
Masa Kanduser

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1367027/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effect of Cell Electroporation on the Conductivity of a Cell Suspension. Biophysical Journal, 2005, 88, 4378-4390.	0.5	248
2	The influence of medium conductivity on electropermeabilization and survival of cells in vitro. Bioelectrochemistry, 2001, 54, 107-115.	4.6	132
3	Mechanisms involved in gene electrotransfer using high- and low-voltage pulses — An in vitro study. Bioelectrochemistry, 2009, 74, 265-271.	4.6	110
4	Cell electrofusion using nanosecond electric pulses. Scientific Reports, 2013, 3, 3382.	3.3	110
5	Electroâ€mediated gene transfer and expression are controlled by the lifeâ€ŧime of DNA/membrane complex formation. Journal of Gene Medicine, 2010, 12, 117-125.	2.8	104
6	The temperature effect during pulse application on cell membrane fluidity and permeabilization. Bioelectrochemistry, 2008, 74, 52-57.	4.6	75
7	Cell membrane fluidity related to electroporation and resealing. European Biophysics Journal, 2006, 35, 196-204.	2.2	68
8	Electroporator with automatic change of electric field direction improves gene electrotransfer in-vitro. BioMedical Engineering OnLine, 2007, 6, 25.	2.7	55
9	Cell–Cell Electrofusion: Optimization of Electric Field Amplitude and Hypotonic Treatment for Mouse Melanoma (B16-F1) and Chinese Hamster Ovary (CHO) Cells. Journal of Membrane Biology, 2010, 236, 107-116.	2.1	49
10	Effect of different parameters used for <i>in vitro</i> gene electrotransfer on gene expression efficiency, cell viability and visualization of plasmid DNA at the membrane level. Journal of Gene Medicine, 2013, 15, 169-181.	2.8	46
11	Coalescence of phospholipid membranes as a possible origin of anticoagulant effect of serum proteins. Chemistry and Physics of Lipids, 2007, 150, 49-57.	3.2	43
12	New Insights into the Mechanisms of Gene Electrotransfer – Experimental and Theoretical Analysis. Scientific Reports, 2015, 5, 9132.	3.3	41
13	Combination of Microsecond and Nanosecond Pulsed Electric Field Treatments for Inactivation of Escherichia coli in Water Samples. Journal of Membrane Biology, 2012, 245, 643-650.	2.1	38
14	Electroporation in Biological Cell and Tissue: An Overview. Food Engineering Series, 2009, , 1-37.	0.7	35
15	Effect of surfactant polyoxyethylene glycol (C12E8) on electroporation of cell line DC3F. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2003, 214, 205-217.	4.7	33
16	Cell size dynamics and viability of cells exposed to hypotonic treatment and electroporation for electrofusion optimization. Radiology and Oncology, 2009, 43, .	1.7	33
17	Optimization of bulk cell electrofusion in vitro for production of human–mouse heterohybridoma cells. Bioelectrochemistry, 2008, 74, 124-129.	4.6	32
18	Cell electrofusion: past and future perspectives for antibody production and cancer cell vaccines. Expert Opinion on Drug Delivery, 2014, 11, 1885-1898.	5.0	30

Masa Kanduser

#	Article	IF	CITATIONS
19	Model-based automated detection of mammalian cell colonies. Physics in Medicine and Biology, 2001, 46, 3061-3072.	3.0	29
20	Shape transformation and burst of giant POPC unilamellar liposomes modulated by non-ionic detergent C12E8. Chemistry and Physics of Lipids, 2003, 125, 123-138.	3.2	27
21	Comparison of Flow Cytometry, Fluorescence Microscopy and Spectrofluorometry for Analysis of Gene Electrotransfer Efficiency. Journal of Membrane Biology, 2014, 247, 1259-1267.	2.1	24
22	The Systematic Study of the Electroporation and Electrofusion of B16-F1 and CHO Cells in Isotonic and Hypotonic Buffer. Journal of Membrane Biology, 2012, 245, 583-590.	2.1	23
23	Analysis and Comparison of Electrical Pulse Parameters for Gene Electrotransfer of Two Different Cell Lines. Journal of Membrane Biology, 2010, 236, 97-105.	2.1	22
24	Modular Serial Flow Through device for pulsed electric field treatment of the liquid samples. Scientific Reports, 2017, 7, 8115.	3.3	22
25	Electrofusion of B16-F1 and CHO cells: The comparison of the pulse first and contact first protocols. Bioelectrochemistry, 2013, 89, 34-41.	4.6	21
26	The role of electrically stimulated endocytosis in gene electrotransfer. Bioelectrochemistry, 2012, 83, 38-45.	4.6	18
27	Shape and Size of Giant Unilamellar Phospholipid Vesicles Containing Cardiolipin. Journal of Chemical Information and Modeling, 2005, 45, 1676-1679.	5.4	15
28	Combined therapy of the antimetastatic compound NAMI-A and electroporation on B16F1 tumour cells in vitro. Bioelectrochemistry, 2007, 71, 113-117.	4.6	15
29	Pipette tip with integrated electrodes for gene electrotransfer of cells in suspension: a feasibility study in CHO cells. Radiology and Oncology, 2011, 45, 204-8.	1.7	6
30	Gene Electrotransfer. Behavior Research Methods, 2012, 15, 77-104.	4.0	5
31	The Effect of Lipid Antioxidant α-Tocopherol on Cell Viability and Electrofusion Yield of B16-F1 Cells In Vitro. Journal of Membrane Biology, 2019, 252, 105-114.	2.1	5
32	Changing the Direction and Orientation of Electric Field During Electric Pulses Application Improves Plasmid Gene Transfer in vitro . Journal of Visualized Experiments, 2011, , .	0.3	1
33	Modified Adherence Method (MAM) for Electrofusion of Anchorage-Dependent Cells. Methods in Molecular Biology, 2015, 1313, 203-216.	0.9	1