
Roy L Silverstein

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1369904/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	CD36, a signaling receptor and fatty acid transporter that regulates immune cell metabolism and fate. Journal of Experimental Medicine, 2022, 219, .	8.5	105
2	Targeting PIM1-Mediated Metabolism in Myeloid Suppressor Cells to Treat Cancer. Cancer Immunology Research, 2021, 9, 454-469.	3.4	23
3	Development of an arteriolar niche and self-renewal of breast cancer stem cells by lysophosphatidic acid/protein kinase D signaling. Communications Biology, 2021, 4, 780.	4.4	11
4	Details of developing and implementing an intensive interdisciplinary care program for high need, high cost patients. Healthcare, 2021, 9, 100452.	1.3	1
5	AMPK-deficiency forces metformin-challenged cancer cells to switch from carbohydrate metabolism to ketogenesis to support energy metabolism. Oncogene, 2021, 40, 5455-5467.	5.9	13
6	Hypertriglyceridemia during hospitalization independently associates with mortality in patients with COVID-19. Journal of Clinical Lipidology, 2021, 15, 724-731.	1.5	14
7	The Correlation between Racial/Ethnic Groups, Thrombosis, and Mortality in Hospitalized Patients with COVID-19. Blood, 2021, 138, 3224-3224.	1.4	1
8	High Plasma Apolipoprotein(a) Concentration and Low Plasmin Tpa Enzymatic Activity in Hospitalized Patients with COVID-19. Blood, 2021, 138, 2095-2095.	1.4	1
9	Cysteine sulfenylation by CD36 signaling promotes arterial thrombosis in dyslipidemia. Blood Advances, 2020, 4, 4494-4507.	5.2	20
10	Oxidant-Induced Alterations in the Adipocyte Transcriptome: Role of the Na,K-ATPase Oxidant Amplification Loop. International Journal of Molecular Sciences, 2020, 21, 5923.	4.1	7
11	CD36-mediated metabolic adaptation supports regulatory T cell survival and function in tumors. Nature Immunology, 2020, 21, 298-308.	14.5	326
12	Mitochondrial Metabolic Reprogramming by CD36 Signaling Drives Macrophage Inflammatory Responses. Circulation Research, 2019, 125, 1087-1102.	4.5	114
13	CD36 signaling in vascular redox stress. Free Radical Biology and Medicine, 2019, 136, 159-171.	2.9	39
14	CD36 and ERK5 link dyslipidemia to apoptotic-like platelet procoagulant function. Current Opinion in Hematology, 2019, 26, 357-365.	2.5	11
15	CD36 Enhances Vascular Smooth Muscle Cell Proliferation and Development of Neointimal Hyperplasia. Arteriosclerosis, Thrombosis, and Vascular Biology, 2019, 39, 263-275.	2.4	35
16	In the Interest of Transparency. , 2019, 16, .		3
17	Celebrating Our Strengths in 2019. , 2019, 16, .		0

18 Strength in Numbers: How ASH Plans for the Future. , 2019, 16, .

0

#	Article	lF	CITATIONS
19	Global Thoughts Become Global Actions. , 2019, 16, .		Ο
20	Striking an Unwavering Balance. , 2019, 16, .		0
21	Teachers and Preachers of Quality Improvement. , 2019, 16, .		Ο
22	Oxidized Lipid Uptake by Scavenger Receptor CD36 (Cluster of Differentiation 36) Modulates Endothelial Surface Properties and May Contribute to Atherogenesis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38, 4-5.	2.4	6
23	Platelet CD36 signaling through ERK5 promotes caspase-dependent procoagulant activity and fibrin deposition in vivo. Blood Advances, 2018, 2, 2848-2861.	5.2	44
24	Cardiotonic Steroids Stimulate Macrophage Inflammatory Responses Through a Pathway Involving CD36, TLR4, and Na/K-ATPase. Arteriosclerosis, Thrombosis, and Vascular Biology, 2017, 37, 1462-1469.	2.4	23
25	Platelet CD36 promotes thrombosis by activating redox sensor ERK5 in hyperlipidemic conditions. Blood, 2017, 129, 2917-2927.	1.4	64
26	Diet-induced obesity links to ER positive breast cancer progression via LPA/PKD-1-CD36 signaling-mediated microvascular remodeling. Oncotarget, 2017, 8, 22550-22562.	1.8	29
27	LPA/PKD-1-FoxO1 Signaling Axis Mediates Endothelial Cell CD36 Transcriptional Repression and Proangiogenic and Proarteriogenic Reprogramming. Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36, 1197-1208.	2.4	41
28	CD36 Provides Host Protection Against <i>Klebsiella pneumoniae</i> Intrapulmonary Infection by Enhancing Lipopolysaccharide Responsiveness and Macrophage Phagocytosis. Journal of Infectious Diseases, 2016, 214, 1865-1875.	4.0	28
29	Extracellular Vesicles Activate a CD36-Dependent Signaling Pathway to Inhibit Microvascular Endothelial Cell Migration and Tube Formation. Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36, 534-544.	2.4	48
30	Disabling the platelet's brakes to promote thrombosis. Blood, 2015, 125, 2591-2593.	1.4	4
31	Acrolein Impairs the Cholesterol Transport Functions of High Density Lipoproteins. PLoS ONE, 2015, 10, e0123138.	2.5	33
32	The interface of inflammation and subclinical atherosclerosis in granulomatosis with polyangiitis (Wegener's): a preliminary study. Translational Research, 2015, 166, 366-374.	5.0	14
33	Atherothrombosis. Circulation, 2015, 132, 1860-1862.	1.6	5
34	Hyper-Inflammation and Skin Destruction Mediated by Rosiglitazone Activation of Macrophages in IL-6 Deficiency. Journal of Investigative Dermatology, 2015, 135, 389-399.	0.7	12
35	Oxidized LDL–bound CD36 recruits an Na ⁺ /K ⁺ -ATPase–Lyn complex in macrophages that promotes atherosclerosis. Science Signaling, 2015, 8, ra91.	3.6	73
36	Platelet CD36 Induces ERK5 Activation through a Redox-Regulated Signaling Pathway to Promote a Prothrombotic Phenotype. Blood, 2015, 126, 1033-1033.	1.4	23

ROY L SILVERSTEIN

#	Article	IF	CITATIONS
37	Thymidine Phosphorylase Participates in Platelet Signaling and Promotes Thrombosis. Circulation Research, 2014, 115, 997-1006.	4.5	37
38	Cancer Stem Cell-Specific Scavenger Receptor CD36 Drives Glioblastoma Progression. Stem Cells, 2014, 32, 1746-1758.	3.2	182
39	Platelet-derived S100 family member myeloid-related protein-14 regulates thrombosis. Journal of Clinical Investigation, 2014, 124, 2160-2171.	8.2	112
40	Ferric chloride-induced murine carotid arterial injury: A model of redox pathology. Redox Biology, 2013, 1, 50-55.	9.0	76
41	Thrombospondin-1 modulates VECF signaling via CD36 by recruiting SHP-1 to VEGFR2 complex in microvascular endothelial cells. Blood, 2013, 122, 1822-1832.	1.4	124
42	Lipopolysaccharide Stimulates Platelets through an IL-1β Autocrine Loop. Journal of Immunology, 2013, 191, 5196-5203.	0.8	103
43	Molecular Basis of Antiangiogenic Thrombospondin-1 Type 1 Repeat Domain Interactions With CD36. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, 1655-1662.	2.4	41
44	CD36 and Na/K-ATPase-α1 Form a Proinflammatory Signaling Loop in Kidney. Hypertension, 2013, 61, 216-224.	2.7	84
45	Oxidized LDL/CD36 interaction induces loss of cell polarity and inhibits macrophage locomotion. Molecular Biology of the Cell, 2012, 23, 3057-3068.	2.1	58
46	Advanced glycation end products induce a prothrombotic phenotype in mice via interaction with platelet CD36. Blood, 2012, 119, 6136-6144.	1.4	92
47	Teaching an old dog new tricks: potential antiatherothrombotic use for statins. Journal of Clinical Investigation, 2012, 122, 478-481.	8.2	2
48	Lysophosphatidic acid suppresses endothelial cell CD36 expression and promotes angiogenesis via a PKD-1–dependent signaling pathway. Blood, 2011, 117, 6036-6045.	1.4	46
49	Platelet CD36 surface expression levels affect functional responses to oxidized LDL and are associated with inheritance of specific genetic polymorphisms. Blood, 2011, 117, 6355-6366.	1.4	90
50	Vav guanine nucleotide exchange factors link hyperlipidemia and a prothrombotic state. Blood, 2011, 117, 5744-5750.	1.4	60
51	A CD36-dependent pathway enhances macrophage and adipose tissue inflammation and impairs insulin signalling. Cardiovascular Research, 2011, 89, 604-613.	3.8	158
52	Vav Protein Guanine Nucleotide Exchange Factor Regulates CD36 Protein-mediated Macrophage Foam Cell Formation via Calcium and Dynamin-dependent Processes. Journal of Biological Chemistry, 2011, 286, 36011-36019.	3.4	36
53	CD9 Tetraspanin Interacts with CD36 on the Surface of Macrophages: A Possible Regulatory Influence on Uptake of Oxidized Low Density Lipoprotein. PLoS ONE, 2011, 6, e29092.	2.5	43

Is Anybody in Washington Listening?. , 2011, 8, .

ROY L SILVERSTEIN

#	Article	IF	CITATIONS
55	Activation of Vascular Cells by Microparticles and Other Danger Signals Via the CD36 Scavenger Receptor. Blood, 2011, 118, SCI-12-SCI-12.	1.4	0
56	CD36 participates in a signaling pathway that regulates ROS formation in murine VSMCs. Journal of Clinical Investigation, 2010, 120, 3996-4006.	8.2	116
57	Mechanisms of cell signaling by the scavenger receptor CD36: implications in atherosclerosis and thrombosis. Transactions of the American Clinical and Climatological Association, 2010, 121, 206-20.	0.5	126
58	Inflammation, atherosclerosis, and arterial thrombosis: Role of the scavenger receptor CD36. Cleveland Clinic Journal of Medicine, 2009, 76, S27-S30.	1.3	98
59	CD36, a Scavenger Receptor Involved in Immunity, Metabolism, Angiogenesis, and Behavior. Science Signaling, 2009, 2, re3.	3.6	862
60	Type 2 scavenger receptor CD36 in platelet activation: the role of hyperlipemia and oxidative stress. Clinical Lipidology, 2009, 4, 767-779.	0.4	31
61	CD36 modulates migration of mouse and human macrophages in response to oxidized LDL and may contribute to macrophage trapping in the arterial intima. Journal of Clinical Investigation, 2009, 119, 136-45.	8.2	284
62	Revised PhRMA Code Goes into Effect: Sunshine or More of the Same?. , 2009, 6, .		0
63	CD36 Mediates a Proâ€inflammatory Signaling Loop in Fat and Contributes to Insulin Resistance. FASEB Journal, 2009, 23, 856.8.	0.5	0
64	A Specific CD36-Dependent Signaling Pathway Is Required for Platelet Activation by Oxidized Low-Density Lipoprotein. Circulation Research, 2008, 102, 1512-1519.	4.5	156
65	Platelet CD36 mediates interactions with endothelial cell–derived microparticles and contributes to thrombosis in mice. Journal of Clinical Investigation, 2008, 118, 1934-43.	8.2	134
66	CD36 Modulates Macrophage Spreading and Migration in response to oxidized LDL. FASEB Journal, 2008, 22, 174.11.	0.5	0
67	Physical interaction of CD36 with membrane associated proteins in mouse macrophage. FASEB Journal, 2008, 22, 902.4.	0.5	0
68	Venous thrombosis in the elderly: more questions than answers. Blood, 2007, 110, 3097-3101.	1.4	80
69	Platelet CD36 links hyperlipidemia, oxidant stress and a prothrombotic phenotype. Nature Medicine, 2007, 13, 1086-1095.	30.7	420
70	Bcl-2 Proteins Control Platelet Life Span In Vivo: A Potential Target for New Approaches to Treat Thrombocytopenia. , 2007, 4, .		0
71	Receptors, Not Clots: Coagulation and Fibrinolytic Enzymes Modulate Stroke Outcome by Targeting Endothelial Cells, Not Cerebral Thrombi. , 2007, 4, .		0
72	When Three Months May Not Be Enough - Evidence That a Subgroup of Patients With Venous Thrombosis Identified by Bio-marker Assay Benefits From Long-Term Oral Anticoagulation. , 2007, 4, .		0

#	Article	IF	CITATIONS
73	Another Piece in the Antiphospholipid Antibody Syndrome Puzzle. , 2007, 4, .		0
74	Flossing May Prevent Plaque (of a Different Sort)!. , 2007, 4, .		0
75	Fetal and Maternal Thrombophilia Genes Cooperate to Influence Pregnancy Outcomes. , 2007, 4, .		1
76	A CD36-dependent signaling cascade is necessary for macrophage foam cell formation. Cell Metabolism, 2006, 4, 211-221.	16.2	425
77	Oxidized phosphatidylserine–CD36 interactions play an essential role in macrophage-dependent phagocytosis of apoptotic cells. Journal of Experimental Medicine, 2006, 203, 2613-2625.	8.5	381
78	Venous Thrombosis Makes News in Washington. , 2006, 3, .		0
79	Coordination of the Systemic Inflammatory Response by Brain-Spleen Communication. , 2006, 3, .		0
80	Blood Platelets: Nature's Own Targeted Therapeutic Delivery System. , 2006, 3, .		0
81	Angiogenesis and Inflammation Cross Paths at the Blood Vessel Wall. , 2006, 3, .		0
82	Absence of CD36 is Protective at Late Time Points in the apoE Knockout (KO), and Additional Absence of Scavenger Receptor A I/II (SRA) Provides no Added Benefit. FASEB Journal, 2006, 20, LB1.	0.5	0
83	CD36-Mediated Nonopsonic Phagocytosis of Erythrocytes Infected with Stage I and IIA Gametocytes of Plasmodium falciparum. Infection and Immunity, 2003, 71, 393-400.	2.2	61
84	CD36 A critical anti angiogenic receptor. Frontiers in Bioscience - Landmark, 2003, 8, s874-882.	3.0	71
85	The face of TSR revealed. Journal of Cell Biology, 2002, 159, 203-206.	5.2	33
86	Structural and functional characterization of the mouse fatty acid translocase promoter: activation during adipose differentiation. Biochemical Journal, 2001, 360, 305-312.	3.7	72
87	Differential Roles of CD36 and αvβ5 Integrin in Photoreceptor Phagocytosis by the Retinal Pigment Epithelium. Journal of Experimental Medicine, 2001, 194, 1289-1298.	8.5	138
88	Signals leading to apoptosis-dependent inhibition of neovascularization by thrombospondin-1. Nature Medicine, 2000, 6, 41-48.	30.7	931
89	A CD36 Synthetic Peptide Inhibits Bleomycin-Induced Pulmonary Inflammation and Connective Tissue Synthesis in the Rat. American Journal of Respiratory Cell and Molecular Biology, 2000, 23, 204-212.	2.9	73
90	Defective Uptake and Utilization of Long Chain Fatty Acids in Muscle and Adipose Tissues of CD36 Knockout Mice. Journal of Biological Chemistry, 2000, 275, 32523-32529.	3.4	586

ROY L SILVERSTEIN

#	Article	IF	CITATIONS
91	CD36 in Atherosclerosis: The Role of a Class B Macrophage Scavenger Receptor. Annals of the New York Academy of Sciences, 2000, 902, 128-133.	3.8	70
92	Induction of CD36 expression by oxidized LDL and IL-4 by a common signaling pathway dependent on protein kinase C and PPAR-γ. Journal of Lipid Research, 2000, 41, 688-696.	4.2	221
93	Macrophage scavenger receptor CD36 is the major receptor for LDL modified by monocyte-generated reactive nitrogen species. Journal of Clinical Investigation, 2000, 105, 1095-1108.	8.2	371
94	Targeted disruption of the class B scavenger receptor CD36 protects against atherosclerotic lesion development in mice. Journal of Clinical Investigation, 2000, 105, 1049-1056.	8.2	861
95	A Null Mutation in Murine CD36 Reveals an Important Role in Fatty Acid and Lipoprotein Metabolism. Journal of Biological Chemistry, 1999, 274, 19055-19062.	3.4	680
96	Activation of Rat Alveolar Macrophage-Derived Latent Transforming Growth Factor β-1 by Plasmin Requires Interaction with Thrombospondin-1 and its Cell Surface Receptor, CD36. American Journal of Pathology, 1999, 155, 841-851.	3.8	166
97	CD36 mediates binding of soluble thrombospondin-1 but not cell adhesion and haptotaxis on immobilized thrombospondin-1. Cell Biochemistry and Function, 1998, 16, 211-221.	2.9	17
98	Cell Adhesion Molecules: An Overview. Cancer Investigation, 1998, 16, 176-182.	1.3	50
99	Immature Dendritic Cells Phagocytose Apoptotic Cells via αvβ5 and CD36, and Cross-present Antigens to Cytotoxic T Lymphocytes. Journal of Experimental Medicine, 1998, 188, 1359-1368.	8.5	1,149
100	Engagement of the Lewis X Antigen (CD15) Results in Monocyte Activation. Blood, 1997, 89, 307-314.	1.4	33
101	Anticardiolipin IgG subclasses association of IgG2 with arterial and/or venous thrombosis. Arthritis and Rheumatism, 1997, 40, 1998-2006.	6.7	95
102	Regulation of Monocyte CD36 and Thrombospondin-1 Expression by Soluble Mediators. Arteriosclerosis, Thrombosis, and Vascular Biology, 1996, 16, 1019-1025.	2.4	139
103	Recombinant GST/CD36 Fusion Proteins Define a Thrombospondin Binding Domain. Journal of Biological Chemistry, 1995, 270, 2981-2986.	3.4	82
104	Oxidized LDL Binds to CD36 on Human Monocyte-Derived Macrophages and Transfected Cell Lines. Arteriosclerosis, Thrombosis, and Vascular Biology, 1995, 15, 269-275.	2.4	210