
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1369096/publications.pdf Version: 2024-02-01



Цена Сосмами

| #  | Article                                                                                                                                                                         | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Reading Acquisition, Developmental Dyslexia, and Skilled Reading Across Languages: A Psycholinguistic<br>Grain Size Theory Psychological Bulletin, 2005, 131, 3-29.             | 6.1  | 2,104     |
| 2  | A temporal sampling framework for developmental dyslexia. Trends in Cognitive Sciences, 2011, 15, 3-10.                                                                         | 7.8  | 646       |
| 3  | Neuroscience and education: from research to practice?. Nature Reviews Neuroscience, 2006, 7, 406-413.                                                                          | 10.2 | 441       |
| 4  | The mental wealth of nations. Nature, 2008, 455, 1057-1060.                                                                                                                     | 27.8 | 425       |
| 5  | Amplitude envelope onsets and developmental dyslexia: A new hypothesis. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 10911-10916. | 7.1  | 423       |
| 6  | The influence of orthographic consistency on reading development: word recognition in English and German children. Cognition, 1994, 51, 91-103.                                 | 2.2  | 376       |
| 7  | Sensory theories of developmental dyslexia: three challenges for research. Nature Reviews<br>Neuroscience, 2015, 16, 43-54.                                                     | 10.2 | 361       |
| 8  | Phonological Awareness Deficits in Developmental Dyslexia and the Phonological Representations<br>Hypothesis. Journal of Experimental Child Psychology, 1997, 66, 18-41.        | 1.4  | 321       |
| 9  | Children's use of analogy in learning to read: A developmental study. Journal of Experimental Child<br>Psychology, 1986, 42, 73-83.                                             | 1.4  | 299       |
| 10 | Music, rhythm, rise time perception and developmental dyslexia: Perception of musical meter predicts reading and phonology. Cortex, 2011, 47, 674-689.                          | 2.4  | 276       |
| 11 | Becoming literate in different languages: similar problems, different solutions. Developmental<br>Science, 2006, 9, 429-436.                                                    | 2.4  | 261       |
| 12 | Children's orthographic representations and linguistic transparency: Nonsense word reading in English, French, and Spanish. Applied Psycholinguistics, 1998, 19, 19-52.         | 1.1  | 250       |
| 13 | Neuroscience and education. British Journal of Educational Psychology, 2004, 74, 1-14.                                                                                          | 2.9  | 223       |
| 14 | Phonological representations, reading development and dyslexia: towards a cross-linguistic theoretical framework. Dyslexia, 2000, 6, 133-151.                                   | 1.5  | 214       |
| 15 | Rhythmic motor entrainment in children with speech and language impairments: Tapping to the beat.<br>Cortex, 2009, 45, 119-130.                                                 | 2.4  | 212       |
| 16 | Rhythmic processing in children with developmental dyslexia: Auditory and motor rhythms link to reading and spelling. Journal of Physiology (Paris), 2008, 102, 120-129.        | 2.1  | 206       |
| 17 | Picture Naming Deficits in Developmental Dyslexia: The Phonological Representations Hypothesis.<br>Brain and Language, 1997, 56, 334-353.                                       | 1.6  | 203       |
| 18 | Auditory processing skills and phonological representation in Dyslexic children. Dyslexia, 2004, 10, 215-233.                                                                   | 1.5  | 187       |

| #  | Article                                                                                                                                                                                                                     | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Language-universal Sensory Deficits in Developmental Dyslexia: English, Spanish, and Chinese. Journal of Cognitive Neuroscience, 2011, 23, 325-337.                                                                         | 2.3 | 184       |
| 20 | Why theories about developmental dyslexia require developmental designs. Trends in Cognitive Sciences, 2003, 7, 534-540.                                                                                                    | 7.8 | 166       |
| 21 | Basic Auditory Processing Skills and Specific Language Impairment: A New Look at an Old Hypothesis.<br>Journal of Speech, Language, and Hearing Research, 2007, 50, 647-666.                                                | 1.6 | 160       |
| 22 | Phonological Awareness, Vocabulary, and Reading in Deaf Children With Cochlear Implants. Journal of Speech, Language, and Hearing Research, 2010, 53, 237-261.                                                              | 1.6 | 159       |
| 23 | Amplitude envelope perception, phonology and prosodic sensitivity in children with developmental dyslexia. Reading and Writing, 2010, 23, 995-1019.                                                                         | 1.7 | 145       |
| 24 | Strengths and weaknesses of the reading level design: A comment on Backman, Mamen, and Ferguson<br>Psychological Bulletin, 1986, 100, 101-103.                                                                              | 6.1 | 142       |
| 25 | Pseudohomophone Effects and Phonological Recoding Procedures in Reading Development in English and German. Journal of Memory and Language, 2001, 45, 648-664.                                                               | 2.1 | 141       |
| 26 | Nonword reading across orthographies: How flexible is the choice of reading units?. Applied Psycholinguistics, 2003, 24, 235-247.                                                                                           | 1.1 | 134       |
| 27 | Reduced phase locking to slow amplitude modulation in adults with dyslexia: An MEG study.<br>NeuroImage, 2012, 59, 2952-2961.                                                                                               | 4.2 | 133       |
| 28 | A Rhythmic Musical Intervention for Poor Readers: A Comparison of Efficacy With a Letterâ€Based<br>Intervention. Mind, Brain, and Education, 2013, 7, 113-123.                                                              | 1.9 | 132       |
| 29 | Auditory and motor rhythm awareness in adults with dyslexia. Journal of Research in Reading, 2006, 29, 334-348.                                                                                                             | 2.0 | 129       |
| 30 | Neural encoding of the speech envelope by children with developmental dyslexia. Brain and Language,<br>2016, 160, 1-10.                                                                                                     | 1.6 | 128       |
| 31 | The effects of spelling consistency on phonological awareness: A comparison of English and German.<br>Journal of Experimental Child Psychology, 2005, 92, 345-365.                                                          | 1.4 | 116       |
| 32 | Auditory processing interventions and developmental dyslexia: a comparison of phonemic and rhythmic approaches. Reading and Writing, 2013, 26, 139-161.                                                                     | 1.7 | 115       |
| 33 | Assessing the Effectiveness of Two Theoretically Motivated Computerâ€Assisted Reading Interventions<br>in the United Kingdom: <scp>GG</scp> Rime and <scp>GG</scp> Phoneme. Reading Research Quarterly,<br>2013, 48, 61-76. | 3.3 | 112       |
| 34 | Atypical cortical entrainment to speech in the right hemisphere underpins phonemic deficits in dyslexia. NeuroImage, 2018, 175, 70-79.                                                                                      | 4.2 | 112       |
| 35 | Rise time and formant transition duration in the discrimination of speech sounds: the Ba-Wa distinction in developmental dyslexia. Developmental Science, 2011, 14, 34-43.                                                  | 2.4 | 110       |
| 36 | Perception of patterns of musical beat distribution in phonological developmental dyslexia:<br>Significant longitudinal relations with word reading and reading comprehension. Cortex, 2013, 49,<br>1363-1376.              | 2.4 | 110       |

| #  | Article                                                                                                                                                                                   | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | The principles and practices of educational neuroscience: Comment on Bowers (2016) Psychological Review, 2016, 123, 620-627.                                                              | 3.8 | 110       |
| 38 | The Future of Educational Neuroscience. Mind, Brain, and Education, 2010, 4, 68-80.                                                                                                       | 1.9 | 107       |
| 39 | Deficits in beat perception and dyslexia: evidence from French. NeuroReport, 2004, 15, 1255-1259.                                                                                         | 1.2 | 106       |
| 40 | Synthetic phonics and the teaching of reading. British Educational Research Journal, 2008, 34, 691-710.                                                                                   | 2.5 | 100       |
| 41 | Impaired perception of syllable stress in children with dyslexia: A longitudinal study. Journal of<br>Memory and Language, 2013, 69, 1-17.                                                | 2.1 | 98        |
| 42 | A Special Link between Rhyming Skill and the Use of Orthographic Analogies by Beginning Readers.<br>Journal of Child Psychology and Psychiatry and Allied Disciplines, 1990, 31, 301-311. | 5.2 | 96        |
| 43 | Educational Neuroscience: Defining a New Discipline for the Study of Mental Representations. Mind,<br>Brain, and Education, 2007, 1, 114-127.                                             | 1.9 | 95        |
| 44 | Gender differences in developmental dyscalculia depend onÂdiagnostic criteria. Learning and<br>Instruction, 2013, 27, 31-39.                                                              | 3.2 | 95        |
| 45 | Similarity relations among spoken words: The special status of rimes in English. Behavior Research<br>Methods, 2002, 34, 416-423.                                                         | 1.3 | 94        |
| 46 | Children's orthographic representations in English and Greek. European Journal of Psychology of<br>Education, 1997, 12, 273-292.                                                          | 2.6 | 91        |
| 47 | Neural entrainment to rhythmic speech in children with developmental dyslexia. Frontiers in Human<br>Neuroscience, 2013, 7, 777.                                                          | 2.0 | 91        |
| 48 | Imitation as a Mechanism of Social Cognition: Origins of Empathy, Theory of Mind, and the Representation of Action. , 0, , 6-25.                                                          |     | 90        |
| 49 | Rise time perception and detection of syllable stress in adults with developmental dyslexia. Journal of<br>Memory and Language, 2011, 64, 59-73.                                          | 2.1 | 87        |
| 50 | Acoustic-Emergent Phonology in the Amplitude Envelope of Child-Directed Speech. PLoS ONE, 2015, 10, e0144411.                                                                             | 2.5 | 86        |
| 51 | Enhanced activation of the left inferior frontal gyrus in deaf and dyslexic adults during rhyming.<br>Brain, 2009, 132, 1928-1940.                                                        | 7.6 | 85        |
| 52 | Phonological neighbourhood density: effects in a rhyme awareness task in five-year-old children.<br>Journal of Child Language, 2003, 30, 695-710.                                         | 1.2 | 83        |
| 53 | Assessment of rhythmic entrainment at multiple timescales inÂdyslexia: Evidence for disruption to<br>syllable timing. Hearing Research, 2014, 308, 141-161.                               | 2.0 | 75        |
| 54 | Mothers speak differently to infants atâ€risk for dyslexia. Developmental Science, 2018, 21, e12487.                                                                                      | 2.4 | 73        |

| #  | Article                                                                                                                                                             | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Neuroscience and Reading: A Review for Reading Education Researchers. Reading Research Quarterly, 2011, 46, 156-172.                                                | 3.3 | 72        |
| 56 | Speech rhythm and temporal structure: Converging perspectives?. Laboratory Phonology, 2013, 4, .                                                                    | 0.6 | 72        |
| 57 | The Temporal Modulation Structure of Infant-Directed Speech. Open Mind, 2017, 1, 78-90.                                                                             | 1.7 | 70        |
| 58 | Dyslexia and Specific Language Impairment: The Role of Phonology and Auditory Processing. Scientific<br>Studies of Reading, 2010, 14, 8-29.                         | 2.0 | 68        |
| 59 | Speech rhythm and language acquisition: an amplitude modulation phase hierarchy perspective. Annals of the New York Academy of Sciences, 2019, 1453, 67-78.         | 3.8 | 68        |
| 60 | Sensitivity to rhythmic parameters in dyslexic children: a comparison of Hungarian and English.<br>Reading and Writing, 2009, 22, 41-56.                            | 1.7 | 66        |
| 61 | Auditory Processing and Early Literacy Skills in a Preschool and Kindergarten Population. Journal of<br>Learning Disabilities, 2010, 43, 369-382.                   | 2.2 | 65        |
| 62 | Awareness of Rhythm Patterns in Speech and Music in Children with Specific Language Impairments.<br>Frontiers in Human Neuroscience, 2015, 9, 672.                  | 2.0 | 64        |
| 63 | Auditory Processing of Amplitude Envelope Rise Time in Adults Diagnosed With Developmental<br>Dyslexia. Scientific Studies of Reading, 2007, 11, 259-286.           | 2.0 | 62        |
| 64 | Principles of Learning, Implications for Teaching: A Cognitive Neuroscience Perspective. Journal of<br>Philosophy of Education, 2008, 42, 381-399.                  | 0.8 | 62        |
| 65 | Phonological Awareness in Deaf Children Who Use Cochlear Implants. Journal of Speech, Language, and Hearing Research, 2005, 48, 1511-1528.                          | 1.6 | 61        |
| 66 | Atypical right hemisphere response to slow temporal modulations in children with developmental dyslexia. Neurolmage, 2016, 143, 40-49.                              | 4.2 | 60        |
| 67 | Neural Entrainment to Rhythmically Presented Auditory, Visual, and Audio-Visual Speech in Children.<br>Frontiers in Psychology, 2012, 3, 216.                       | 2.1 | 59        |
| 68 | Neural Entrainment and Sensorimotor Synchronization to the Beat in Children with Developmental<br>Dyslexia: An EEG Study. Frontiers in Neuroscience, 2017, 11, 360. | 2.8 | 59        |
| 69 | Differential Entrainment of Neuroelectric Delta Oscillations in Developmental Dyslexia. PLoS ONE, 2013, 8, e76608.                                                  | 2.5 | 57        |
| 70 | A Neural Basis for Phonological Awareness? An Oscillatory Temporal-Sampling Perspective. Current<br>Directions in Psychological Science, 2018, 27, 56-63.           | 5.3 | 55        |
| 71 | Delta- and theta-band cortical tracking and phase-amplitude coupling to sung speech by infants.<br>NeuroImage, 2022, 247, 118698.                                   | 4.2 | 53        |
| 72 | Phonological similarity neighborhoods and children's short-term memory: Typical development and dyslexia. Memory and Cognition, 2005, 33, 1210-1219.                | 1.6 | 50        |

| #  | Article                                                                                                                                                                                             | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Auditory sensory deficits in developmental dyslexia: A longitudinal ERP study. NeuroImage, 2011, 57, 723-732.                                                                                       | 4.2 | 50        |
| 74 | Impaired extraction of speech rhythm from temporal modulation patterns in speech in developmental<br>dyslexia. Frontiers in Human Neuroscience, 2014, 8, 96.                                        | 2.0 | 48        |
| 75 | A developmental perspective on the neural code for written words. Trends in Cognitive Sciences, 2006, 10, 142-143.                                                                                  | 7.8 | 45        |
| 76 | Auditory Processing in Specific Language Impairment (SLI): Relations With the Perception of Lexical and Phrasal Stress. Journal of Speech, Language, and Hearing Research, 2015, 58, 1292-1305.     | 1.6 | 45        |
| 77 | Mind, Brain, and Literacy: Biomarkers as Usable Knowledge for Education. Mind, Brain, and Education, 2009, 3, 176-184.                                                                              | 1.9 | 44        |
| 78 | The Development of Reading across Languages. Annals of the New York Academy of Sciences, 2008, 1145, 1-12.                                                                                          | 3.8 | 43        |
| 79 | Synthetic Phonics and Learning to Read: A Crossâ€language Perspective. Educational Psychology in<br>Practice, 2005, 21, 273-282.                                                                    | 1.0 | 42        |
| 80 | Oscillatory ââ,¬Å"temporal samplingââ,¬Â•and developmental dyslexia: toward an over-arching theoretical<br>framework. Frontiers in Human Neuroscience, 2014, 8, 904.                                | 2.0 | 42        |
| 81 | Basic auditory processing and sensitivity to prosodic structure in children with specific language impairments: a new look at a perceptual hypothesis. Frontiers in Psychology, 2015, 6, 972.       | 2.1 | 42        |
| 82 | Effects of Dialect on American and British Children's Spelling. Child Development, 1997, 68, 229-245.                                                                                               | 3.0 | 38        |
| 83 | A role for amplitude modulation phase relationships in speech rhythm perception. Journal of the<br>Acoustical Society of America, 2014, 136, 366-381.                                               | 1.1 | 38        |
| 84 | Educational neuroscience: Developmental mechanisms: Towards a conceptual framework.<br>NeuroImage, 2011, 57, 651-658.                                                                               | 4.2 | 36        |
| 85 | Neuroscience, education and special education. British Journal of Special Education, 2004, 31, 175-183.                                                                                             | 0.4 | 33        |
| 86 | Developmental trajectories for children with dyslexia and low IQ poor readers Developmental<br>Psychology, 2016, 52, 717-734.                                                                       | 1.6 | 32        |
| 87 | Fluency, phonology and morphology: a response to the commentaries on becoming literate in different languages. Developmental Science, 2006, 9, 451-453.                                             | 2.4 | 31        |
| 88 | Learning novel phonological representations in developmental dyslexia: associations with basic auditory processing of rise time and phonological awareness. Reading and Writing, 2010, 23, 453-473. | 1.7 | 31        |
| 89 | Effects of Dialect on American and British Children's Spelling. Child Development, 1997, 68, 229.                                                                                                   | 3.0 | 29        |
| 90 | Auditory Temporal Processing Skills in Musicians with Dyslexia. Dyslexia, 2014, 20, 261-279.                                                                                                        | 1.5 | 29        |

| #   | Article                                                                                                                                                                                           | IF   | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91  | Basic auditory processing and developmental dyslexia in Chinese. Reading and Writing, 2012, 25, 509-536.                                                                                          | 1.7  | 28        |
| 92  | Orthographic influences, vocabulary development, and phonological awareness in deaf children who<br>use cochlear implants. Applied Psycholinguistics, 2009, 30, 659-684.                          | 1.1  | 27        |
| 93  | A neural oscillations perspective on phonological development and phonological processing in developmental dyslexia. Language and Linguistics Compass, 2019, 13, e12328.                          | 2.3  | 27        |
| 94  | Sensitivity to amplitude envelope rise time in infancy and vocabulary development at 3Âyears: A<br>significant relationship. Developmental Science, 2019, 22, e12836.                             | 2.4  | 26        |
| 95  | The ERP signature of sound rise time changes. Brain Research, 2009, 1254, 74-83.                                                                                                                  | 2.2  | 25        |
| 96  | Perception of Filtered Speech by Children with Developmental Dyslexia and Children with Specific<br>Language Impairments. Frontiers in Psychology, 2016, 7, 791.                                  | 2.1  | 25        |
| 97  | Reading, dyslexia and the brain. Educational Research, 2008, 50, 135-148.                                                                                                                         | 1.8  | 24        |
| 98  | Visual attention span deficits and assessing causality in developmental dyslexia. Nature Reviews<br>Neuroscience, 2015, 16, 225-226.                                                              | 10.2 | 23        |
| 99  | Basic Auditory Processing Skills and Phonological Awareness in Low-IQ Readers and Typically Developing Controls. Scientific Studies of Reading, 2011, 15, 211-243.                                | 2.0  | 21        |
| 100 | Impaired Recognition of Metrical and Syntactic Boundaries in Children with Developmental Language<br>Disorders. Brain Sciences, 2019, 9, 33.                                                      | 2.3  | 19        |
| 101 | Phonological neighbourhood density: effects in a rhyme awareness task in five-year-old children.<br>Journal of Child Language, 2003, 30, 695-710.                                                 | 1.2  | 19        |
| 102 | The neural basis of dyslexia may originate in primary auditory cortex. Brain, 2014, 137, 3100-3102.                                                                                               | 7.6  | 18        |
| 103 | The role of phase synchronisation between low frequency amplitude modulations in child phonology and morphology speech tasks. Journal of the Acoustical Society of America, 2018, 143, 1366-1375. | 1.1  | 18        |
| 104 | Neural sampling of the speech signal at different timescales by children with dyslexia. NeuroImage, 2022, 253, 119077.                                                                            | 4.2  | 17        |
| 105 | Entraining the Brain: Applications to Language Research and Links to Musical Entrainment. Empirical<br>Musicology Review, 2012, 7, 57-63.                                                         | 0.2  | 16        |
| 106 | Cognitive Development and Cognitive Neuroscience. , 0, , .                                                                                                                                        |      | 16        |
| 107 | Sensorimotor impairments in dyslexia: getting the beat. Developmental Science, 2006, 9, 257-259.                                                                                                  | 2.4  | 15        |
| 108 | Delayed development of phonological constancy in toddlers at family risk for dyslexia. , 2019, 57, 101327.                                                                                        |      | 14        |

| #   | Article                                                                                                                                                                                                                    | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | N1, P2 and T-complex of the auditory brain event-related potentials to tones with varying rise times in adults with and without dyslexia. International Journal of Psychophysiology, 2011, 81, 51-59.                      | 1.0 | 13        |
| 110 | Audiovisual perception of noise vocoded speech in dyslexic and non-dyslexic adults: The role of low-frequency visual modulations. Brain and Language, 2013, 124, 165-173.                                                  | 1.6 | 13        |
| 111 | Auditory Sensory Processing and Phonological Development in High IQ and Exceptional Readers,<br>Typically Developing Readers, and Children With Dyslexia: A Longitudinal Study. Child Development,<br>2021, 92, 1083-1098. | 3.0 | 13        |
| 112 | Machine learning accurately classifies neural responses to rhythmic speech vs. non-speech from<br>8-week-old infant EEG. Brain and Language, 2021, 220, 104968.                                                            | 1.6 | 13        |
| 113 | Atypical delta-band phase consistency and atypical preferred phase in children with dyslexia during neural entrainment to rhythmic audio-visual speech. NeuroImage: Clinical, 2022, 35, 103054.                            | 2.7 | 12        |
| 114 | Educational neuroscience: neural structure-mapping and the promise of oscillations. Current Opinion in Behavioral Sciences, 2016, 10, 89-96.                                                                               | 3.9 | 11        |
| 115 | Prosodic Similarity Effects in Shortâ€Term Memory in Developmental Dyslexia. Dyslexia, 2016, 22, 287-304.                                                                                                                  | 1.5 | 11        |
| 116 | A longitudinal study of basic auditory processing and phonological skills in children with low IQ.<br>Applied Psycholinguistics, 2014, 35, 1109-1141.                                                                      | 1.1 | 10        |
| 117 | Novel word learning deficits in infants at family risk for dyslexia. Dyslexia, 2020, 26, 3-17.                                                                                                                             | 1.5 | 9         |
| 118 | Difficulties in auditory organization as a cause of reading backwardness? An auditory neuroscience perspective. Developmental Science, 2017, 20, e12457.                                                                   | 2.4 | 8         |
| 119 | An Evaluation of the Efficacy of GraphoGame Rime for Promoting English Phonics Knowledge in Poor<br>Readers. Frontiers in Education, 2020, 5, .                                                                            | 2.1 | 8         |
| 120 | Rhythm discrimination and metronome tapping in 4-year-old children at risk for developmental dyslexia. Cognitive Development, 2021, 60, 101129.                                                                            | 1.3 | 8         |
| 121 | The temporal modulation structure of illiterate versus literate adult speech. PLoS ONE, 2018, 13, e0205224.                                                                                                                | 2.5 | 7         |
| 122 | Infantâ€directed speech to infants at risk for dyslexia: A novel crossâ€dyad design. Infancy, 2020, 25,<br>286-303.                                                                                                        | 1.6 | 7         |
| 123 | Cortical Tracking of Sung Speech in Adults vs Infants: A Developmental Analysis. Frontiers in Neuroscience, 2022, 16, 842447.                                                                                              | 2.8 | 7         |
| 124 | The brain in the classroom? The state of the art. Developmental Science, 2005, 8, 467-469.                                                                                                                                 | 2.4 | 6         |
| 125 | Toward Realizing the Promise of Educational Neuroscience: Improving Experimental Design in<br>Developmental Cognitive Neuroscience Studies. Annual Review of Developmental Psychology, 2020, 2,<br>133-155.                | 2.9 | 5         |
| 126 | Neurocognitive Predictors of Response to Intervention With GraphoGame Rime. Frontiers in Education, 2021, 6, .                                                                                                             | 2.1 | 5         |

| #   | Article                                                                                                                                                                                        | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | The foundations of psychological understanding. Developmental Science, 2006, 9, 545-550.                                                                                                       | 2.4 | 4         |
| 128 | Analogy and the brain: A new perspective on relational primacy. Behavioral and Brain Sciences, 2008, 31, 387-388.                                                                              | 0.7 | 4         |
| 129 | Beyond format-specificity: Is analogue magnitude really the core abstract feature of the cultural number representation?. Behavioral and Brain Sciences, 2009, 32, 352-353.                    | 0.7 | 3         |
| 130 | Development of binaural temporal fine structure sensitivity in children. Journal of the Acoustical<br>Society of America, 2021, 150, 2967-2976.                                                | 1.1 | 3         |
| 131 | The use of event related potentials in the study of early cognitive development. Infant and Child<br>Development, 2005, 14, 95-98.                                                             | 1.5 | 2         |
| 132 | Correction to: Basic Auditory Processing Skills and Phonological Awareness in Low-IQ Readers and Typically Developing Controls. Scientific Studies of Reading, 2011, 15, 559-559.              | 2.0 | 2         |
| 133 | Universals of reading: Developmental evidence for linguistic plausibility. Behavioral and Brain<br>Sciences, 2012, 35, 287-288.                                                                | 0.7 | 2         |
| 134 | Dyslexia, Developmental. , 2015, , 727-730.                                                                                                                                                    |     | 1         |
| 135 | Neural detection of changes in amplitude rise time in infancy. Developmental Cognitive Neuroscience, 2022, 54, 101075.                                                                         | 4.0 | 1         |
| 136 | The Role of Paired Associate Learning in Acquiring Letter-Sound Correspondences: A Longitudinal<br>Study of Children at Family Risk for Dyslexia. Scientific Studies of Reading, 2020, , 1-15. | 2.0 | 0         |