
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1365892/publications.pdf Version: 2024-02-01

FRIC R KANDEL

#	Article	IF	CITATIONS
1	Subregion- and Cell Type–Restricted Gene Knockout in Mouse Brain. Cell, 1996, 87, 1317-1326.	13.5	1,207
2	Recombinant BDNF Rescues Deficits in Basal Synaptic Transmission and Hippocampal LTP in BDNF Knockout Mice. Neuron, 1996, 16, 1137-1145.	3.8	1,144
3	Genetic Demonstration of a Role for PKA in the Late Phase of LTP and in Hippocampus-Based Long-Term Memory. Cell, 1997, 88, 615-626.	13.5	1,125
4	Cognitive Neuroscience and the Study of Memory. Neuron, 1998, 20, 445-468.	3.8	1,117
5	The long and the short of long–term memory—a molecular framework. Nature, 1986, 322, 419-422.	13.7	1,007
6	Ablation of hippocampal neurogenesis impairs contextual fear conditioning and synaptic plasticity in the dentate gyrus. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 17501-17506.	3.3	915
7	Chromatin Acetylation, Memory, and LTP Are Impaired in CBP+/â^' Mice. Neuron, 2004, 42, 947-959.	3.8	839
8	MORPHOLOGICAL AND FUNCTIONAL PROPERTIES OF IDENTIFIED NEURONS IN THE ABDOMINAL GANGLION OF <i>APLYSIA CALIFORNICA</i> . Journal of Neurophysiology, 1967, 30, 1288-1351.	0.9	833
9	The Molecular and Systems Biology of Memory. Cell, 2014, 157, 163-186.	13.5	833
10	Tissue-plasminogen activator is induced as an immediate–early gene during seizure, kindling and long-term potentiation. Nature, 1993, 361, 453-457.	13.7	771
11	The molecular biology of memory: cAMP, PKA, CRE, CREB-1, CREB-2, and CPEB. Molecular Brain, 2012, 5, 14.	1.3	708
12	Injection of the cAMP-responsive element into the nucleus of Aplysia sensory neurons blocks long-term facilitation. Nature, 1990, 345, 718-721.	13.7	698
13	Synapse-Specific, Long-Term Facilitation of Aplysia Sensory to Motor Synapses: A Function for Local Protein Synthesis in Memory Storage. Cell, 1997, 91, 927-938.	13.5	693
14	Serotonin and cyclic AMP close single K+ channels in Aplysia sensory neurones. Nature, 1982, 299, 413-417.	13.7	649
15	Long-term potentiation in the hippocampus is blocked by tyrosine kinase inhibitors. Nature, 1991, 353, 558-560.	13.7	552
16	MAP Kinase Translocates into the Nucleus of the Presynaptic Cell and Is Required for Long-Term Facilitation in Aplysia. Neuron, 1997, 18, 899-912.	3.8	535
17	Aplysia CREB2 represses long-term facilitation: Relief of repression converts transient facilitation into long-term functional and structural change. Cell, 1995, 83, 979-992.	13.5	530
18	Expression of Constitutively Active CREB Protein Facilitates the Late Phase of Long-Term Potentiation by Enhancing Synaptic Capture. Cell, 2002, 108, 689-703.	13.5	530

#	Article	IF	CITATIONS
19	A Neuronal Isoform of the Aplysia CPEB Has Prion-Like Properties. Cell, 2003, 115, 879-891.	13.5	526
20	C/EBP is an immediate-early gene required for the consolidation of long-term facilitation in Aplysia. Cell, 1994, 76, 1099-1114.	13.5	514
21	cAMP contributes to mossy fiber LTP by initiating both a covalently mediated early phase and macromolecular synthesis-dependent late phase. Cell, 1994, 79, 69-79.	13.5	479
22	A Role for Neuronal piRNAs in the Epigenetic Control of Memory-Related Synaptic Plasticity. Cell, 2012, 149, 693-707.	13.5	474
23	A Transient, Neuron-Wide Form of CREB-Mediated Long-Term Facilitation Can Be Stabilized at Specific Synapses by Local Protein Synthesis. Cell, 1999, 99, 221-237.	13.5	471
24	Integration of Long-Term-Memory-Related Synaptic Plasticity Involves Bidirectional Regulation of Gene Expression and Chromatin Structure. Cell, 2002, 111, 483-493.	13.5	466
25	Abolition of Long-Term Stability of New Hippocampal Place Cell Maps by NMDA Receptor Blockade. Science, 1998, 280, 2121-2126.	6.0	458
26	Learning to Modulate Transmitter Release: Themes and Variations in Synaptic Plasticity. Annual Review of Neuroscience, 1993, 16, 625-665.	5.0	447
27	Inducible and Reversible Enhancement of Learning, Memory, and Long-Term Potentiation by Genetic Inhibition of Calcineurin. Cell, 2001, 104, 675-686.	13.5	440
28	Dopamine release from the locus coeruleus to the dorsal hippocampus promotes spatial learning and memory. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 14835-14840.	3.3	438
29	Different Training Procedures Recruit Either One or Two Critical Periods for Contextual Memory Consolidation, Each of Which Requires Protein Synthesis and PKA. Learning and Memory, 1998, 5, 365-374.	0.5	429
30	Reversible Inhibition of CREB/ATF Transcription Factors in Region CA1 of the Dorsal Hippocampus Disrupts Hippocampus-Dependent Spatial Memory. Neuron, 2002, 34, 447-462.	3.8	425
31	Activation of cAMP-Responsive genes by stimuli that produce long-term facilitation in aplysia sensory neurons. Neuron, 1993, 10, 427-435.	3.8	393
32	A Neuronal Isoform of CPEB Regulates Local Protein Synthesis and Stabilizes Synapse-Specific Long-Term Facilitation in Aplysia. Cell, 2003, 115, 893-904.	13.5	390
33	Characterization of Small RNAs in Aplysia Reveals a Role for miR-124 in Constraining Synaptic Plasticity through CREB. Neuron, 2009, 63, 803-817.	3.8	374
34	Nitric Oxide Acts Directly in the Presynaptic Neuron to Produce Long-Term Potentiationin Cultured Hippocampal Neurons. Cell, 1996, 87, 1025-1035.	13.5	372
35	ls Heterosynaptic modulation essential for stabilizing hebbian plasiticity and memory. Nature Reviews Neuroscience, 2000, 1, 11-20.	4.9	369
36	Synapses and Memory Storage. Cold Spring Harbor Perspectives in Biology, 2012, 4, a005751-a005751.	2.3	366

#	Article	IF	CITATIONS
37	Aplysia CPEB Can Form Prion-like Multimers in Sensory Neurons that Contribute to Long-Term Facilitation. Cell, 2010, 140, 421-435.	13.5	360
38	Ubiquitin C-Terminal Hydrolase Is an Immediate-Early Gene Essential for Long-Term Facilitation in Aplysia. Cell, 1997, 89, 115-126.	13.5	352
39	Genetic and Pharmacological Evidence for a Novel, Intermediate Phase of Long-Term Potentiation Suppressed by Calcineurin. Cell, 1998, 92, 25-37.	13.5	338
40	Restricted and Regulated Overexpression Reveals Calcineurin as a Key Component in the Transition from Short-Term to Long-Term Memory. Cell, 1998, 92, 39-49.	13.5	336
41	CREB1 Encodes a Nuclear Activator, a Repressor, and a Cytoplasmic Modulator that Form a Regulatory Unit Critical for Long-Term Facilitation. Cell, 1998, 95, 211-223.	13.5	332
42	Postsynaptic Induction and PKA-Dependent Expression of LTP in the Lateral Amygdala. Neuron, 1998, 21, 169-178.	3.8	310
43	Neuronal Transcriptome of Aplysia: Neuronal Compartments and Circuitry. Cell, 2006, 127, 1453-1467.	13.5	310
44	ERK Plays a Regulatory Role in Induction of LTP by Theta Frequency Stimulation and Its Modulation by β-Adrenergic Receptors. Neuron, 1999, 24, 715-726.	3.8	300
45	Roles of PKA and PKC in facilitation of evoked and spontaneous transmitter release at depressed and nondepressed synapses in aplysia sensory neurons. Neuron, 1992, 9, 479-489.	3.8	296
46	A Molecular Basis for Nicotine as a Gateway Drug. New England Journal of Medicine, 2014, 371, 932-943.	13.9	293
47	Memory Suppressor Genes: Inhibitory Constraints on the Storage of Long-Term Memory. Science, 1998, 279, 338-341.	6.0	288
48	Presynaptic BDNF Required for a Presynaptic but Not Postsynaptic Component of LTP at Hippocampal CA1-CA3 Synapses. Neuron, 2003, 39, 975-990.	3.8	288
49	A genetic test of the effects of mutations in PKA on mossy fiber ltp and its relation to spatial and contextual learning. Cell, 1995, 83, 1211-1222.	13.5	285
50	Structural Components of Synaptic Plasticity and Memory Consolidation. Cold Spring Harbor Perspectives in Biology, 2015, 7, a021758.	2.3	279
51	NOBEL LECTURE: The Molecular Biology of Memory Storage: A Dialog Between Genes and Synapses. Bioscience Reports, 2001, 21, 565-611.	1.1	278
52	The Regulation of Transcription in Memory Consolidation. Cold Spring Harbor Perspectives in Biology, 2015, 7, a021741.	2.3	269
53	A Macromolecular Synthesis-Dependent Late Phase of Long-Term Potentiation Requiring cAMP in the Medial Perforant Pathway of Rat Hippocampal Slices. Journal of Neuroscience, 1996, 16, 3189-3198.	1.7	255
54	Positive and negative regulatory mechanisms that mediate long-term memory storage1Published on the World Wide Web on 13 January 1998.1. Brain Research Reviews, 1998, 26, 360-378.	9.1	252

#	Article	IF	CITATIONS
55	The Persistence of Long-Term Memory. Neuron, 2004, 44, 49-57.	3.8	250
56	Inducible Enhancement of Memory Storage and Synaptic Plasticity in Transgenic Mice Expressing an Inhibitor of ATF4 (CREB-2) and C/EBP Proteins. Neuron, 2003, 39, 655-669.	3.8	247
57	Mice Expressing Activated CaMKII Lack Low Frequency LTP and Do Not Form Stable Place Cells in the CA1 Region of the Hippocampus. Cell, 1996, 87, 1351-1361.	13.5	243
58	Molecular Mechanism for a Gateway Drug: Epigenetic Changes Initiated by Nicotine Prime Gene Expression by Cocaine. Science Translational Medicine, 2011, 3, 107ra109.	5.8	243
59	Inducible and Reversible Gene Expression with the rtTA System for the Study of Memory. Neuron, 1998, 21, 257-265.	3.8	239
60	A novel intermediate stage in the transition between short- and long-term facilitation in the sensory to motor neuron synapse of aplysia. Neuron, 1995, 14, 413-420.	3.8	233
61	Local protein synthesis and its role in synapse-specific plasticity. Current Opinion in Neurobiology, 2000, 10, 587-592.	2.0	226
62	Essential Role of Coiled Coils for Aggregation and Activity of Q/N-Rich Prions and PolyQ Proteins. Cell, 2010, 143, 1121-1135.	13.5	223
63	Strain-dependent Differences in LTP and Hippocampus-dependent Memory in Inbred Mice. Learning and Memory, 2000, 7, 170-179.	0.5	215
64	Transient expansion of synaptically connected dendritic spines upon induction of hippocampal long-term potentiation. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 16665-16670.	3.3	213
65	Molecular Mechanisms of Memory Storage in <i>Aplysia</i> . Biological Bulletin, 2006, 210, 174-191.	0.7	209
66	Neuroscience thinks big (and collaboratively). Nature Reviews Neuroscience, 2013, 14, 659-664.	4.9	206
67	An Analysis of Dishabituation and Sensitization of The Gill-Withdrawal Reflex In Aplysia. International Journal of Neuroscience, 1971, 2, 79-98.	0.8	196
68	Recruitment of New Sites of Synaptic Transmission During the cAMP-Dependent Late Phase of LTP at CA3–CA1 Synapses in the Hippocampus. Neuron, 1997, 19, 635-651.	3.8	195
69	Gpr158 mediates osteocalcin's regulation of cognition. Journal of Experimental Medicine, 2017, 214, 2859-2873.	4.2	194
70	Presynaptic and Postsynaptic Roles of NO, cGK, and RhoA in Long-Lasting Potentiation and Aggregation of Synaptic Proteins. Neuron, 2005, 45, 389-403.	3.8	193
71	A circuit from hippocampal CA2 to lateral septum disinhibits social aggression. Nature, 2018, 564, 213-218.	13.7	184
72	Inhibitors of protein and RNA synthesis block structural changes that accompany long-term heterosynaptic plasticity in Aplysia. Neuron, 1992, 9, 749-758.	3.8	182

#	Article	IF	CITATIONS
73	Activity-Dependent Presynaptic Facilitation and Hebbian LTP Are Both Required and Interact during Classical Conditioning in Aplysia. Neuron, 2003, 37, 135-147.	3.8	181
74	The Persistence of Hippocampal-Based Memory Requires Protein Synthesis Mediated by the Prion-like Protein CPEB3. Neuron, 2015, 86, 1433-1448.	3.8	180
75	The Biology of Memory: A Forty-Year Perspective. Journal of Neuroscience, 2009, 29, 12748-12756.	1.7	179
76	Mechanisms for Generating the Autonomous cAMP-Dependent Protein Kinase Required for Long-Term Facilitation in Aplysia. Neuron, 1999, 22, 147-156.	3.8	173
77	Mutation in the Phosphorylation Sites of MAP Kinase Blocks Learning-Related Internalization of apCAM in Aplysia Sensory Neurons. Neuron, 1997, 18, 913-924.	3.8	172
78	CREB, memory enhancement and the treatment of memory disorders: promises, pitfalls and prospects. Expert Opinion on Therapeutic Targets, 2003, 7, 101-114.	1.5	172
79	Two previously undescribed members of the mouse CPEB family of genes and their inducible expression in the principal cell layers of the hippocampus. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 9602-9607.	3.3	171
80	Neuralized1 Activates CPEB3: A Function for Nonproteolytic Ubiquitin in Synaptic Plasticity and Memory Storage. Cell, 2011, 147, 1369-1383.	13.5	170
81	Parallel processing of short-term memory for sensitization inAplysia. Journal of Neurobiology, 1988, 19, 297-334.	3.7	168
82	Cell Adhesion Molecules, CREB, and the Formation of New Synaptic Connections. Neuron, 1996, 17, 567-570.	3.8	162
83	The Molecular Biology of Memory Storage: A Dialog Between Genes and Synapses. Bioscience Reports, 2004, 24, 475-522.	1.1	160
84	Rapid Increase in Clusters of Presynaptic Proteins at Onset of Long-Lasting Potentiation. Science, 2001, 294, 1547-1550.	6.0	152
85	Molecular Mechanisms of the Memory Trace. Trends in Neurosciences, 2019, 42, 14-22.	4.2	148
86	Cyclic AMP induces functional presynaptic boutons in hippocampal CA3–CA1 neuronal cultures. Nature Neuroscience, 1999, 2, 24-30.	7.1	146
87	Selective Modulation of Some Forms of Schaffer Collateral-CA1 Synaptic Plasticity in Mice With a Disruption of the CPEB-1 Gene. Learning and Memory, 2004, 11, 318-327.	0.5	142
88	Involvement of Presynaptic and Postsynaptic Mechanisms in a Cellular Analog of Classical Conditioning at <i>Aplysia</i> Sensory-Motor Neuron Synapses in Isolated Cell Culture. Journal of Neuroscience, 1998, 18, 458-466.	1.7	140
89	The Emergence of Modern Neuroscience: Some Implications for Neurology and Psychiatry. Annual Review of Neuroscience, 2000, 23, 343-391.	5.0	140
90	Persistent and transcriptionally-dependent increase in protein phosphorylation in long-term facilitation ofAplysia sensory neurons. Nature, 1989, 339, 51-54.	13.7	135

#	Article	IF	CITATIONS
91	Sustained CPEB-Dependent Local Protein Synthesis Is Required to Stabilize Synaptic Growth for Persistence of Long-Term Facilitation in Aplysia. Neuron, 2008, 59, 1024-1036.	3.8	127
92	Presynaptic Activation of Silent Synapses and Growth of New Synapses Contribute to Intermediate and Long-Term Facilitation in Aplysia. Neuron, 2003, 40, 151-165.	3.8	125
93	Attention Enhances the Retrieval and Stability of Visuospatial and Olfactory Representations in the Dorsal Hippocampus. PLoS Biology, 2009, 7, e1000140.	2.6	122
94	Parallel Instabilities of Long-Term Potentiation, Place Cells, and Learning Caused by Decreased Protein Kinase A Activity. Journal of Neuroscience, 2000, 20, 8096-8102.	1.7	116
95	SUMOylation Is an Inhibitory Constraint that Regulates the Prion-like Aggregation and Activity of CPEB3. Cell Reports, 2015, 11, 1694-1702.	2.9	116
96	The Neurobiology of Fear Generalization. Frontiers in Behavioral Neuroscience, 2018, 12, 329.	1.0	116
97	Chapter 10 Synaptic remodeling, synaptic growth and the storage of long-term memory in Aplysia. Progress in Brain Research, 2008, 169, 179-198.	0.9	109
98	The CPEB3 Protein Is a Functional Prion that Interacts with the Actin Cytoskeleton. Cell Reports, 2015, 11, 1772-1785.	2.9	109
99	The past, the future and the biology of memory storage. Philosophical Transactions of the Royal Society B: Biological Sciences, 1999, 354, 2027-2052.	1.8	106
100	Involvement of Pre- and Postsynaptic Mechanisms in Posttetanic Potentiation atAplysiaSynapses. Science, 1997, 275, 969-973.	6.0	103
101	Transgenic approaches to cognition. Current Opinion in Neurobiology, 1995, 5, 141-148.	2.0	101
102	Molecular Mechanism for Age-Related Memory Loss: The Histone-Binding Protein RbAp48. Science Translational Medicine, 2013, 5, 200ra115.	5.8	99
103	Serotonin-Induced Regulation of the Actin Network for Learning-Related Synaptic Growth Requires Cdc42, N-WASP, and PAK in Aplysia Sensory Neurons. Neuron, 2005, 45, 887-901.	3.8	95
104	The Role of Functional Prion-Like Proteins in the Persistence of Memory. Cold Spring Harbor Perspectives in Biology, 2016, 8, a021774.	2.3	95
105	Cyclic Adenosine Monophosphate in the Nervous System of Aplysia californica. Journal of General Physiology, 1972, 60, 558-569.	0.9	94
106	A Simplified Preparation for Relating Cellular Events to Behavior: Mechanisms Contributing to Habituation, Dishabituation, and Sensitization of theAplysiaGill-Withdrawal Reflex. Journal of Neuroscience, 1997, 17, 2886-2899.	1.7	90
107	The Contribution of Activity-Dependent Synaptic Plasticity to Classical Conditioning in <i>Aplysia</i> . Journal of Neuroscience, 2001, 21, 6413-6422.	1.7	86
108	Neurexin-Neuroligin Transsynaptic Interaction Mediates Learning-Related Synaptic Remodeling and Long-Term Facilitation in Aplysia. Neuron, 2011, 70, 468-481.	3.8	86

#	Article	IF	CITATIONS
109	p38 MAP Kinase Mediates Both Short-Term and Long-Term Synaptic Depression in <i>Aplysia</i> . Journal of Neuroscience, 2003, 23, 7317-7325.	1.7	84
110	A New Component in Synaptic Plasticity: Upregulation of Kinesin in the Neurons of the Gill-Withdrawal Reflex. Cell, 2008, 135, 960-973.	13.5	83
111	Learning-induced and stathmin-dependent changes in microtubule stability are critical for memory and disrupted in ageing. Nature Communications, 2014, 5, 4389.	5.8	81
112	A Molecular Switch for the Consolidation of Long-Term Memory: cAMP-Inducible Gene Expression. Annals of the New York Academy of Sciences, 1995, 758, 261-286.	1.8	80
113	TIA-1 Self-Multimerization, Phase Separation, and Recruitment into Stress Granules Are Dynamically Regulated by Zn2+. Cell Reports, 2018, 22, 59-71.	2.9	80
114	A Quantitative Study of the Ca2+/Calmodulin Sensitivity of Adenylyl Cyclase in Aplysia, Drosophila, and Rat. Journal of Neurochemistry, 1992, 59, 1736-1744.	2.1	79
115	New mechanisms in memory storage: piRNAs and epigenetics. Trends in Neurosciences, 2013, 36, 535-542.	4.2	78
116	Roles for small noncoding RNAs in silencing of retrotransposons in the mammalian brain. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 12697-12702.	3.3	77
117	A cellular model of memory reconsolidation involves reactivation-induced destabilization and restabilization at the sensorimotor synapse in <i>Aplysia</i> . Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 14200-14205.	3.3	76
118	Characterization of prion-like conformational changes of the neuronal isoform of AplysiaÂCPEB. Nature Structural and Molecular Biology, 2013, 20, 495-501.	3.6	73
119	Transcriptional regulation of long-term memory in the marine snail Aplysia. Molecular Brain, 2008, 1, 3.	1.3	72
120	Functional Role of Tia1/Pub1 and Sup35 Prion Domains: Directing Protein Synthesis Machinery to the Tubulin Cytoskeleton. Molecular Cell, 2014, 55, 305-318.	4.5	71
121	Genes, synapses, and long-term memory. Journal of Cellular Physiology, 1997, 173, 124-125.	2.0	70
122	MicroRNA-22 Gates Long-Term Heterosynaptic Plasticity in Aplysia through Presynaptic Regulation of CPEB and Downstream Targets. Cell Reports, 2015, 11, 1866-1875.	2.9	69
123	CPEB3 inhibits translation of mRNA targets by localizing them to P bodies. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 18078-18087.	3.3	69
124	Enhancement of Memory-Related Long-Term Facilitation by ApAF, a Novel Transcription Factor that Acts Downstream from Both CREB1 and CREB2. Cell, 2000, 103, 595-608.	13.5	64
125	Capture of the Late Phase of Long-Term Potentiation within and across the Apical and Basilar Dendritic Compartments of CA1 Pyramidal Neurons: Synaptic Tagging Is Compartment Restricted. Journal of Neuroscience, 2006, 26, 256-264.	1.7	64
126	The Contribution of Facilitation of Monosynaptic PSPs to Dishabituation and Sensitization of the AplysiaSiphon Withdrawal Reflex. Journal of Neuroscience, 1999, 19, 10438-10450.	1.7	63

#	Article	IF	CITATIONS
127	A genetic switch for long-term memory. Comptes Rendus De L'Académie Des Sciences Série 3, Sciences De La Vie, 1998, 321, 91-96.	0.8	61
128	Increased dopamine D2 receptor activity in the striatum alters the firing pattern of dopamine neurons in the ventral tegmental area. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E1498-506.	3.3	56
129	RbAp48 Protein Is a Critical Component of GPR158/OCN Signaling and Ameliorates Age-Related Memory Loss. Cell Reports, 2018, 25, 959-973.e6.	2.9	56
130	Memory and behavior: a second generation of genetically modified mice. Current Biology, 1997, 7, R580-R589.	1.8	55
131	FMRFamide reverses protein phosphorylation produced by 5-HT and cAMP in Aplysia sensory neurons. Nature, 1989, 342, 275-278.	13.7	53
132	Presynaptic and Postsynaptic Mechanisms of Synaptic Plasticity and Metaplasticity during Intermediate-Term Memory Formation in <i>Aplysia</i> . Journal of Neuroscience, 2010, 30, 5781-5791.	1.7	53
133	3D neuronal mitochondrial morphology in axons, dendrites, and somata of the aging mouse hippocampus. Cell Reports, 2021, 36, 109509.	2.9	52
134	A Simplified Preparation for Relating Cellular Events to Behavior: Contribution of LE and Unidentified Siphon Sensory Neurons to Mediation and Habituation of theAplysiaGill- and Siphon-Withdrawal Reflex. Journal of Neuroscience, 1997, 17, 2900-2913.	1.7	50
135	Cognitive neuroscience. Current Opinion in Neurobiology, 2000, 10, 612-624.	2.0	50
136	Nuclear Translocation of CAM-Associated Protein Activates Transcription for Long-Term Facilitation in Aplysia. Cell, 2007, 129, 801-812.	13.5	50
137	Dopamine Regulation of Amygdala Inhibitory Circuits for Expression of Learned Fear. Neuron, 2015, 88, 378-389.	3.8	49
138	Identification of a serotonin receptor coupled to adenylyl cyclase involved in learning-related heterosynaptic facilitation in <i>Aplysia</i> . Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 14634-14639.	3.3	48
139	PP2A methylation controls sensitivity and resistance to β-amyloid–induced cognitive and electrophysiological impairments. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 3347-3352.	3.3	48
140	Reductionism in Art and Brain Science. , 2016, , .		48
141	A direct lateral entorhinal cortex to hippocampal CA2 circuit conveys social information required for social memory. Neuron, 2022, 110, 1559-1572.e4.	3.8	48
142	Selective Overexpression of Dopamine D3 Receptors in the Striatum Disrupts Motivation but not Cognition. Biological Psychiatry, 2014, 76, 823-831.	0.7	45
143	Prior alcohol use enhances vulnerability to compulsive cocaine self-administration by promoting degradation of HDAC4 and HDAC5. Science Advances, 2017, 3, e1701682.	4.7	45
144	A Single Aplysia Neurotrophin Mediates Synaptic Facilitation via Differentially Processed Isoforms. Cell Reports, 2013, 3, 1213-1227.	2.9	44

#	Article	IF	CITATIONS
145	Whereas short-term facilitation is presynaptic, intermediate-term facilitation involves both presynaptic and postsynaptic protein kinases and protein synthesis. Learning and Memory, 2011, 18, 96-102.	0.5	43
146	Designing a norepinephrine optical tracer for imaging individual noradrenergic synapses and their activity in vivo. Nature Communications, 2018, 9, 2838.	5.8	42
147	Classical conditioning, differential conditioning, and second-order conditioning of the Aplysia gill-withdrawal reflex in a simplified mantle organ preparation Behavioral Neuroscience, 1998, 112, 636-645.	0.6	41
148	Sex Differences in Remote Contextual Fear Generalization in Mice. Frontiers in Behavioral Neuroscience, 2019, 13, 56.	1.0	40
149	Cannabinoid exposure in rat adolescence reprograms the initial behavioral, molecular, and epigenetic response to cocaine. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 9991-10002.	3.3	39
150	Differential contribution of TRPM4 and TRPM5 nonselective cation channels to the slow afterdepolarization in mouse prefrontal cortex neurons. Frontiers in Cellular Neuroscience, 2014, 8, 267.	1.8	38
151	Chronic nicotine exposure induces a long-lasting and pathway-specific facilitation of LTP in the amygdala. Learning and Memory, 2008, 15, 603-610.	0.5	37
152	Spontaneous transmitter release recruits postsynaptic mechanisms of long-term and intermediate-term facilitation in <i>Aplysia</i> . Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 9137-9142.	3.3	36
153	Relationship between dishabituation, sensitization, and inhibition of the gill- and siphon-withdrawal reflex in Aplysia californica: Effects of response measure, test time, and training stimulus Behavioral Neuroscience, 1998, 112, 24-38.	0.6	35
154	Operant Conditioning of Gill Withdrawal in Aplysia. Journal of Neuroscience, 2006, 26, 2443-2448.	1.7	33
155	The New Science of Mind and the Future of Knowledge. Neuron, 2013, 80, 546-560.	3.8	32
156	Impaired recruitment of dopamine neurons during working memory in mice with striatal D2 receptor overexpression. Nature Communications, 2018, 9, 2822.	5.8	29
157	Dishabituation in Aplysia can involve either reversal of habituation or superimposed sensitization. Learning and Memory, 2006, 13, 397-403.	0.5	27
158	Functional Prions in the Brain. Cold Spring Harbor Perspectives in Biology, 2017, 9, a023671.	2.3	27
159	Serotonin Induces Structural Plasticity of Both Extrinsic Modulating and Intrinsic Mediating Circuits InÂVitro in Aplysia Californica. Cell Reports, 2019, 28, 2955-2965.e3.	2.9	27
160	Spontaneous transmitter release is critical for the induction of long-term and intermediate-term facilitation in <i>Aplysia</i> . Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 9131-9136.	3.3	26
161	Role of Aplysia Cell Adhesion Molecules During 5-HT-Induced Long-Term Functional and Structural Changes. Learning and Memory, 2004, 11, 421-435.	0.5	25
162	TIA-1 Is a Functional Prion-Like Protein. Cold Spring Harbor Perspectives in Biology, 2017, 9, a030718.	2.3	24

#	Article	IF	CITATIONS
163	PKA-activated ApAF–ApC/EBP heterodimer is a key downstream effector of ApCREB and is necessary and sufficient for the consolidation of long-term facilitation. Journal of Cell Biology, 2006, 174, 827-838.	2.3	23
164	Cannabinoid Modulation of Eukaryotic Initiation Factors (eIF2α and eIF2B1) and Behavioral Cross-Sensitization to Cocaine in Adolescent Rats. Cell Reports, 2018, 22, 2909-2923.	2.9	23
165	Adolescent cannabinoid exposure induces irritability-like behavior and cocaine cross-sensitization without affecting the escalation of cocaine self-administration in adulthood. Scientific Reports, 2018, 8, 13893.	1.6	23
166	Enkephalin release from VIP interneurons in the hippocampal CA2/3a region mediates heterosynaptic plasticity and social memory. Molecular Psychiatry, 2022, 27, 2879-2900.	4.1	20
167	Huntingtin Is Critical Both Pre- and Postsynaptically for Long-Term Learning-Related Synaptic Plasticity in Aplysia. PLoS ONE, 2014, 9, e103004.	1.1	20
168	Improving temporal cognition by enhancing motivation Behavioral Neuroscience, 2015, 129, 576-588.	0.6	19
169	The impact of motivation on cognitive performance in an animal model of the negative and cognitive symptoms of schizophrenia Behavioral Neuroscience, 2015, 129, 292-299.	0.6	19
170	Genetic Perturbation of TIA1 Reveals a Physiological Role in Fear Memory. Cell Reports, 2019, 26, 2970-2983.e4.	2.9	19
171	Progress in the Neural Sciences in the Century after Cajal (and the Mysteries That Remain). Annals of the New York Academy of Sciences, 2001, 929, 11-40.	1.8	17
172	Orbitofrontal cortex mediates the differential impact of signaled-reward probability on discrimination accuracy. Frontiers in Neuroscience, 2015, 9, 230.	1.4	17
173	An introduction to the work of David Hubel and Torsten Wiesel. Journal of Physiology, 2009, 587, 2733-2741.	1.3	16
174	Micellar TIA1 with folded RNA binding domains as a model for reversible stress granule formation. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 31832-31837.	3.3	15
175	Learning-Related Synaptic Growth Mediated by Internalization of <i>Aplysia</i> Cell Adhesion Molecule Is Controlled by Membrane Phosphatidylinositol 4,5-Bisphosphate Synthetic Pathway. Journal of Neuroscience, 2012, 32, 16296-16305.	1.7	13
176	A Parallel Between Radical Reductionism in Science and in Art. Annals of the New York Academy of Sciences, 2003, 1001, 272-294.	1.8	12
177	Deep brain stimulation of the nucleus accumbens shell attenuates cocaine withdrawal but increases cocaine self-administration, cocaine-induced locomotor activity, and GluR1/GluA1 in the central nucleus of the amygdala in male cocaine-dependent rats. Brain Stimulation, 2022, 15, 13-22.	0.7	11
178	The evolution of synaptic and cognitive capacity: Insights from the nervous system transcriptome of <i>Aplysia</i> . Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	11
179	Development of a database of amino acid sequences for proteins identified and isolated on two-dimensional polyacrylamide gels. Electrophoresis, 1989, 10, 152-157.	1.3	10
180	An objective evaluation of the beholder's response to abstract and figurative art based on construal level theory. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 19809-19815.	3.3	10

#	Article	IF	CITATIONS
181	Anterograde and retrograde signaling by an <i>Aplysia</i> neurotrophin forms a transsynaptic functional unit. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E10951-E10960.	3.3	7
182	A fast, aqueous, reversible three-day tissue clearing method for adult and embryonic mouse brain and whole body. Cell Reports Methods, 2021, 1, 100090.	1.4	7
183	The Role of CREB and CBP in Brain Function. , 2006, , 206-241.		6
184	A Place and a Grid in the Sun. Cell, 2014, 159, 1239-1242.	13.5	6
185	Autocrine signaling by an <i>Aplysia</i> neurotrophin forms a presynaptic positive feedback loop. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E11168-E11177.	3.3	6
186	Single-nucleotide polymorphism in the human TIA1 gene interacts with stressful life events to predict the development of pathological anxiety symptoms in a Swedish population. Journal of Affective Disorders, 2020, 260, 597-603.	2.0	6
187	CREB-Dependent Transcription and Synaptic Plasticity. , 0, , 127-154.		6
188	Loss of retinoid X receptor gamma subunit impairs group 1 mGluR mediated electrophysiological responses and group 1 mGluR dependent behaviors. Scientific Reports, 2021, 11, 5552.	1.6	5
189	Ubiquitination and SUMOylation of Amyloid and Amyloid-like Proteins in Health and Disease. Current Issues in Molecular Biology, 2020, 35, 195-230.	1.0	5
190	A Comparative Analysis of the Molecular Mechanisms Contributing to Implicit and Explicit Memory Storage in Aplysia and in the Hippocampus â~†. , 2017, , 5-31.		4
191	Possible novel features of synaptic regulation during long-term facilitation in Aplysia. Learning and Memory, 2021, 28, 218-227.	0.5	4
192	Republication of <i>The Journal of Physiology</i> (2009) 587, 2733–2741: An introduction to the work of David Hubel and Torsten Wiesel. Journal of Physiology, 2014, 592, 2-10.	1.3	3
193	ApCPEB4, a non-prion domain containing homolog of ApCPEB, is involved in the initiation of long-term facilitation. Molecular Brain, 2016, 9, 91.	1.3	3
194	Cytoplasmic Polyadenylation Element Binding Proteins CPEB1 and CPEB3 Regulate the Translation of FosB and Are Required for Maintaining Addiction-Like Behaviors Induced by Cocaine. Frontiers in Cellular Neuroscience, 2020, 14, 207.	1.8	3
195	CREB, memory enhancement and the treatment of memory disorders: promises, pitfalls and prospects. , 0, .		3
196	An Interview with Eric Kandel. Journal of Physiology, 2010, 588, 743-745.	1.3	1
197	The Class II Histone Deacetylase Hypothesis of Addiction. Biological Psychiatry, 2018, 84, 165-166.	0.7	1
198	Comparison of the ionic currents modulated during activity-dependent and normal presynaptic facilitation. Learning and Memory, 2019, 26, 449-454.	0.5	1

#	Article	IF	CITATIONS
199	Persistence of Memory and Prion Mechanisms: A Perspective. FASEB Journal, 2015, 29, 204.1.	0.2	0
200	Presynaptic Mechanisms of Plasticity and Memory in Aplysia and Other Learning-Related Experimental Systems. , 2017, , 435-452.		0

13