Aurelie Hua-Van

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1369585/publications.pdf

Version: 2024-02-01

40 papers

5,418 citations

279798 23 h-index 276875 41 g-index

42 all docs 42 docs citations

42 times ranked 7659 citing authors

#	Article	IF	CITATIONS
1	A unified classification system for eukaryotic transposable elements. Nature Reviews Genetics, 2007, 8, 973-982.	16.3	2,396
2	Comparative genomics reveals mobile pathogenicity chromosomes in Fusarium. Nature, 2010, 464, 367-373.	27.8	1,442
3	The struggle for life of the genome's selfish architects. Biology Direct, 2011, 6, 19.	4.6	198
4	Abundance, distribution and dynamics of retrotransposable elements and transposons: similarities and differences. Cytogenetic and Genome Research, 2005, 110, 426-440.	1.1	106
5	Fossil Rhabdoviral Sequences Integrated into Arthropod Genomes: Ontogeny, Evolution, and Potential Functionality. Molecular Biology and Evolution, 2012, 29, 381-390.	8.9	100
6	A call for benchmarking transposable element annotation methods. Mobile DNA, 2015, 6, 13.	3.6	83
7	Genome organization in Fusarium oxysporum: clusters of class II transposons. Current Genetics, 2000, 37, 339-347.	1.7	78
8	Comparative genomic analysis of six Glossina genomes, vectors of African trypanosomes. Genome Biology, 2019, 20, 187.	8.8	71
9	VHICA, a New Method to Discriminate between Vertical and Horizontal Transposon Transfer: Application to the <i>Mariner</i> Family within <i>Drosophila</i> . Molecular Biology and Evolution, 2016, 33, 1094-1109.	8.9	62
10	Recurrent Domestication by Lepidoptera of Genes from Their Parasites Mediated by Bracoviruses. PLoS Genetics, 2015, 11, e1005470.	3.5	60
11	Germ line transformation of the yellow fever mosquito, Aedes aegypti, mediated by transpositional insertion of a piggyBac vector. Insect Molecular Biology, 2002, 11, 133-139.	2.0	58
12	Transposon impala, a Novel Tool for Gene Tagging in the Rice Blast Fungus Magnaporthe grisea. Molecular Plant-Microbe Interactions, 2001, 14, 308-315.	2.6	53
13	Three highly divergent subfamilies of the impala transposable element coexist in the genome of the fungus Fusarium oxysporum. Molecular Genetics and Genomics, 1998, 259, 354-362.	2.4	51
14	Gene make-up: rapid and massive intron gains after horizontal transfer of a bacterial α-amylase gene to Basidiomycetes. BMC Evolutionary Biology, 2013, 13, 40.	3.2	49
15	Transposition of a Fungal Miniature Inverted-Repeat Transposable Element Through the Action of a Tc1-Like Transposase. Genetics, 2007, 175, 441-452.	2.9	47
16	Reply: A unified classification system for eukaryotic transposable elements should reflect their phylogeny. Nature Reviews Genetics, 2009, 10, 276-276.	16.3	41
17	Evolutionary History of the impala Transposon in Fusarium oxysporum. Molecular Biology and Evolution, 2001, 18, 1959-1969.	8.9	37
18	Transposition of autonomous and engineered impala transposons in Fusarium oxysporum and a related species. Molecular Genetics and Genomics, 2001, 264, 724-731.	2.4	36

#	Article	IF	CITATIONS
19	Automatic classification within families of transposable elements: Application to the mariner Family. Gene, 2009, 448, 227-232.	2.2	31
20	Genomic landscape and evolutionary dynamics of mariner transposable elements within the Drosophila genus. BMC Genomics, 2014, 15, 727.	2.8	31
21	Symbiont-Driven Male Mating Success in the Neotropical Drosophila paulistorum Superspecies. Behavior Genetics, 2019, 49, 83-98.	2.1	31
22	Experimental evolution reveals hyperparasitic interactions among transposable elements. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 14763-14768.	7.1	30
23	Reconstructing the Evolutionary History of Transposable Elements. Genome Biology and Evolution, 2013, 5, 77-86.	2.5	27
24	Chromosomal scale assembly of parasitic wasp genome reveals symbiotic virus colonization. Communications Biology, 2021, 4, 104.	4.4	27
25	Analysis of the DDE Motif in the Mutator Superfamily. Journal of Molecular Evolution, 2008, 67, 670-681.	1.8	26
26	Aberrant transposition of a Tc1-mariner element, impala, in the fungus Fusarium oxysporum. Molecular Genetics and Genomics, 2002, 267, 79-87.	2.1	24
27	Mariner transposons are sailing in the genome of the blood-sucking bug Rhodnius prolixus. BMC Genomics, 2015, 16, 1061.	2.8	23
28	Allelic diversification after transposable element exaptation promoted <i>gsdf </i> as the master sex determining gene of sablefish. Genome Research, 2021, 31, 1366-1380.	5.5	23
29	Molecular evolution of piggyBac superfamily: from selfishness to domestication. Genome Biology and Evolution, 2017, 9, evw292.	2.5	21
30	Mobility of the piggyBac transposon in embryos of the vectors of Dengue fever (Aedes albopictus) and La Crosse encephalitis (Ae. triseriatus). Molecular Genetics and Genomics, 2001, 265, 66-71.	2.1	20
31	Genome-Wide Comparative Analysis of pogo-Like Transposable Elements in Different Fusarium Species. Journal of Molecular Evolution, 2011, 73, 230-243.	1.8	20
32	piRNA and Transposon Dynamics in Drosophila: A Female Story. Genome Biology and Evolution, 2020, 12, 931-947.	2.5	20
33	The mariner transposable element in natural populations of Drosophila simulans. Heredity, 2008, 101, 53-59.	2.6	19
34	Improving prokaryotic transposable elements identification using a combination of de novo and profile HMM methods. BMC Genomics, 2013, 14, 700.	2.8	19
35	Amplification of the 1731 LTR retrotransposon in Drosophila melanogaster cultured cells: Origin of neocopies and impact on the genome. Gene, 2007, 393, 116-126.	2.2	16
36	Transcriptional polymorphism of <i>pi</i> <scp>RNA</scp> regulatory genes underlies the <i>mariner</i> activity in <i>Drosophila simulans</i> testes. Molecular Ecology, 2017, 26, 3715-3731.	3.9	10

#	Article	IF	CITATIONS
37	The somatic mobilization of transposable element mariner-Mos1 during the Drosophila lifespan and its biological consequences. Gene, 2018, 679, 65-72.	2.2	10
38	The evolutionary history of mariner-like elements in Neotropical drosophilids. Genetica, 2011, 139, 327-338.	1.1	8
39	A universal classification of eukaryotic transposable elements implemented in Repbase. Nature Reviews Genetics, 2008, 9, 414-414.	16. 3	5

Integrative taxonomy and a new species description in the sturtevanti subgroup of the Drosophila saltans group (Diptera:) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 6157 Td (Drosophilidae)