Simona Coppola

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1366022/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Protease Involvement in Fodrin Cleavage and Phosphatidylserine Exposure in Apoptosis. Journal of Biological Chemistry, 1996, 271, 31075-31085.	3.4	372
2	Rescue of cells from apoptosis by inhibition of active GSH extrusion. FASEB Journal, 1998, 12, 479-486.	0.5	300
3	Identification of the hemangioblast in postnatal life. Blood, 2002, 100, 3203-3208.	1.4	246
4	Magnetic fields increase cell survival by inhibiting apoptosis via modulation of Ca ²⁺ influx. FASEB Journal, 1999, 13, 95-102.	0.5	204
5	Non-oxidative Loss of Glutathione in Apoptosis via GSH Extrusion. Biochemical and Biophysical Research Communications, 1995, 216, 313-320.	2.1	176
6	Possible Involvement of Poly(ADP-Ribosyl) Polymerase in Triggering Stress-Induced Apoptosis. Experimental Cell Research, 1994, 212, 367-373.	2.6	160
7	Multiple Pathways for Apoptotic Nuclear Fragmentation. Experimental Cell Research, 1996, 223, 340-347.	2.6	159
8	GSH extrusion and the mitochondrial pathway of apoptotic signalling. Biochemical Society Transactions, 2000, 28, 56-61.	3.4	151
9	H2O2â€induced block of glycolysis as an active ADPâ€ribosylation reaction protecting cells from apoptosis. FASEB Journal, 2000, 14, 2266-2276.	0.5	150
10	Functional Dysregulation of CDC42 Causes Diverse Developmental Phenotypes. American Journal of Human Genetics, 2018, 102, 309-320.	6.2	138
11	A novel disorder involving dyshematopoiesis, inflammation, and HLH due to aberrant CDC42 function. Journal of Experimental Medicine, 2019, 216, 2778-2799.	8.5	132
12	Glutathione depletion causes cytochrome <i>c</i> release even in the absence of cell commitment to apoptosis. FASEB Journal, 1999, 13, 2031-2036.	0.5	128
13	Oxidative Bax dimerization promotes its translocation to mitochondria independently of apoptosis. FASEB Journal, 2005, 19, 1504-1506.	O.5	120
14	Heart infarct in NODâ€SCID mice: Therapeutic vasculogenesis by transplantation of human CD34 + cells and low dose CD34 + KDR + cells. FASEB Journal, 2004, 18, 1392-1394.	0.5	107
15	Dominant Noonan syndrome-causing <i>LZTR1</i> mutations specifically affect the Kelch domain substrate-recognition surface and enhance RAS-MAPK signaling. Human Molecular Genetics, 2019, 28, 1007-1022.	2.9	58
16	White cell apoptosis in packed red cells. Transfusion, 2008, 38, 1082-1089.	1.6	57
17	GSH depletion enhances adenoviral bax-induced apoptosis in lung cancer cells. Cancer Gene Therapy, 2004, 11, 249-255.	4.6	56
18	Different Basal NAD Levels Determine Opposite Effects of Poly(ADP-Ribosyl)Polymerase Inhibitors on H2O2-Induced Apoptosis. Experimental Cell Research, 1995, 221, 462-469.	2.6	54

SIMONA COPPOLA

#	Article	IF	CITATIONS
19	Protease inhibitors block apoptosis at intermediate stages: a compared analysis of DNA fragmentation and apoptotic nuclear morphology. FEBS Letters, 1995, 377, 9-14.	2.8	48
20	Glutathione depletion upâ€regulates Bclâ€⊋ in BSOâ€resistant cells. FASEB Journal, 2004, 18, 1609-1611.	0.5	47
21	The Increase in H2O2-Induced Apoptosis by ADP-Ribosylation Inhibitors Is Related to Cell Blebbing. Experimental Cell Research, 1995, 221, 470-477.	2.6	42
22	Anti-apoptotic effect of HIV protease inhibitors via direct inhibition of calpain. Biochemical Pharmacology, 2003, 66, 1505-1512.	4.4	36
23	A mutation in PAK3 with a dual molecular effect deregulates the RAS/MAPK pathway and drives an X-linked syndromic phenotype. Human Molecular Genetics, 2014, 23, 3607-3617.	2.9	33
24	Activating MRAS mutations cause Noonan syndrome associated with hypertrophic cardiomyopathy. Human Molecular Genetics, 2020, 29, 1772-1783.	2.9	30
25	Multiple Mechanisms for Hydrogen Peroxide–Induced Apoptosis. Annals of the New York Academy of Sciences, 2009, 1171, 559-563.	3.8	29
26	Enforced expression of KDR receptor promotes proliferation, survival and megakaryocytic differentiation of TF1 progenitor cell line. Cell Death and Differentiation, 2006, 13, 61-74.	11.2	24
27	Colocalization of the VEGFâ€R2 and the common ILâ€3/GM SF receptor beta chain to lipid rafts leads to enhanced p38 activation. British Journal of Haematology, 2009, 145, 399-411.	2.5	19
28	Autocrine Role of Angiopoietins during Megakaryocytic Differentiation. PLoS ONE, 2012, 7, e39796.	2.5	19
29	SHOC2 subcellular shuttling requires the KEKE motif-rich region and <i>N</i> -terminal leucine-rich repeat domain and impacts on ERK signalling. Human Molecular Genetics, 2016, 25, 3824-3835.	2.9	17
30	Mutations at the C-terminus of CDC42 cause distinct hematopoietic and autoinflammatory disorders. Journal of Allergy and Clinical Immunology, 2022, 150, 223-228.	2.9	17
31	Sequential phases of Ca2+ alterations in pre-apoptotic cells. Apoptosis: an International Journal on Programmed Cell Death, 2007, 12, 2207-2219.	4.9	13
32	A protein produced by a monocytic human cell line can induce apoptosis on tumor cells. FEBS Letters, 1994, 344, 35-40.	2.8	9
33	The Cleavage Mode of Apoptotic Nuclear Vesiculation Is Related to Plasma Membrane Blebbing and Depends on Actin Reorganization. Annals of the New York Academy of Sciences, 2006, 1090, 69-78.	3.8	8
34	The Italian National Centre for Rare Diseases: where research and public health translate into action. Blood Transfusion, 2014, 12 Suppl 3, s591-605.	0.4	4
35	Redox Modulation of the Apoptogenic Activity of Thapsigargin. Annals of the New York Academy of Sciences, 2007, 1099, 469-472.	3.8	3
36	ADP-RIBOSYLATIONS IN OXIDATIVE STRESS-INDUCED APOPTOSIS. Biochemical Society Transactions, 1996, 24, 533S-533S.	3.4	0