolds: The Urgent Need for Unanswered Accelerated Angiogenesis. International Journal of Nanomedicine, 2022, Volume 17, 1035-1068.	6.7	25
23	Multifunctional Tetracycline-Loaded Silica-Coated Core–Shell Magnetic Nanoparticles: Antibacterial, Antibiofilm, and Cytotoxic Activities. ACS Applied Bio Materials, 2022, 5, 1731-1743.	4.6	11
24	Chlorine-free extraction and structural characterization of cellulose nanofibers from waste husk of millet (Pennisetum glaucum). International Journal of Biological Macromolecules, 2022, 206, 92-104.	7. 5	30
25	Bioactive hybrid metal-organic framework (MOF)-based nanosensors for optical detection of recombinant SARS-CoV-2 spike antigen. Science of the Total Environment, 2022, 825, 153902.	8.0	31
26	Synthesis of green benzamide-decorated UiO-66-NH2 for biomedical applications. Chemosphere, 2022, 299, 134359.	8.2	18
27	Green Polymer Nanocomposites for Skin Tissue Engineering. ACS Applied Bio Materials, 2022, 5, 2107-2121.	4.6	26
28	Heat transfer through hydrogenated graphene superlattice nanoribbons: a computational study. Scientific Reports, 2022, 12, 7966.	3.3	9
29	Comparative review of piezoelectric biomaterials approach for bone tissue engineering. Journal of Biomaterials Science, Polymer Edition, 2022, 33, 1555-1594.	3.5	9
30	Polydopamine Biomaterials for Skin Regeneration. ACS Biomaterials Science and Engineering, 2022, 8, 2196-2219.	5.2	26
31	Mission impossible for cellular internalization: When porphyrin alliance with UiO-66-NH2 MOF gives the cell lines a ride. Journal of Hazardous Materials, 2022, 436, 129259.	12.4	19
32	Metal-organic frameworks (MOF) based heat transfer: A comprehensive review. Chemical Engineering Journal, 2022, 449, 137700.	12.7	39
33	CaZnO-based nanoghosts for the detection of ssDNA, pCRISPR and recombinant SARS-CoV-2 spike antigen and targeted delivery of doxorubicin. Chemosphere, 2022, 306, 135578.	8.2	28
34	Synthesis of Cost-Effective Hierarchical MFI-Type Mesoporous Zeolite: Introducing Diatomite as Silica Source. Silicon, 2021, 13, 3461-3472.	3.3	12
35	Efficient removal of dyes and proteins by nitrogen-doped porous graphene blended polyethersulfone nanocomposite membranes. Chemosphere, 2021, 263, 127892.	8.2	58
36	Polyhedral oligomeric silsesquioxane/epoxy coatings: a review. Surface Innovations, 2021, 9, 3-16.	2.3	35

#	Article	IF	Citations
37	Electrospinning for tissue engineering applications. Progress in Materials Science, 2021, 117, 100721.	32.8	378
38	Imidazole-functionalized nitrogen-rich Mg-Al-CO3 layered double hydroxide for developing highly crosslinkable epoxy with high thermal and mechanical properties. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 611, 125826.	4.7	22
39	Calcium carbonate and ammonium polyphosphate flame retardant additives formulated to protect ethylene vinyl acetate copolymer against fire: Hydrated or carbonated calcium?. Journal of Vinyl and Additive Technology, 2021, 27, 264-274.	3.4	3
40	Correlating the Photophysical Properties with the Cure Index of Epoxy Nanocomposite Coatings. Journal of Inorganic and Organometallic Polymers and Materials, 2021, 31, 923-933.	3.7	7
41	Quantum dots for photocatalysis: synthesis and environmental applications. Green Chemistry, 2021, 23, 4931-4954.	9.0	72
42	Green Organic Films and Coatings: Developments and Future Challenges. Mini-Reviews in Organic Chemistry, $2021,18,.$	1.3	1
43	Nanotechnology-assisted microfluidic systems: from bench to bedside. Nanomedicine, 2021, 16, 237-258.	3.3	30
44	Atomic simulation of adsorption of SO2 pollutant by metal (Zn, Be)-oxide and Ni-decorated graphene: a first-principles study. Journal of Molecular Modeling, 2021, 27, 70.	1.8	11
45	Electrocatalytic hydrogen evolution on the noble metal-free MoS2/carbon nanotube heterostructure: a theoretical study. Scientific Reports, 2021, 11, 3958.	3.3	23
46	Boron Nitride Nanotube as an Antimicrobial Peptide Carrier: A Theoretical Insight. International Journal of Nanomedicine, 2021, Volume 16, 1837-1847.	6.7	20
47	Natural Polymers Decorated MOF-MXene Nanocarriers for Co-delivery of Doxorubicin/pCRISPR. ACS Applied Bio Materials, 2021, 4, 5106-5121.	4.6	78
48	Amineâ€functionalized <scp>metal–organic</scp> frameworks/epoxy nanocomposites: <scp>Structureâ€properties</scp> relationships. Journal of Applied Polymer Science, 2021, 138, 51005.	2.6	12
49	Isothermal Vulcanization and Non-Isothermal Degradation Kinetics of XNBR/Epoxy/XNBR-g-Halloysite Nanotubes (HNT) Nanocomposites. Materials, 2021, 14, 2872.	2.9	10
50	Cellulosic bionanocomposites based on acrylonitrile butadiene rubber and Cuscuta reflexa:Âadjusting structure-properties balance for higher performance. Cellulose, 2021, 28, 7053-7073.	4.9	13
51	Multifunctional 3D Hierarchical Bioactive Green Carbon-Based Nanocomposites. ACS Sustainable Chemistry and Engineering, 2021, 9, 8706-8720.	6.7	43
52	Thermal conductivity of random polycrystalline BC3 nanosheets: A step towards realistic simulation of 2D structures. Journal of Molecular Graphics and Modelling, 2021, 107, 107977.	2.4	15
53	Turning Toxic Nanomaterials into a Safe and Bioactive Nanocarrier for Co-delivery of DOX/pCRISPR. ACS Applied Bio Materials, 2021, 4, 5336-5351.	4.6	57
54	Flame retardancy effect of phosphorus graphite nanoplatelets on ethyleneâ€vinyl acetate copolymer: Physical blending versus chemical modification. Polymers for Advanced Technologies, 2021, 32, 4296-4305.	3.2	7

#	Article	IF	Citations
55	Metal-Organic Frameworks (MOFs)-Based Nanomaterials for Drug Delivery. Materials, 2021, 14, 3652.	2.9	47
56	\hat{l}_{\pm} -Helical Antimicrobial Peptide Encapsulation and Release from Boron Nitride Nanotubes: A Computational Study. International Journal of Nanomedicine, 2021, Volume 16, 4277-4288.	6.7	9
57	Green chemistry and coronavirus. Sustainable Chemistry and Pharmacy, 2021, 21, 100415.	3.3	29
58	Injectable Cell-Laden Hydrogels for Tissue Engineering: Recent Advances and Future Opportunities. Tissue Engineering - Part A, 2021, 27, 821-843.	3.1	32
59	Chitosan-based blends for biomedical applications. International Journal of Biological Macromolecules, 2021, 183, 1818-1850.	7.5	97
60	Theory for designing mechanically stable single- and double-walled SiGe nanopeapods. Journal of Molecular Modeling, 2021, 27, 214.	1.8	1
61	Fracture fingerprint of polycrystalline C3N nanosheets: Theoretical basis. Journal of Molecular Graphics and Modelling, 2021, 106, 107899.	2.4	16
62	Coffee Wastes as Sustainable Flame Retardants for Polymer Materials. Coatings, 2021, 11, 1021.	2.6	19
63	Epoxy/Ionic Liquid-Modified Mica Nanocomposites: Network Formation–Network Degradation Correlation. Nanomaterials, 2021, 11, 1990.	4.1	9
64	Adsorption onto zeolites: molecular perspective. Chemical Papers, 2021, 75, 6217-6239.	2.2	6
65	Theoretical Encapsulation of Fluorouracil (5-FU) Anti-Cancer Chemotherapy Drug into Carbon Nanotubes (CNT) and Boron Nitride Nanotubes (BNNT). Molecules, 2021, 26, 4920.	3.8	20
66	Hydrogen Bonds in Blends of Poly(N-isopropylacrylamide), Poly(N-ethylacrylamide) Homopolymers, and Carboxymethyl Cellulose. Journal of Composites Science, 2021, 5, 240.	3.0	1
67	Encapsulation of an anticancer drug Isatin inside a host nano-vehicle SWCNT: a molecular dynamics simulation. Scientific Reports, 2021, 11, 18753.	3.3	21
68	Crack pathway analysis in graphene-like BC3 nanosheets: Towards a deeper understanding. Journal of Molecular Graphics and Modelling, 2021, 107, 107980.	2.4	2
69	Advanced Delivery Systems Based on Lysine or Lysine Polymers. Molecular Pharmaceutics, 2021, 18, 3652-3670.	4.6	26
70	Thermoplastic starch nanocomposites using cellulose-rich Chrysopogon zizanioides nanofibers. International Journal of Biological Macromolecules, 2021, 191, 572-583.	7. 5	7
71	An insight into thermal properties of BC3-graphene hetero-nanosheets: a molecular dynamics study. Scientific Reports, 2021, 11, 23064.	3.3	17
72	Metal–Organic Frameworks (MOFs) for Cancer Therapy. Materials, 2021, 14, 7277.	2.9	44

#	Article	IF	CITATIONS
73	Emerging Phospholipid Nanobiomaterials for Biomedical Applications to Lab-on-a-Chip, Drug Delivery, and Cellular Engineering. ACS Applied Bio Materials, 2021, 4, 8110-8128.	4.6	17
74	In-Out Surface Modification of Halloysite Nanotubes (HNTs) for Excellent Cure of Epoxy: Chemistry and Kinetics Modeling. Nanomaterials, 2021, 11, 3078.	4.1	15
75	Propane Dehydrogenation Reaction in a High-Pressure Zeolite Membrane Reactor. Energy & Energy	5.1	5
76	Green CoNi2S4/porphyrin decorated carbon-based nanocomposites for genetic materials detection. Journal of Bioresources and Bioproducts, 2021, 6, 215-222.	20.5	46
77	Interface analysis of compatibilized polymer blends. , 2020, , 349-371.		8
78	Application of compatibilized polymer blends in biomedical fields. , 2020, , 511-537.		38
79	Nonisothermal cure kinetics of epoxy/MnxFe3-xO4 nanocomposites. Progress in Organic Coatings, 2020, 140, 105505.	3.9	34
80	Soft and hard sections from cellulose-reinforced poly(lactic acid)-based food packaging films: A critical review. Food Packaging and Shelf Life, 2020, 23, 100429.	7.5	93
81	Exploring curing potential of epoxy nanocomposites containing nitrate anion intercalated Mg–Al–LDH with Cure Index. Progress in Organic Coatings, 2020, 139, 105255.	3.9	10
82	Thermal-Resistant Polyurethane/Nanoclay Powder Coatings: Degradation Kinetics Study. Coatings, 2020, 10, 871.	2.6	13
83	Agarose-based biomaterials for advanced drug delivery. Journal of Controlled Release, 2020, 326, 523-543.	9.9	134
84	New Insights into H2S Adsorption on Graphene and Graphene-Like Structures: A Comparative DFT Study. Journal of Carbon Research, 2020, 6, 74.	2.7	11
85	Insight into the Self-Insertion of a Protein Inside the Boron Nitride Nanotube. ACS Omega, 2020, 5, 32051-32058.	3.5	21
86	Fabricating an electroactive injectable hydrogel based on pluronic-chitosan/aniline-pentamer containing angiogenic factor for functional repair of the hippocampus ischemia rat model. Materials Science and Engineering C, 2020, 117, 111328.	7.3	39
87	Flame Retardant Polypropylenes: A Review. Polymers, 2020, 12, 1701.	4.5	39
88	Effect of Nickel Doping on the Cure Kinetics of Epoxy/Fe3O4 Nanocomposites. Journal of Composites Science, 2020, 4, 102.	3.0	3
89	Thermal Analysis of Crosslinking Reactions in Epoxy Nanocomposites Containing Polyvinyl Chloride (PVC)-Functionalized Nickel-Doped Nano-Fe3O4. Journal of Composites Science, 2020, 4, 107.	3.0	2
90	Mesenchymal Stem Cell Spheroids Embedded in an Injectable Thermosensitive Hydrogel: An In Situ Drug Formation Platform for Accelerated Wound Healing. ACS Biomaterials Science and Engineering, 2020, 6, 5096-5109.	5.2	48

#	Article	IF	CITATIONS
91	Bulk-Surface Modification of Nanoparticles for Developing Highly-Crosslinked Polymer Nanocomposites. Polymers, 2020, 12, 1820.	4.5	9
92	A Comparative Study on Cure Kinetics of Layered Double Hydroxide (LDH)/Epoxy Nanocomposites. Journal of Composites Science, 2020, 4, 111.	3.0	13
93	Reactive Sintering of Ground Tire Rubber (GTR) Modified by a Trans-Polyoctenamer Rubber and Curing Additives. Polymers, 2020, 12, 3018.	4.5	20
94	Silaneâ€functionalized Al 2 O 3 â€modified polyurethane powder coatings: Nonisothermal degradation kinetics and mechanistic insights. Journal of Applied Polymer Science, 2020, 137, 49412.	2.6	12
95	Poloxamer: A versatile tri-block copolymer for biomedical applications. Acta Biomaterialia, 2020, 110, 37-67.	8.3	188
96	Nonisothermal Cure Kinetics of Epoxy/Polyvinylpyrrolidone Functionalized Superparamagnetic Nano-Fe3O4 Composites: Effect of Zn and Mn Doping. Journal of Composites Science, 2020, 4, 55.	3.0	13
97	Conductive polymers in water treatment: A review. Journal of Molecular Liquids, 2020, 312, 113447.	4.9	104
98	Phosphorization of exfoliated graphite for developing flame retardant ethylene vinyl acetate composites. Journal of Materials Research and Technology, 2020, 9, 7341-7353.	5.8	14
99	Superâ€crosslinked ionic liquidâ€intercalated montmorillonite/epoxy nanocomposites: Cure kinetics, viscoelastic behavior and thermal degradation mechanism. Polymer Engineering and Science, 2020, 60, 1940-1957.	3.1	37
100	Microstructure and Mechanical Properties of Carboxylated Nitrile Butadiene Rubber/Epoxy/XNBR-grafted Halloysite Nanotubes Nanocomposites. Polymers, 2020, 12, 1192.	4.5	20
101	Halloysite nanotubes (HNTs)/polymer nanocomposites: thermal degradation and flame retardancy. , 2020, , 67-93.		13
102	Electroactive poly (p-phenylene sulfide)/r-graphene oxide/chitosan as a novel potential candidate for tissue engineering. International Journal of Biological Macromolecules, 2020, 154, 18-24.	7.5	51
103	Curing Kinetics and Thermal Stability of Epoxy Composites Containing Newly Obtained Nano-Scale Aluminum Hypophosphite (AlPO2). Polymers, 2020, 12, 644.	4.5	47
104	Metal-Organic Framework (MOF)/Epoxy Coatings: A Review. Materials, 2020, 13, 2881.	2.9	99
105	Nonisothermal Crystallization Kinetics of Polylactic Acid under the Influence of Polyolefin Elastomers. Journal of Composites Science, 2020, 4, 65.	3.0	3
106	From microporous to mesoporous mineral frameworks: An alliance between zeolite and chitosan. Carbohydrate Research, 2020, 489, 107930.	2.3	55
107	Synthesis, characterization, and high potential of 3D metal–organic framework (MOF) nanoparticles for curing with epoxy. Journal of Alloys and Compounds, 2020, 829, 154547.	5.5	71
108	Highly curable self-healing vitrimer-like cellulose-modified halloysite nanotube/epoxy nanocomposite coatings. Chemical Engineering Journal, 2020, 396, 125196.	12.7	103

#	Article	IF	Citations
109	Hydrogel membranes: A review. Materials Science and Engineering C, 2020, 114, 111023.	7.3	117
110	Effect of Surface Treatment of Halloysite Nanotubes (HNTs) on the Kinetics of Epoxy Resin Cure with Amines. Polymers, 2020, 12, 930.	4.5	32
111	Polyurethane/Silane-Functionalized ZrO2 Nanocomposite Powder Coatings: Thermal Degradation Kinetics. Coatings, 2020, 10, 413.	2.6	15
112	Hopes Beyond PET Recycling: Environmentally Clean and Engineeringly Applicable. Journal of Polymers and the Environment, 2019, 27, 2490-2508.	5.0	11
113	Curing epoxy with polyvinylpyrrolidone (PVP) surface-functionalized Mn Fe3-O4 magnetic nanoparticles. Progress in Organic Coatings, 2019, 136, 105247.	3.9	19
114	Thin films of epoxy adhesives containing recycled polymers and graphene oxide nanoflakes for metal/polymer composite interface. Progress in Organic Coatings, 2019, 136, 105201.	3.9	42
115	Epoxy/layered double hydroxide (LDH) nanocomposites: Synthesis, characterization, and Excellent cure feature of nitrate anion intercalated Zn-Al LDH. Progress in Organic Coatings, 2019, 136, 105218.	3.9	67
116	Surface chemistry of halloysite nanotubes controls the curability of low filled epoxy nanocomposites. Progress in Organic Coatings, 2019, 135, 555-564.	3.9	65
117	Curing epoxy with electrochemically synthesized Ni Fe3-O4 magnetic nanoparticles. Progress in Organic Coatings, 2019, 136, 105198.	3.9	27
118	Polyurethane coatings reinforced with 3-(triethoxysilyl)propyl isocyanate functionalized graphene oxide nanosheets: Mechanical and anti-corrosion properties. Progress in Organic Coatings, 2019, 136, 105243.	3.9	21
119	Curing epoxy with polyvinylpyrrolidone (PVP) surface-functionalized Zn Fe3-O4 magnetic nanoparticles. Progress in Organic Coatings, 2019, 136, 105227.	3.9	25
120	Cure Index for labeling curing potential of epoxy/LDH nanocomposites: A case study on nitrate anion intercalated Ni-Al-LDH. Progress in Organic Coatings, 2019, 136, 105228.	3.9	43
121	Curing epoxy with Mg-Al LDH nanoplatelets intercalated with carbonate ion. Progress in Organic Coatings, 2019, 136, 105278.	3.9	31
122	Curing epoxy with electrochemically synthesized Zn Fe3-O4 magnetic nanoparticles. Progress in Organic Coatings, 2019, 136, 105246.	3.9	22
123	Development of Mg-Zn-Al-CO3 ternary LDH and its curability in epoxy/amine system. Progress in Organic Coatings, 2019, 136, 105264.	3.9	34
124	Curing epoxy with ethylenediaminetetraacetic acid (EDTA) surface-functionalized Co Fe3-O4 magnetic nanoparticles. Progress in Organic Coatings, 2019, 136, 105248.	3.9	14
125	Curing epoxy with electrochemically synthesized Gd Fe3-O4 magnetic nanoparticles. Progress in Organic Coatings, 2019, 136, 105245.	3.9	29
126	Curing epoxy with polyvinylpyrrolidone (PVP) surface-functionalized NixFe3-xO4 magnetic nanoparticles. Progress in Organic Coatings, 2019, 136, 105259.	3.9	14

#	Article	IF	CITATIONS
127	Curing epoxy with polyethylene glycol (PEG) surface-functionalized NixFe3-xO4magnetic nanoparticles. Progress in Organic Coatings, 2019, 136, 105250.	3.9	22
128	Cure kinetics of epoxy/graphene oxide (GO) nanocomposites: Effect of starch functionalization of GO nanosheets. Progress in Organic Coatings, 2019, 136, 105217.	3.9	41
129	Description of complementary actions of mineral and organic additives in thermoplastic polymer composites by <i>Flame Retardancy Index</i> . Polymers for Advanced Technologies, 2019, 30, 2056-2066.	3.2	36
130	Cure Index demonstrates curing of epoxy composites containing silica nanoparticles of variable morphology and porosity. Progress in Organic Coatings, 2019, 135, 176-184.	3.9	60
131	Thermo-sensitive polymers in medicine: A review. European Polymer Journal, 2019, 117, 402-423.	5.4	206
132	Injectable poloxamer/graphene oxide hydrogels with wellâ€controlled mechanical and rheological properties. Polymers for Advanced Technologies, 2019, 30, 2250-2260.	3.2	31
133	Multi-nationality epoxy adhesives on trial for future nanocomposite developments. Progress in Organic Coatings, 2019, 133, 376-386.	3.9	52
134	Biodegradable polyester thin films and coatings in the line of fire: the time of polyhydroxyalkanoate (PHA)?. Progress in Organic Coatings, 2019, 133, 85-89.	3.9	27
135	Properties of nano-Fe3O4 incorporated epoxy coatings from Cure Index perspective. Progress in Organic Coatings, 2019, 133, 220-228.	3.9	92
136	Protocol for nonisothermal cure analysis of thermoset composites. Progress in Organic Coatings, 2019, 131, 333-339.	3.9	87
137	Tripleâ€faced polypropylene: Fire retardant, thermally stable, and antioxidative. Journal of Vinyl and Additive Technology, 2019, 25, 366-376.	3.4	13
138	Well-cured silicone/halloysite nanotubes nanocomposite coatings. Progress in Organic Coatings, 2019, 129, 357-365.	3.9	34
139	Bushy-surface hybrid nanoparticles for developing epoxy superadhesives. Applied Surface Science, 2019, 479, 1148-1160.	6.1	112
140	Curing epoxy with electrochemically synthesized Co Fe3-O4 magnetic nanoparticles. Progress in Organic Coatings, 2019, 137, 105252.	3.9	12
141	â€~Cure Index' for thermoset composites. Progress in Organic Coatings, 2019, 127, 429-434.	3.9	107
142	Thermal decomposition kinetics of dynamically vulcanized polyamide 6–acrylonitrile butadiene rubber–halloysite nanotube nanocomposites. Journal of Applied Polymer Science, 2019, 136, 47483.	2.6	44
143	Curing epoxy resin with anhydride in the presence of halloysite nanotubes: the contradictory effects of filler concentration. Progress in Organic Coatings, 2019, 126, 129-135.	3.9	70
144	Thermoâ€mechanical and shape memory behavior of TPU/ABS/MWCNTs nanocomposites compatibilized with ABS―g â€MAH. Polymer Composites, 2019, 40, 789-800.	4.6	4

#	Article	IF	CITATIONS
145	Chitosan in Biomedical Engineering: A Critical Review. Current Stem Cell Research and Therapy, 2019, 14, 93-116.	1.3	165
146	Theranostic Platforms Proposed for Cancerous Stem Cells: A Review. Current Stem Cell Research and Therapy, 2019, 14, 137-145.	1.3	31
147	Three in one: <i>β</i> â€cyclodextrin, nanohydroxyapatite, and a nitrogenâ€rich polymer integrated into a new flame retardant for poly (lactic acid). Fire and Materials, 2018, 42, 593-602.	2.0	35
148	Intelligent Monte Carlo: A New Paradigm for Inverse Polymerization Engineering. Macromolecular Theory and Simulations, 2018, 27, 1700106.	1.4	29
149	Calorimetric and rheokinetic analyses merged to capture crystallization kinetics in polyamide/clay nanocomposites: Revisiting predictability of models. Journal of Applied Polymer Science, 2018, 135, 46364.	2.6	11
150	Crystallization kinetics study of dynamically vulcanized PA6/NBR/HNTs nanocomposites by nonisothermal differential scanning calorimetry. Journal of Applied Polymer Science, 2018, 135, 46488.	2.6	20
151	Looking back to interfacial tension prediction in the compatibilized polymer blends: Discrepancies between theories and experiments. Journal of Applied Polymer Science, 2018, 135, 46144.	2.6	10
152	Surface engineering of nanoparticles with macromolecules for epoxy curing: Development of super-reactive nitrogen-rich nanosilica through surface chemistry manipulation. Applied Surface Science, 2018, 447, 152-164.	6.1	112
153	Hyperbranched poly(ethyleneimine) physically attached to silica nanoparticles to facilitate curing of epoxy nanocomposite coatings. Progress in Organic Coatings, 2018, 120, 100-109.	3.9	83
154	An attempt to mechanistically explain the viscoelastic behavior of transparent epoxy/starch-modified ZnO nanocomposite coatings. Progress in Organic Coatings, 2018, 119, 171-182.	3.9	41
155	Development and curing potential of epoxy/starch-functionalized graphene oxide nanocomposite coatings. Progress in Organic Coatings, 2018, 119, 194-202.	3.9	83
156	Flame retardant epoxy/halloysite nanotubes nanocomposite coatings: Exploring low-concentration threshold for flammability compared to expandable graphite as superior fire retardant. Progress in Organic Coatings, 2018, 119, 8-14.	3.9	98
157	Design, preparation, and characterization of fast cure epoxy/amineâ€functionalized graphene oxide nanocomposites. Polymer Composites, 2018, 39, E2016.	4.6	63
158	Epoxy/PAMAM dendrimer-modified graphene oxide nanocomposite coatings: Nonisothermal cure kinetics study. Progress in Organic Coatings, 2018, 114, 233-243.	3.9	135
159	Cure kinetics of epoxy/chicken eggshell biowaste composites: Isothermal calorimetric and chemorheological analyses. Progress in Organic Coatings, 2018, 114, 208-215.	3.9	49
160	Epoxy/starch-modified nano-zinc oxide transparent nanocomposite coatings: A showcase of superior curing behavior. Progress in Organic Coatings, 2018, 115, 143-150.	3.9	99
161	Poloxamer-based stimuli-responsive biomaterials. Materials Today: Proceedings, 2018, 5, 15516-15523.	1.8	54
162	Acid-aided epoxy-amine curing reaction as reflected in epoxy/Fe3O4 nanocomposites: Chemistry, mechanism, and fracture behavior. Progress in Organic Coatings, 2018, 125, 384-392.	3.9	77

#	Article	IF	CITATIONS
163	State of cure in silicone/clay nanocomposite coatings: The puzzle and the solution. Progress in Organic Coatings, 2018, 125, 222-233.	3.9	37
164	Tandem organic dye-sensitized solar cells: Looking for higher performance and durability. Photonics and Nanostructures - Fundamentals and Applications, 2018, 31, 34-43.	2.0	16
165	Curing behavior of epoxy/Fe3O4 nanocomposites: A comparison between the effects of bare Fe3O4, Fe3O4/SiO2/chitosan and Fe3O4/SiO2/chitosan/imide/phenylalanine-modified nanofillers. Progress in Organic Coatings, 2018, 123, 10-19.	3.9	89
166	Short-lasting fire in partially and completely cured epoxy coatings containing expandable graphite and halloysite nanotube additives. Progress in Organic Coatings, 2018, 123, 160-167.	3.9	97
167	Inclusion of modified lignocellulose and nano-hydroxyapatite in development of new bio-based adjuvant flame retardant for poly(lactic acid). Thermochimica Acta, 2018, 666, 51-59.	2.7	52
168	A multidisciplinary approach to understanding of structure-property correlations in polyamide-layered silicate nanocomposites: Expectations and challenges. Journal of Vinyl and Additive Technology, 2017, 23, 35-44.	3.4	3
169	Biowaste chicken eggshell powder as a potential cure modifier for epoxy/anhydride systems: competitiveness with terpolymer-modified calcium carbonate at low loading levels. RSC Advances, 2017, 7, 2218-2230.	3.6	55
170	Conceptualizing Physical and Chemical Interactions in the Compatibilized HDPE/PA6 and HDPE/EVOH Pairs: Theoretical and Experimental Analyses. Polymer-Plastics Technology and Engineering, 2017, 56, 1986-1996.	1.9	6
171	Cure kinetics of epoxy/MWCNTs nanocomposites: Isothermal calorimetric and rheological analyses. Progress in Organic Coatings, 2017, 108, 75-83.	3.9	60
172	Cure kinetics of epoxy/MWCNTs nanocomposites: Nonisothermal calorimetric and rheokinetic techniques. Journal of Applied Polymer Science, 2017, 134, 45221.	2.6	47
173	Cure kinetics of epoxy/ \hat{l}^2 -cyclodextrin-functionalized Fe 3 O 4 nanocomposites: Experimental analysis, mathematical modeling, and molecular dynamics simulation. Progress in Organic Coatings, 2017, 110, 172-181.	3.9	62
174	Transparent nanocomposite coatings based on epoxy and layered double hydroxide: Nonisothermal cure kinetics and viscoelastic behavior assessments. Progress in Organic Coatings, 2017, 113, 126-135.	3.9	76
175	Calorimetric analysis and molecular dynamics simulation of cure kinetics of epoxy/chitosan-modified Fe3O4 nanocomposites. Progress in Organic Coatings, 2017, 112, 176-186.	3.9	56
176	Competitiveness and synergy between three flame retardants in poly(ethylene- co -vinyl acetate). Polymer Degradation and Stability, 2017, 143, 164-175.	5.8	27
177	A probe into the status quo of interfacial adhesion in the compatibilized ternary blends with core/shell droplets: Selective versus dictated compatibilization. Journal of Applied Polymer Science, 2017, 134, 45503.	2.6	9
178	Antibacterial glass-ionomer cement restorative materials: A critical review on the current status of extended release formulations. Journal of Controlled Release, 2017, 262, 317-328.	9.9	104
179	Comparison of pristine and polyanilineâ€grafted <scp>MWCNT</scp> s as conductive sensor elements for phase change materials: Thermal conductivity trend analysis. Journal of Applied Polymer Science, 2017, 134, 45389.	2.6	9
180	Efficient removal of cationic dyes from colored wastewaters by dithiocarbamate-functionalized graphene oxide nanosheets: From synthesis to detailed kinetics studies. Journal of the Taiwan Institute of Chemical Engineers, 2017, 81, 239-246.	5. 3	143

#	Article	IF	Citations
181	High-performance epoxy-based adhesives reinforced with alumina and silica for carbon fiber composite/steel bonded joints. Journal of Reinforced Plastics and Composites, 2016, 35, 1685-1695.	3.1	74
182	Structure–property relationships in ternary polymer blends with core–shell inclusions: revisiting the critical role of the viscosity ratio. Journal of Polymer Research, 2016, 23, 1.	2.4	12
183	Application of Taguchi approach in describing the mechanical properties and thermal decomposition behavior of poly(vinyl chloride)/clay nanocomposites: Highlighting the Role of organic modifier. Journal of Vinyl and Additive Technology, 2016, 22, 182-190.	3.4	11
184	Morphology and mechanical properties of polyamide/clay nanocomposites toughened with NBR/NBR-g-GMA: A comparative study. Composites Part B: Engineering, 2016, 90, 478-484.	12.0	61
185	Towards Quantifying Interfacial Adhesion in the Ternary Blends with Matrix/Shell/Core-Type Morphology. Polymer-Plastics Technology and Engineering, 2015, 54, 223-232.	1.9	10
186	Reactive Compatibilization of Ternary Polymer Blends with Core–Shell Type Morphology. Macromolecular Materials and Engineering, 2015, 300, 86-98.	3.6	21
187	Highly curable epoxy/MWCNTs nanocomposites: An effective approach to functionalization of carbon nanotubes. Chemical Engineering Journal, 2015, 259, 117-125.	12.7	131
188	Interface evaluation in the ternary blends of HDPE/PA-6/EVOH. Polymer Bulletin, 2014, 71, 613-624.	3.3	12
189	Mechanical, rheological, and thermal behavior assessments in HDPE/PA-6/EVOH ternary blends with variable morphology. Journal of Polymer Research, 2014, 21, 1.	2.4	21
190	Identifying Morphological Changes in Immiscible Polyolefin Ternary Blends. Polymer-Plastics Technology and Engineering, 2014, 53, 1142-1149.	1.9	11
191	Toward In Situ Compatibilization of Polyolefin Ternary Blends through Morphological Manipulations. Macromolecular Materials and Engineering, 2014, 299, 1197-1212.	3.6	25
192	On the reliability of existing theoretical models in anticipating type of morphology and domain size in HDPE/PA-6/EVOH ternary blends. European Polymer Journal, 2014, 53, 1-12.	5.4	34
193	The Influence of NBR-g-GMA Compatibilizer on the Morphology and Mechanical Properties of Poly (ethylene terephthalate)/Polycarbonate/NBR Ternary Blends. Polymer-Plastics Technology and Engineering, 2013, 52, 1295-1302.	1.9	18
194	Rheologyâ€morphology correlation in <scp>PET/PP</scp> blends: Influence of type of compatibilizer. Journal of Vinyl and Additive Technology, 2013, 19, 25-30.	3.4	29
195	SEBS-g-MAH as a Reactive Compatibilizer Precursor for PP/PTT/SEBS Ternary Blends: Morphology and Mechanical Properties. Polymer-Plastics Technology and Engineering, 2013, 52, 206-212.	1.9	27
196	Taguchiâ€based analysis of polyamide 6/acrylonitrile–butadiene rubber/nanoclay nanocomposites: The role of processing variables. Journal of Applied Polymer Science, 2013, 130, 820-828.	2.6	23
197	Cure Kinetics of Epoxy Nanocomposites Affected by MWCNTs Functionalization: A Review. Scientific World Journal, The, 2013, 2013, 1-14.	2.1	66
198	Morphology Prediction in HDPE/PAâ€6/EVOH Ternary Blends: Defining the Role of Elasticity Ratio. Macromolecular Chemistry and Physics, 2012, 213, 1791-1802.	2.2	26

#	Article	IF	CITATIONS
199	Improved Flame Retardancy in Polyurethanes Using Layered Double Hydroxides. ACS Symposium Series, 0, , 137-160.	0.5	0