Mohammad Asim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1368406/publications.pdf

Version: 2024-02-01

47 papers 3,172 citations

201674 27 h-index 265206 42 g-index

48 all docs 48 docs citations

48 times ranked

2245 citing authors

#	Article	IF	Citations
1	Effect of Curing Temperature on Mechanical Properties of Bio-phenolic/Epoxy Polymer Blends. Journal of Polymers and the Environment, 2022, 30, 878-885.	5.0	11
2	Sustainable kenaf/bamboo fibers/clay hybrid nanocomposites: properties, environmental aspects and applications. Journal of Cleaner Production, 2022, 330, 129938.	9.3	40
3	Dynamic Mechanical Properties and Free Vibration Characteristics of Surface Modified Jute Fiber/Nano-Clay Reinforced Epoxy Composites. Journal of Polymers and the Environment, 2021, 29, 1076-1088.	5.0	50
4	Various Types of Natural Fibers Reinforced Poly-Lactic Acid Composites. Composites Science and Technology, 2021, , 165-180.	0.6	0
5	Nanocellulose Reinforced Polylactic Acid Bionanocomposites. Composites Science and Technology, 2021, , 181-194.	0.6	3
6	Extraction and Characterization of Microcrystalline Cellulose from Date Palm Fibers using Successive Chemical Treatments. Journal of Polymers and the Environment, 2021, 29, 1990-1999.	5.0	38
7	Extraction and Characterization of Fiber Treatment Inula viscosa Fibers as Potential Polymer Composite Reinforcement. Journal of Polymers and the Environment, 2021, 29, 3779-3793.	5.0	28
8	A Review on Properties and Application of Bio-Based Poly(Butylene Succinate). Polymers, 2021, 13, 1436.	4.5	169
9	Effect of surface modified date palm fibre loading on mechanical, thermal properties of date palm reinforced phenolic composites. Composite Structures, 2021, 267, 113913.	5.8	58
10	Characterization of physical and mechanical properties of recycled jute fabric reinforced polypropylene composites. Polymer Composites, 2021, 42, 5435-5444.	4.6	11
11	Nanocrystalline Cellulose from Microcrystalline Cellulose of Date Palm Fibers as a Promising Candidate for Bio-Nanocomposites: Isolation and Characterization. Materials, 2021, 14, 5313.	2.9	22
12	A comparative evaluation of chemical, mechanical, and thermal properties of oil palm fiber/pineapple fiber reinforced phenolic hybrid composites. Polymer Composites, 2021, 42, 6383-6393.	4.6	20
13	Improvements in the thermal behaviour of date palm/bamboo fibres reinforced epoxy hybrid composites. Composite Structures, 2021, 277, 114644.	5.8	45
14	Fiberboard Manufacturing from Laccase Activated Lignin Based Bioadhesive. Composites Science and Technology, 2021, , 51-83.	0.6	1
15	Flexural and Dynamic Mechanical Properties of Alkali-Treated Coir/Pineapple Leaf Fibres Reinforced Polylactic Acid Hybrid Biocomposites. Journal of Bionic Engineering, 2021, 18, 1430-1438.	5.0	25
16	Impact of silane treatment on the dielectric properties of pineapple leaf/kenaf fiber reinforced phenolic composites. Journal of Composite Materials, 2020, 54, 937-946.	2.4	26
17	Sugar palm fiber/polyester nanocomposites: Influence of adding nanoclay fillers on thermal, dynamic mechanical, and physical properties. Journal of Vinyl and Additive Technology, 2020, 26, 236-243.	3.4	26
18	Effects of Date Palm fibres loading on mechanical, and thermal properties of Date Palm reinforced phenolic composites. Journal of Materials Research and Technology, 2020, 9, 3614-3621.	5.8	52

#	Article	IF	CITATIONS
19	Alkali treated coir/pineapple leaf fibres reinforced PLA hybrid composites: Evaluation of mechanical, morphological, thermal and physical properties. EXPRESS Polymer Letters, 2020, 14, 717-730.	2.1	73
20	Accelerated Weathering and Soil Burial Effect on Biodegradability, Colour and Textureof Coir/Pineapple Leaf Fibres/PLA Biocomposites. Polymers, 2020, 12, 458.	4.5	57
21	Improving the Properties of Pineapple Leaf Fibres by Chemical Treatments. Green Energy and Technology, 2020, , 55-71.	0.6	10
22	Thermal stability of natural fibers and their polymer composites. Iranian Polymer Journal (English) Tj ETQq0 0 0 0	gBT_/Over 2.4	lock 10 Tf 50 143
23	Flexural, thermal and dynamic mechanical properties of date palm fibres reinforced epoxy composites. Journal of Materials Research and Technology, 2019, 8, 853-860.	5.8	147
24	Corn and Rice Starch-Based Bio-Plastics as Alternative Packaging Materials. Fibers, 2019, 7, 32.	4.0	209
25	Dynamic and thermoâ€mechanical properties of hybridized kenaf/PALF reinforced phenolic composites. Polymer Composites, 2019, 40, 3814-3822.	4.6	74
26	Recent development in binderless fiber-board fabrication from agricultural residues: A review. Construction and Building Materials, 2019, 211, 502-516.	7.2	81
27	Natural fiber reinforced polylactic acid composites: A review. Polymer Composites, 2019, 40, 446-463.	4.6	296
28	Effect of Alkali treatments on physical and Mechanical strength of Pineapple leaf fibres. IOP Conference Series: Materials Science and Engineering, 2018, 290, 012030.	0.6	21
29	The Effect of Silane Treated Fibre Loading on Mechanical Properties of Pineapple Leaf/Kenaf Fibre Filler Phenolic Composites. Journal of Polymers and the Environment, 2018, 26, 1520-1527.	5.0	87
30	Effect of Organo-Modified Nanoclay on the Mechanical Properties of Sugar Palm Fiber-reinforced Polyester Composites. BioResources, 2018, 13, .	1.0	43
31	Effect of Hybridization on the Mechanical Properties of Pineapple Leaf Fiber/Kenaf Phenolic Hybrid Composites. Journal of Renewable Materials, 2018, 6, 38-46.	2.2	41
32	Effect of Fiber Loadings and Treatment on Dynamic Mechanical, Thermal and Flammability Properties of Pineapple Leaf Fiber and Kenaf Phenolic Composites. Journal of Renewable Materials, 2018, 6, 383-393.	2.2	80
33	A review on date palm ($\langle i \rangle$ phoenix dactylifera $\langle i \rangle$) fibers and its polymer composites. IOP Conference Series: Materials Science and Engineering, 2018, 368, 012009.	0.6	47
34	Physical and flammability properties of kenaf and pineapple leaf fibre hybrid composites. IOP Conference Series: Materials Science and Engineering, 2018, 368, 012018.	0.6	13
35	Potential of natural fiber/biomass filler-reinforced polymer composites in aerospace applications. , 2018, , 253-268.		38
36	Thermal, physical properties and flammability of silane treated kenaf/pineapple leaf fibres phenolic hybrid composites. Composite Structures, 2018, 202, 1330-1338.	5.8	117

#	Article	IF	Citations
37	A Review on Phenolic Resin and its Composites. Current Analytical Chemistry, 2018, 14, 185-197.	1.2	106
38	Natural Fiber Improvement by Laccase; Optimization, Characterization and Application in Medium Density Fiberboard. Journal of Natural Fibers, 2017, 14, 379-389.	3.1	16
39	Effect of pineapple leaf fibre and kenaf fibre treatment on mechanical performance of phenolic hybrid composites. Fibers and Polymers, 2017, 18, 940-947.	2.1	52
40	Nanocellulose., 2017,, 261-276.		50
41	Dimensional stability of pineapple leaf fibre reinforced phenolic composites. , 2017, , .		8
42	Processing of hybrid polymer composites—a review. , 2017, , 1-22.		39
43	Effect of Alkali and Silane Treatments on Mechanical and Fibre-matrix Bond Strength of Kenaf and Pineapple Leaf Fibres. Journal of Bionic Engineering, 2016, 13, 426-435.	5.0	268
44	Laccase, an Emerging Tool to Fabricate Green Composites: A Review. BioResources, 2015, 10, .	1.0	35
45	A Review on Pineapple Leaves Fibre and Its Composites. International Journal of Polymer Science, 2015, 2015, 1-16.	2.7	359
46	Improved Physical and Chemical Properties of Rubber Wood (Hevea brasiliensis) Fiber by Laccase. Asian Journal of Agricultural Research, 2015, 9, 166-172.	0.4	1
47	Laccase application in medium density fibreboard to prepare a bio-composite. RSC Advances, 2014, 4, 11520-11527.	3.6	32