Hélder A Santos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1365380/publications.pdf

Version: 2024-02-01

394 papers 21,489 citations

80 h-index 119 g-index

423 all docs

423 docs citations

times ranked

423

23011 citing authors

#	Article	IF	CITATIONS
1	Quantitative Analysis of Porous Silicon Nanoparticles Functionalization by ¹ H NMR. ACS Biomaterials Science and Engineering, 2022, 8, 4132-4139.	5.2	5
2	Neonatal Fc receptor-targeted lignin-encapsulated porous silicon nanoparticles for enhanced cellular interactions and insulin permeation across the intestinal epithelium. Bioactive Materials, 2022, 9, 299-315.	15.6	23
3	Nonresonant CARS Imaging of Porous and Solid Silicon Nanoparticles in Human Cells. ACS Biomaterials Science and Engineering, 2022, 8, 4185-4195.	5.2	2
4	In Vitro Evaluation of the Therapeutic Effects of Dualâ€Drug Loaded Spermineâ€Acetalated Dextran Nanoparticles Coated with Tannic Acid for Cardiac Applications. Advanced Functional Materials, 2022, 32, 2109032.	14.9	13
5	Emerging Theranostic Nanomaterials in Diabetes and Its Complications. Advanced Science, 2022, 9, e2102466.	11.2	43
6	Functional biomaterials. APL Bioengineering, 2022, 6, 010401.	6.2	4
7	Engineered neutrophil-derived exosome-like vesicles for targeted cancer therapy. Science Advances, 2022, 8, eabj8207.	10.3	94
8	Multifunctional Biomimetic Nanovaccines Based on Photothermal and Weakâ€Immunostimulatory Nanoparticulate Cores for the Immunotherapy of Solid Tumors. Advanced Materials, 2022, 34, e2108012.	21.0	25
9	Scaffold Vaccines for Generating Robust and Tunable Antibody Responses. Advanced Functional Materials, 2022, 32, .	14.9	9
10	Biomimetic platelet membrane-coated nanoparticles for targeted therapy. European Journal of Pharmaceutics and Biopharmaceutics, 2022, 172, 1-15.	4.3	49
11	Gelatinâ€Lysozyme Nanofibrils Electrospun Patches with Improved Mechanical, Antioxidant, and Bioresorbability Properties for Myocardial Regeneration Applications. Advanced Functional Materials, 2022, 32, .	14.9	18
12	Artificial Intelligence Deep Exploration of Influential Parameters on Physicochemical Properties of Curcumin‣oaded Electrospun Nanofibers. Advanced NanoBiomed Research, 2022, 2, .	3.6	13
13	Surface Adsorptionâ€Mediated Ultrahigh Efficient Peptide Encapsulation with a Precise Ratiometric Control for Type 1 and 2 Diabetic Therapy. Small, 2022, 18, e2200449.	10.0	7
14	High drug-loaded microspheres enabled by controlled in-droplet precipitation promote functional recovery after spinal cord injury. Nature Communications, 2022, 13, 1262.	12.8	39
15	Progress in Stimuliâ€Responsive Biomaterials for Treating Cardiovascular and Cerebrovascular Diseases. Small, 2022, 18, e2200291.	10.0	20
16	Multifunctional Biomimetic Nanovaccines Based on Photothermal and Weakâ€Immunostimulatory Nanoparticulate Cores for the Immunotherapy of Solid Tumors (Adv. Mater. 9/2022). Advanced Materials, 2022, 34, .	21.0	0
17	Multidrug Idebenone/Naproxen Coâ€loaded Aspasomes for Significant inâ€vivo Antiâ€inflammatory Activity. ChemMedChem, 2022, 17, .	3.2	6
18	Mussel-Inspired and Bioclickable Peptide Engineered Surface to Combat Thrombosis and Infection. Research, 2022, 2022, 9780879.	5.7	22

#	Article	IF	Citations
19	Current trends in delivery of non-viral nucleic acid-based therapeutics for improved efficacy. Advanced Drug Delivery Reviews, 2022, 185, 114297.	13.7	4
20	Molecular scale study on the interactions of biocompatible nanoparticles with macrophage membrane and blood proteins. Nano Select, 2022, 3, 1252-1263.	3.7	5
21	Autologous Skin Fibroblastâ€Based PLGA Nanoparticles for Treating Multiorgan Fibrosis. Advanced Science, 2022, 9, .	11.2	8
22	Microfluidics Fabrication of Micrometerâ€Sized Hydrogels with Precisely Controlled Geometries for Biomedical Applications. Advanced Healthcare Materials, 2022, 11, .	7.6	22
23	Promoting Cardiac Repair through Simple Engineering of Nanoparticles with Exclusive Targeting Capability toward Myocardial Reperfusion Injury by Thermal Resistant Microfluidic Platform. Advanced Functional Materials, 2022, 32, .	14.9	6
24	Folic acid-mesoporous silicon nanoparticles enhance the anticancer activity of the p73-activating small molecule LEM2. International Journal of Pharmaceutics, 2022, 624, 121959.	5.2	0
25	Peptide-guided resiquimod-loaded lignin nanoparticles convert tumor-associated macrophages from M2 to M1 phenotype for enhanced chemotherapy. Acta Biomaterialia, 2021, 133, 231-243.	8.3	72
26	Intracellular Delivery of Budesonide and Polydopamine Coâ€Loaded in Endosomolytic Poly(butyl) Tj ETQq0 0 0 rg from M1 to M2. Advanced Therapeutics, 2021, 4, 2000058.	gBT /Overlo 3.2	ock 10 Tf 50 13
27	Requirements for Animal Experiments: Problems and Challenges. Small, 2021, 17, e2004182.	10.0	33
28	Synthesis and therapeutic potential of stimuli-responsive metal-organic frameworks. Chemical Engineering Journal, 2021, 408, 127233.	12.7	25
29	Oneâ€Pot Synthesis of pHâ€Responsive Eudragitâ€Mesoporous Silica Nanocomposites Enable Colonic Delivery of Glucocorticoids for the Treatment of Inflammatory Bowel Disease. Advanced Therapeutics, 2021, 4, 2000165.	3.2	26
30	Combination Therapy of Killing Diseases by Injectable Hydrogels: From Concept to Medical Applications. Advanced Healthcare Materials, 2021, 10, e2001571.	7.6	104
31	Preparation of cetyl palmitate-based PEGylated solid lipid nanoparticles by microfluidic technique. Acta Biomaterialia, 2021, 121, 566-578.	8.3	59
32	Microneedles for painless transdermal immunotherapeutic applications. Journal of Controlled Release, 2021, 330, 185-217.	9.9	131
33	A Hydrogenâ€Bonded Extracellular Matrixâ€Mimicking Bactericidal Hydrogel with Radical Scavenging and Hemostatic Function for pHâ€Responsive Wound Healing Acceleration. Advanced Healthcare Materials, 2021, 10, e2001122.	7.6	142
34	Nanoliposomes as Multidrug Carrier of Gemcitabine/Paclitaxel for the Effective Treatment of Metastatic Breast Cancer Disease: A Comparison with Gemzar and Taxol. Advanced Therapeutics, 2021, 4, .	3.2	17
35	Intraoperative Assessment and Photothermal Ablation of the Tumor Margins Using Gold Nanoparticles. Advanced Science, 2021, 8, 2002788.	11.2	34
36	Biohybrid Nanosystems for Cancer Treatment: Merging the Best of Two Worlds. Advances in Experimental Medicine and Biology, 2021, 1295, 135-162.	1.6	0

#	Article	IF	CITATIONS
37	Requirements and properties of biomaterials for biomedical applications. , 2021, , 195-226.		O
38	Advanced Nanosystems for Clinical Translation. Advanced Therapeutics, 2021, 4, 2000215.	3.2	3
39	Development of vaccine formulations: past, present, and future. Drug Delivery and Translational Research, 2021, 11, 353-372.	5.8	41
40	Engineered Extracellular Vesicles for Cancer Therapy. Advanced Materials, 2021, 33, e2005709.	21.0	171
41	Nanoparticleâ€mediated siRNA delivery systems for cancer therapy. View, 2021, 2, 20200111.	5. 3	36
42	Nanonutraceuticals: The New Frontier of Supplementary Food. Nanomaterials, 2021, 11, 792.	4.1	34
43	A Theranostic Cellulose Nanocrystalâ€Based Drug Delivery System with Enhanced Retention in Pulmonary Metastasis of Melanoma. Small, 2021, 17, e2007705.	10.0	24
44	Chemically Engineered Immune Cellâ€Derived Microrobots and Biomimetic Nanoparticles: Emerging Biodiagnostic and Therapeutic Tools. Advanced Science, 2021, 8, 2002499.	11.2	42
45	LinTT1 peptide-functionalized liposomes for targeted breast cancer therapy. International Journal of Pharmaceutics, 2021, 597, 120346.	5.2	45
46	Mitochondriaâ€Targeted Bovine Serum Albumin@Copper Sulfide Nanocomposites Conjugated with Rhodamineâ€110 Dye for an Enhanced Efficacy of Cancer Photothermal Therapy. Particle and Particle Systems Characterization, 2021, 38, 2100013.	2.3	15
47	Lightâ€Controlled Nanosystem with Sizeâ€Flexibility Improves Targeted Retention for Tumor Suppression. Advanced Functional Materials, 2021, 31, 2101262.	14.9	21
48	One-step microfluidics production of enzyme-loaded liposomes for the treatment of inflammatory diseases. Colloids and Surfaces B: Biointerfaces, 2021, 199, 111556.	5.0	23
49	DNAâ€Grafted Hyaluronic Acid System with Enhanced Injectability and Biostability for Photoâ€Controlled Osteoarthritis Gene Therapy. Advanced Science, 2021, 8, 2004793.	11.2	28
50	An organic-inorganic hybrid scaffold with honeycomb-like structures enabled by one-step self-assembly-driven electrospinning. Materials Science and Engineering C, 2021, 124, 112079.	7.3	9
51	Multistage signal-interactive nanoparticles improve tumor targeting through efficient nanoparticle-cell communications. Cell Reports, 2021, 35, 109131.	6.4	6
52	Selenium Nanoparticles for Biomedical Applications: From Development and Characterization to Therapeutics. Advanced Healthcare Materials, 2021, 10, e2100598.	7.6	182
53	Non-viral nanoparticles for RNA interference: Principles of design and practical guidelines. Advanced Drug Delivery Reviews, 2021, 174, 576-612.	13.7	36
54	Prevention of diabetes-associated fibrosis: Strategies in FcRn-targeted nanosystems for oral drug delivery. Advanced Drug Delivery Reviews, 2021, 175, 113778.	13.7	13

#	Article	IF	Citations
55	Challenges towards Targeted Drug Delivery in Cancer Nanomedicines. Processes, 2021, 9, 1527.	2.8	36
56	Extracellular vesicle therapeutics from plasma and adipose tissue. Nano Today, 2021, 39, 101159.	11.9	32
57	Dualâ€Crosslinked Dynamic Hydrogel Incorporating {Mo ₁₅₄ } with pH and NIR Responsiveness for Chemoâ€Photothermal Therapy. Advanced Materials, 2021, 33, e2007761.	21.0	73
58	Engineering of 2D nanomaterials to trap and kill SARS-CoV-2: a new insight from multi-microsecond atomistic simulations. Drug Delivery and Translational Research, 2021, , 1.	5.8	17
59	Programmable immune activating electrospun fibers for skin regeneration. Bioactive Materials, 2021, 6, 3218-3230.	15.6	42
60	Acetalated dextran based nano- and microparticles: synthesis, fabrication, and therapeutic applications. Chemical Communications, 2021, 57, 4212-4229.	4.1	25
61	Conventional Nanosized Drug Delivery Systems for Cancer Applications. Advances in Experimental Medicine and Biology, 2021, 1295, 3-27.	1.6	6
62	Doxorubicin Hydrochloride-Loaded Nonionic Surfactant Vesicles to Treat Metastatic and Non-Metastatic Breast Cancer. ACS Omega, 2021, 6, 2973-2989.	3.5	30
63	Investigation of silicon nanoparticles produced by centrifuge chemical vapor deposition for applications in therapy and diagnostics. European Journal of Pharmaceutics and Biopharmaceutics, 2021, 158, 254-265.	4.3	13
64	Prospective Cancer Therapies Using Stimuliâ€Responsive DNA Nanostructures. Macromolecular Bioscience, 2021, 21, e2100272.	4.1	15
65	Microfluidic preparation and in vitro evaluation of iRGD-functionalized solid lipid nanoparticles for targeted delivery of paclitaxel to tumor cells. International Journal of Pharmaceutics, 2021, 610, 121246.	5.2	23
66	Inhibiting Phase Transfer of Protein Nanoparticles by Surface Camouflage–A Versatile and Efficient Protein Encapsulation Strategy. Nano Letters, 2021, 21, 9458-9467.	9.1	7
67	Tendon Tissue Repair in Prospective of Drug Delivery, Regenerative Medicines, and Innovative Bioscaffolds. Stem Cells International, 2021, 2021, 1-23.	2.5	14
68	Recent trends on the development of systems for cancer diagnosis and treatment by microfluidic technology. Applied Materials Today, 2020, 18, 100450.	4. 3	18
69	Engineered antibody-functionalized porous silicon nanoparticles for therapeutic targeting of pro-survival pathway in endogenous neuroblasts after stroke. Biomaterials, 2020, 227, 119556.	11.4	23
70	Microfluidics for Production of Particles: Mechanism, Methodology, and Applications. Small, 2020, 16, e1904673.	10.0	63
71	Design, synthesis and characterization of a PEGylated stanozolol for potential therapeutic applications. International Journal of Pharmaceutics, 2020, 573, 118826.	5.2	3
72	Geneâ€Hydrogel Microenvironment Regulates Extracellular Matrix Metabolism Balance in Nucleus Pulposus. Advanced Science, 2020, 7, 1902099.	11,2	67

#	Article	IF	CITATIONS
73	Gold–silver nanoshells promote wound healing from drug-resistant bacteria infection and enable monitoring via surface-enhanced Raman scattering imaging. Biomaterials, 2020, 234, 119763.	11.4	102
74	Dual-peptide functionalized acetalated dextran-based nanoparticles for sequential targeting of macrophages during myocardial infarction. Nanoscale, 2020, 12, 2350-2358.	5.6	42
75	Advanced liposome-loaded scaffolds for therapeutic and tissue engineering applications. Biomaterials, 2020, 232, 119706.	11.4	127
76	Reactive oxygen species responsive nanoplatforms as smart drug delivery systems for gastrointestinal tract targeting. Biopolymers, 2020, 111, e23336.	2.4	26
77	Near-infrared light and magnetic field dual-responsive porous silicon-based nanocarriers to overcome multidrug resistance in breast cancer cells with enhanced efficiency. Journal of Materials Chemistry B, 2020, 8, 546-557.	5.8	23
78	Gelatin Templated Polypeptide Coâ€Crossâ€Linked Hydrogel for Bone Regeneration. Advanced Healthcare Materials, 2020, 9, e1901239.	7.6	112
79	Systematic in vitro biocompatibility studies of multimodal cellulose nanocrystal and lignin nanoparticles. Journal of Biomedical Materials Research - Part A, 2020, 108, 770-783.	4.0	32
80	Hybrid red blood cell membrane coated porous silicon nanoparticles functionalized with cancer antigen induce depletion of T cells. RSC Advances, 2020, 10, 35198-35205.	3.6	10
81	Recent progress in the design of DNA vaccines against tuberculosis. Drug Discovery Today, 2020, 25, 1971-1987.	6.4	19
82	Recombination Monophosphoryl Lipid A-Derived Vacosome for the Development of Preventive Cancer Vaccines. ACS Applied Materials & Development of Preventive Cancer Vaccines. ACS Applied Materials & Development of Preventive Cancer Vaccines.	8.0	17
83	3D scaffolding of fast photocurable polyurethane for soft tissue engineering by stereolithography: Influence of materials and geometry on growth of fibroblast cells. European Polymer Journal, 2020, 139, 109988.	5.4	39
84	Evaluation of the effects of nanoprecipitation process parameters on the size and morphology of poly(ethylene oxide)-block-polycaprolactone nanostructures. International Journal of Pharmaceutics, 2020, 590, 119900.	5.2	7
85	Mild temperature photothermal assisted anti-bacterial and anti-inflammatory nanosystem for synergistic treatment of post-cataract surgery endophthalmitis. Theranostics, 2020, 10, 8541-8557.	10.0	48
86	In vitro and in vivo trans-epidermal water loss evaluation following topical drug delivery systems application for pharmaceutical analysis. Journal of Pharmaceutical and Biomedical Analysis, 2020, 186, 113295.	2.8	25
87	Microfibers synthesized by wet-spinning of chitin nanomaterials: mechanical, structural and cell proliferation properties. RSC Advances, 2020, 10, 29450-29459.	3.6	19
88	Influence of Cell Membrane Wrapping on the Cellâ^'Porous Silicon Nanoparticle Interactions. Advanced Healthcare Materials, 2020, 9, e2000529.	7.6	11
89	Emerging insights on drug delivery by fatty acid mediated synthesis of lipophilic prodrugs as novel nanomedicines. Journal of Controlled Release, 2020, 326, 556-598.	9.9	49
90	Novel RET agonist for the treatment of experimental neuropathies. Molecular Pain, 2020, 16, 174480692095086.	2.1	12

#	Article	IF	CITATIONS
91	New insights into ethionamide metabolism: influence of oxidized methionine on its degradation path. RSC Medicinal Chemistry, 2020, 11, 1423-1428.	3.9	O
92	Microvascular Scaffolds: A Biomimetic 3Dâ€Selfâ€Forming Approach for Microvascular Scaffolds (Adv.) Tj ETQq0	O O rgBT	/Oyerlock 10
93	The Progress and Prospect of Zeolitic Imidazolate Frameworks in Cancer Therapy, Antibacterial Activity, and Biomineralization. Advanced Healthcare Materials, 2020, 9, e2000248.	7.6	99
94	All-in-one microfluidic assembly of insulin-loaded pH-responsive nano-in-microparticles for oral insulin delivery. Biomaterials Science, 2020, 8, 3270-3277.	5. 4	28
95	Formulation optimization and in vitro characterization of rifampicin and ceftriaxone dual drug loaded niosomes with high energy probe sonication technique. Journal of Drug Delivery Science and Technology, 2020, 58, 101763.	3.0	23
96	Superfast and controllable microfluidic inking of anti-inflammatory melanin-like nanoparticles inspired by cephalopods. Materials Horizons, 2020, 7, 1573-1580.	12.2	16
97	Microfluidics: Microfluidics for Production of Particles: Mechanism, Methodology, and Applications (Small 9/2020). Small, 2020, 16, 2070048.	10.0	5
98	The solid progress of nanomedicine. Drug Delivery and Translational Research, 2020, 10, 726-729.	5.8	91
99	Liposome-Embedding Silicon Microparticle for Oxaliplatin Delivery in Tumor Chemotherapy. Pharmaceutics, 2020, 12, 559.	4.5	23
100	Multifunctional 3Dâ€Printed Patches for Longâ€Term Drug Release Therapies after Myocardial Infarction. Advanced Functional Materials, 2020, 30, 2003440.	14.9	53
101	Current Trends in Simultaneous Determination of Co-Administered Drugs. Separations, 2020, 7, 29.	2.4	7
102	Tandemâ€Massâ€Tag Based Proteomic Analysis Facilitates Analyzing Critical Factors of Porous Silicon Nanoparticles in Determining Their Biological Responses under Diseased Condition. Advanced Science, 2020, 7, 2001129.	11.2	11
103	A Biomimetic 3Dâ€Selfâ€Forming Approach for Microvascular Scaffolds. Advanced Science, 2020, 7, 1903553.	11.2	46
104	Immunogenicity of Polyethylene Glycol Based Nanomedicines: Mechanisms, Clinical Implications and Systematic Approach. Advanced Therapeutics, 2020, 3, 1900170.	3.2	42
105	pH-responsive cationic liposome for endosomal escape mediated drug delivery. Colloids and Surfaces B: Biointerfaces, 2020, 188, 110804.	5.0	65
106	The versatile biomedical applications of bismuth-based nanoparticles and composites: therapeutic, diagnostic, biosensing, and regenerative properties. Chemical Society Reviews, 2020, 49, 1253-1321.	38.1	261
107	Fabrication and Characterization of Drug-Loaded Conductive Poly(glycerol) Tj ETQq1 1 0.784314 rgBT /Overlock Materials & Drug-Loaded Conductive Poly(glycerol) Tj ETQq1 1 0.784314 rgBT /Overlock Materials & Drug-Loaded Conductive Poly(glycerol) Tj ETQq1 1 0.784314 rgBT /Overlock Materials & Drug-Loaded Conductive Poly(glycerol) Tj ETQq1 1 0.784314 rgBT /Overlock Materials & Drug-Loaded Conductive Poly(glycerol) Tj ETQq1 1 0.784314 rgBT /Overlock Materials & Drug-Loaded Conductive Poly(glycerol) Tj ETQq1 1 0.784314 rgBT /Overlock Materials & Drug-Loaded Conductive Poly(glycerol) Tj ETQq1 1 0.784314 rgBT /Overlock Materials & Drug-Loaded Conductive Poly(glycerol) Tj ETQq1 1 0.784314 rgBT /Overlock Materials & Drug-Loaded Conductive Poly(glycerol) Tj ETQq1 1 0.784314 rgBT /Overlock Materials & Drug-Loaded Conductive Poly(glycerol) Tj ETQq1 1 0.784314 rgBT /Overlock Materials & Drug-Loaded Conductive Poly(glycerol) Tj ETQq1 1 0.784314 rgBT /Overlock Materials & Drug-Loaded Conductive Poly(glycerol) Tj ETQq1 1 0.784314 rgBT /Overlock Materials & Drug-Loaded Conductive Poly(glycerol) Tj ETQq1 1 0.784314 rgBT /Overlock Materials & Drug-Loaded Conductive Poly(glycerol) Tj ETQq1 1 0.784314 rgBT /Overlock Materials & Drug-Loaded Conductive Poly(glycerol) Tj ETQq1 1 0.784314 rgBT /Overlock Materials & Drug-Loaded Conductive Poly(glycerol) Tj ETQq1 1 0.784314 rgBT /Overlock Materials & Drug-Loaded Conductive Poly(glycerol) Tj ETQq1 1 0.784314 rgBT /Overlock Materials & Drug-Loaded Conductive Poly(glycerol) Tj ETQq1 1 0.784314 rgBT /Overlock Materials & Drug-Loaded Conductive Poly(glycerol) Tj ETQq1 1 0.784314 rgBT /Overlock Materials & Drug-Loaded Conductive Poly(glycerol) Tj ETQq1 1 0.784314 rgBT /Overlock Materials & Drug-Loaded Conductive Poly(glycerol) Tj ETQq1 1 0.784314 rgBT /Overlock Materials & Drug-Loaded Conductive Poly(glycerol) Tj ETQq1 1 0.784314 rgBT /Overlock Materials & Drug-Loaded Conductive Poly(glycerol) Tj ETQq1 1 0.784314 rgBT /Overlock Materials & Drug-Loaded Conductive Poly(glycerol) Tj ETQq1 1 0.7843	10 Tf 50 1 8.0	107 Td (seba 57
108	Polyoxometalate Composites in Cancer Therapy and Diagnostics. European Journal of Inorganic Chemistry, 2020, 2020, 2121-2132.	2.0	29

#	Article	IF	CITATIONS
109	Microfluidic fabrication and characterization of Sorafenib-loaded lipid-polymer hybrid nanoparticles for controlled drug delivery. International Journal of Pharmaceutics, 2020, 581, 119275.	5.2	50
110	Overcoming Nanoparticle-Mediated Complement Activation by Surface PEG Pairing. Nano Letters, 2020, 20, 4312-4321.	9.1	70
111	Colorectal cancer triple co-culture spheroid model to assess the biocompatibility and anticancer properties of polymeric nanoparticles. Journal of Controlled Release, 2020, 323, 398-411.	9.9	42
112	Preparation and in vivo evaluation of red blood cell membrane coated porous silicon nanoparticles implanted with 155Tb. Nuclear Medicine and Biology, 2020, 84-85, 102-110.	0.6	9
113	Ammonium glycyrrhizate skin delivery from ultradeformable liposomes: A novel use as an anti-inflammatory agent in topical drug delivery. Colloids and Surfaces B: Biointerfaces, 2020, 193, 111152.	5.0	49
114	Antimicrobial Colloidal Silver–Lignin Particles via Ion and Solvent Exchange. ACS Sustainable Chemistry and Engineering, 2019, 7, 15297-15303.	6.7	24
115	Metal Species–Encapsulated Mesoporous Silica Nanoparticles: Current Advancements and Latest Breakthroughs. Advanced Functional Materials, 2019, 29, 1902652.	14.9	104
116	Outer–inner dual reinforced micro/nano hierarchical scaffolds for promoting osteogenesis. Nanoscale, 2019, 11, 15794-15803.	5.6	5
117	Tumor exosome-based nanoparticles are efficient drug carriers for chemotherapy. Nature Communications, 2019, 10, 3838.	12.8	535
118	<p>Lipid-polymer hybrid nanoparticles for controlled delivery of hydrophilic and lipophilic doxorubicin for breast cancer therapy</p> . International Journal of Nanomedicine, 2019, Volume 14, 4961-4974.	6.7	67
119	On the issue of transparency and reproducibility in nanomedicine. Nature Nanotechnology, 2019, 14, 629-635.	31.5	149
120	A Virusâ€Mimicking pHâ€Responsive Acetalated Dextranâ€Based Membraneâ€Active Polymeric Nanoparticle for Intracellular Delivery of Antitumor Therapeutics. Advanced Functional Materials, 2019, 29, 1905352.	14.9	43
121	Utilization of green formulation technique and efficacy estimation on cell line studies for dual anticancer drug therapy with niosomes. International Journal of Pharmaceutics, 2019, 572, 118764.	5. 2	13
122	Latest Advances on Bacterial Celluloseâ€Based Materials for Wound Healing, Delivery Systems, and Tissue Engineering. Biotechnology Journal, 2019, 14, e1900059.	3.5	100
123	Landing a lethal blow on bacterial infections: an emerging advance of nanodots for wound healing acceleration. Nanomedicine, 2019, 14, 2269-2272.	3.3	15
124	Paclitaxel-loaded sodium deoxycholate-stabilized zein nanoparticles: characterization and in vitro cytotoxicity. Heliyon, 2019, 5, e02422.	3.2	51
125	Process optimization of ecological probe sonication technique for production of rifampicin loaded niosomes. Journal of Drug Delivery Science and Technology, 2019, 50, 27-33.	3.0	46
126	Acetylated Nanocellulose for Single-Component Bioinks and Cell Proliferation on 3D-Printed Scaffolds. Biomacromolecules, 2019, 20, 2770-2778.	5.4	81

#	Article	IF	CITATIONS
127	Porous Silicon as a Platform for Radiation Theranostics Together with a Novel RIB-Based Radiolanthanoid. Contrast Media and Molecular Imaging, 2019, 2019, 1-9.	0.8	11
128	Acetalated Dextran Nanoparticles Loaded into an Injectable Alginate Cryogel for Combined Chemotherapy and Cancer Vaccination. Advanced Functional Materials, 2019, 29, 1903686.	14.9	41
129	Microfluidics: Nuts and Bolts: Microfluidics for the Production of Biomaterials (Adv. Mater.) Tj ETQq1 1 0.784314 i	rgBT /Over 5.8	rlgck 10 Tf 5
130	Preparation and Characterization of Dentin Phosphophorynâ€Derived Peptideâ€Functionalized Lignin Nanoparticles for Enhanced Cellular Uptake. Small, 2019, 15, e1901427.	10.0	57
131	Biohybrid Vaccines for Improved Treatment of Aggressive Melanoma with Checkpoint Inhibitor. ACS Nano, 2019, 13, 6477-6490.	14.6	36
132	Advanced Nanovaccines for Immunotherapy Applications: From Concept to Animal Tests. , 2019, , 231-260.		1
133	pH-responsive chitosan based hydrogels affect the release of dapsone: Design, set-up, and physicochemical characterization. International Journal of Biological Macromolecules, 2019, 133, 1268-1279.	7.5	39
134	Mathematical Modeling of Release Kinetics from Supramolecular Drug Delivery Systems. Pharmaceutics, 2019, 11, 140.	4.5	289
135	Mathematical Models as Tools to Predict the Release Kinetic of Fluorescein from Lyotropic Colloidal Liquid Crystals. Materials, 2019, 12, 693.	2.9	49
136	Photosensitive materials for constructing on-demanded drug-release systems., 2019,, 193-210.		2
137	Photothermal-responsive nanosized hybrid polymersome as versatile therapeutics codelivery nanovehicle for effective tumor suppression. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 7744-7749.	7.1	85
138	Metalâ€Based Stents: Endovascular Metal Devices for the Treatment of Cerebrovascular Diseases (Adv.) Tj ETQq0	0.0 rgBT /	Overlock 10
139	Selfâ∈Healing: Selfâ∈Healing and Injectable Hydrogel for Matching Skin Flap Regeneration (Adv. Sci. 3/2019). Advanced Science, 2019, 6, 1970019.	11.2	О
140	Detection and Quantification of eDNA-Associated Bacterial Membrane Vesicles by Flow Cytometry. International Journal of Molecular Sciences, 2019, 20, 5307.	4.1	21
141	Artificially cloaked viral nanovaccine for cancer immunotherapy. Nature Communications, 2019, 10, 5747.	12.8	86
142	Antitumor Therapeutics: A Virusâ€Mimicking pHâ€Responsive Acetalated Dextranâ€Based Membraneâ€Active Polymeric Nanoparticle for Intracellular Delivery of Antitumor Therapeutics (Adv. Funct. Mater.) Tj ETQq0 0 0 rgBT	/ Owe rlock	: 1 10 Tf 50 13
143	Polydocanol foam stabilized by liposomes: Supramolecular nanoconstructs for sclerotherapy. Colloids and Surfaces B: Biointerfaces, 2019, 175, 469-476.	5.0	7
144	Endovascular Metal Devices for the Treatment of Cerebrovascular Diseases. Advanced Materials, 2019, 31, e1805452.	21.0	38

#	Article	IF	Citations
145	Laser-Activatable CuS Nanodots to Treat Multidrug-Resistant Bacteria and Release Copper Ion to Accelerate Healing of Infected Chronic Nonhealing Wounds. ACS Applied Materials & Diterfaces, 2019, 11, 3809-3822.	8.0	155
146	Automatic methodologies to perform loading and release assays of anticancer drugs from mesoporous silicon nanoparticles. Talanta, 2019, 196, 277-283.	5. 5	2
147	Cellular Internalization–Induced Aggregation of Porous Silicon Nanoparticles for Ultrasound Imaging and Proteinâ€Mediated Protection of Stem Cells. Small, 2019, 15, e1804332.	10.0	51
148	Selfâ€Healing and Injectable Hydrogel for Matching Skin Flap Regeneration. Advanced Science, 2019, 6, 1801555.	11.2	140
149	Nuts and Bolts: Microfluidics for the Production of Biomaterials. Advanced Materials Technologies, 2019, 4, 1800611.	5.8	14
150	Cellâ€Nanoparticle Interactions at (Sub)–Nanometer Resolution Analyzed by Electron Microscopy and Correlative Coherent Antiâ€Stokes Raman Scattering. Biotechnology Journal, 2019, 14, 1800413.	3.5	5
151	Close-loop dynamic nanohybrids on collagen-ark with <i>in situ</i> gelling transformation capability for biomimetic stage-specific diabetic wound healing. Materials Horizons, 2019, 6, 385-393.	12.2	46
152	Microfluidic mixing and devices for preparing nanoparticulate drug delivery systems., 2019,, 155-177.		7
153	Radiolabeled Molecular Imaging Probes for the In Vivo Evaluation of Cellulose Nanocrystals for Biomedical Applications. Biomacromolecules, 2019, 20, 674-683.	5.4	32
154	Electrospun Fibrous Architectures for Drug Delivery, Tissue Engineering and Cancer Therapy. Advanced Functional Materials, 2019, 29, 1802852.	14.9	179
155	<i>Euryale Ferox</i> Seedâ€Inspired Superlubricated Nanoparticles for Treatment of Osteoarthritis. Advanced Functional Materials, 2019, 29, 1807559.	14.9	80
156	Using microfluidic platforms to develop CNS-targeted polymeric nanoparticles for HIV therapy. European Journal of Pharmaceutics and Biopharmaceutics, 2019, 138, 111-124.	4.3	60
157	Functionalized Bacterial Cellulose Microparticles for Drug Delivery in Biomedical Applications. Current Pharmaceutical Design, 2019, 25, 3692-3701.	1.9	23
158	The importance of microfluidics for the preparation of nanoparticles as advanced drug delivery systems. Expert Opinion on Drug Delivery, 2018, 15, 469-479.	5.0	87
159	Hierarchical Microplates as Drug Depots with Controlled Geometry, Rigidity, and Therapeutic Efficacy. ACS Applied Materials & Samp; Interfaces, 2018, 10, 9280-9289.	8.0	18
160	An insight of in vitro transport of PEGylated non-ionic surfactant vesicles (NSVs) across the intestinal polarized enterocyte monolayers. European Journal of Pharmaceutics and Biopharmaceutics, 2018, 127, 432-442.	4.3	16
161	Electrospun Polyhydroxybutyrate/Poly(ε-caprolactone)/Sol–Gel-Derived Silica Hybrid Scaffolds with Drug Releasing Function for Bone Tissue Engineering Applications. ACS Applied Materials & Engineering Applied & Engineering & Engineering & Engineering & Engineering &	8.0	65
162	Neuroprotection: Biodegradable Spheres Protect Traumatically Injured Spinal Cord by Alleviating the Glutamate-Induced Excitotoxicity (Adv. Mater. 14/2018). Advanced Materials, 2018, 30, 1870095.	21.0	0

#	Article	IF	Citations
163	Immunostimulation and Immunosuppression: Nanotechnology on the Brink. Small Methods, 2018, 2, 1700347.	8.6	32
164	Bioengineered Porous Silicon Nanoparticles@Macrophages Cell Membrane as Composite Platforms for Rheumatoid Arthritis. Advanced Functional Materials, 2018, 28, 1801355.	14.9	44
165	Cell Membrane-Based Nanoreactor To Mimic the Bio-Compartmentalization Strategy of a Cell. ACS Biomaterials Science and Engineering, 2018, 4, 1471-1478.	5.2	15
166	Gold Nanorods Conjugated Porous Silicon Nanoparticles Encapsulated in Calcium Alginate Nano Hydrogels Using Microemulsion Templates. Nano Letters, 2018, 18, 1448-1453.	9.1	73
167	Biodegradable Spheres Protect Traumatically Injured Spinal Cord by Alleviating the Glutamateâ€Induced Excitotoxicity. Advanced Materials, 2018, 30, e1706032.	21.0	38
168	Dualâ€Drug Delivery Using Dextranâ€Functionalized Nanoparticles Targeting Cardiac Fibroblasts for Cellular Reprogramming. Advanced Functional Materials, 2018, 28, 1705134.	14.9	60
169	Production of pure drug nanocrystals and nano co-crystals by confinement methods. Advanced Drug Delivery Reviews, 2018, 131, 3-21.	13.7	115
170	3D printing: prospects and challenges. , 2018, , 299-379.		8
171	Cardiac Actions of a Small Molecule Inhibitor Targeting GATA4–NKX2-5 Interaction. Scientific Reports, 2018, 8, 4611.	3.3	29
172	Tailoring Porous Silicon for Biomedical Applications: From Drug Delivery to Cancer Immunotherapy. Advanced Materials, 2018, 30, e1703740.	21.0	127
173	Bridging the Knowledge of Different Worlds to Understand the Big Picture of Cancer Nanomedicines. Advanced Healthcare Materials, 2018, 7, 1700432.	7.6	30
174	Manipulating Superparamagnetic Microparticles with an Electromagnetic Needle. Advanced Materials Technologies, 2018, 3, 1700177.	5.8	16
175	Multifunctional Nanohybrid Based on Porous Silicon Nanoparticles, Gold Nanoparticles, and Acetalated Dextran for Liver Regeneration and Acute Liver Failure Theranostics. Advanced Materials, 2018, 30, e1703393.	21.0	80
176	Conductive vancomycin-loaded mesoporous silica polypyrrole-based scaffolds for bone regeneration. International Journal of Pharmaceutics, 2018, 536, 241-250.	5.2	65
177	Properties and chemical modifications of lignin: Towards lignin-based nanomaterials for biomedical applications. Progress in Materials Science, 2018, 93, 233-269.	32.8	526
178	Current developments and applications of microfluidic technology toward clinical translation of nanomedicines. Advanced Drug Delivery Reviews, 2018, 128, 54-83.	13.7	159
179	Bioactive isoflavones from Pueraria lobata root and starch: Different extraction techniques and carbonic anhydrase inhibition. Food and Chemical Toxicology, 2018, 112, 441-447.	3.6	50
180	Nanohybrids: Multifunctional Nanohybrid Based on Porous Silicon Nanoparticles, Gold Nanoparticles, and Acetalated Dextran for Liver Regeneration and Acute Liver Failure Theranostics (Adv. Mater. 24/2018). Advanced Materials, 2018, 30, 1870168.	21.0	4

#	Article	IF	CITATIONS
181	Targeted Reinforcement of Macrophage Reprogramming Toward M2 Polarization by IL-4-Loaded Hyaluronic Acid Particles. ACS Omega, 2018, 3, 18444-18455.	3.5	28
182	Microfluidic Nanoassembly of Bioengineered Chitosan-Modified FcRn-Targeted Porous Silicon Nanoparticles @ Hypromellose Acetate Succinate for Oral Delivery of Antidiabetic Peptides. ACS Applied Materials & Samp; Interfaces, 2018, 10, 44354-44367.	8.0	47
183	Post-insertion parameters of PEG-derivatives in phosphocholine-liposomes. International Journal of Pharmaceutics, 2018, 552, 414-421.	5.2	29
184	pH and Reactive Oxygen Speciesâ€Sequential Responsive Nanoâ€inâ€Micro Composite for Targeted Therapy of Inflammatory Bowel Disease. Advanced Functional Materials, 2018, 28, 1806175.	14.9	68
185	Hierarchical structured and programmed vehicles deliver drugs locally to inflamed sites of intestine. Biomaterials, 2018, 185, 322-332.	11.4	73
186	Sequential Antifouling Surface for Efficient Modulation of the Nanoparticle–Cell Interactions in Proteinâ€Rich Environments. Advanced Therapeutics, 2018, 1, 1800013.	3.2	5
187	Engineered Multifunctional Albuminâ€Decorated Porous Silicon Nanoparticles for FcRn Translocation of Insulin. Small, 2018, 14, e1800462.	10.0	53
188	Mesoporous Silica Nanoparticles for Targeted and Stimuliâ€Responsive Delivery of Chemotherapeutics: A Review. Advanced Biology, 2018, 2, 1800020.	3.0	82
189	DNA Hydrogel Assemblies: Bridging Synthesis Principles to Biomedical Applications. Advanced Therapeutics, 2018, 1, 1800042.	3.2	61
190	Localized Controlled Delivery of Gemcitabine via Microsol Electrospun Fibers to Prevent Pancreatic Cancer Recurrence. Advanced Healthcare Materials, 2018, 7, e1800593.	7.6	35
191	The Emerging Role of Multifunctional Theranostic Materials in Cancer Nanomedicine. , 2018, , 1-31.		8
192	Adjustable hardness of hydrogel for promoting vascularization and maintaining stemness of stem cells in skin flap regeneration. Applied Materials Today, 2018, 13, 54-63.	4.3	42
193	An immunological electrospun scaffold for tumor cell killing and healthy tissue regeneration. Materials Horizons, 2018, 5, 1082-1091.	12.2	31
194	Impact of Pore Size and Surface Chemistry of Porous Silicon Particles and Structure of Phospholipids on Their Interactions. ACS Biomaterials Science and Engineering, 2018, 4, 2308-2313.	5.2	21
195	Materials Science in Finland. Advanced Materials, 2018, 30, 1802557.	21.0	2
196	Lightâ€Activatable Assembled Nanoparticles to Improve Tumor Penetration and Eradicate Metastasis in Triple Negative Breast Cancer. Advanced Functional Materials, 2018, 28, 1801738.	14.9	37
197	Biofunctionalized Mesoporous Silica Nanomaterials for Targeted Drug Delivery. , 2018, , 489-520.		4
198	Chemotherapy with Porous Silicon. , 2018, , 1403-1417.		0

#	Article	IF	CITATIONS
199	Biomimetic Engineering Using Cancer Cell Membranes for Designing Compartmentalized Nanoreactors with Organelle‣ike Functions. Advanced Materials, 2017, 29, 1605375.	21.0	54
200	Core/Shell Nanocomposites Produced by Superfast Sequential Microfluidic Nanoprecipitation. Nano Letters, 2017, 17, 606-614.	9.1	123
201	InÂvitro evaluation of biodegradable lignin-based nanoparticles for drug delivery and enhanced antiproliferation effect in cancer cells. Biomaterials, 2017, 121, 97-108.	11.4	296
202	Intracellular responsive dual delivery by endosomolytic polyplexes carrying DNA anchored porous silicon nanoparticles. Journal of Controlled Release, 2017, 249, 111-122.	9.9	31
203	A Nanoâ€inâ€Nano Vector: Merging the Best of Polymeric Nanoparticles and Drug Nanocrystals. Advanced Functional Materials, 2017, 27, 1604508.	14.9	42
204	Fabrication, characterization and evaluation of bacterial cellulose-based capsule shells for oral drug delivery. Cellulose, 2017, 24, 1445-1454.	4.9	45
205	Microfluidic Encapsulation of Prickly Zincâ€Doped Copper Oxide Nanoparticles with VD1142 Modified Spermine Acetalated Dextran for Efficient Cancer Therapy. Advanced Healthcare Materials, 2017, 6, 1601406.	7.6	38
206	Receptor-Mediated Surface Charge Inversion Platform Based on Porous Silicon Nanoparticles for Efficient Cancer Cell Recognition and Combination Therapy. ACS Applied Materials & Samp; Interfaces, 2017, 9, 10034-10046.	8.0	51
207	Drug Delivery: A Nanoâ€inâ€Nano Vector: Merging the Best of Polymeric Nanoparticles and Drug Nanocrystals (Adv. Funct. Mater. 9/2017). Advanced Functional Materials, 2017, 27, .	14.9	1
208	Nanovaccines: Multistaged Nanovaccines Based on Porous Silicon@Acetalated Dextran@Cancer Cell Membrane for Cancer Immunotherapy (Adv. Mater. 7/2017). Advanced Materials, 2017, 29, .	21.0	0
209	Surface modification of acetaminophen particles by atomic layer deposition. International Journal of Pharmaceutics, 2017, 525, 160-174.	5.2	40
210	Interaction between PEG lipid and DSPE/DSPC phospholipids: An insight of PEGylation degree and kinetics of de-PEGylation. Colloids and Surfaces B: Biointerfaces, 2017, 155, 266-275.	5.0	41
211	Microfluidic-assisted fabrication of carriers for controlled drug delivery. Lab on A Chip, 2017, 17, 1856-1883.	6.0	183
212	A multifunctional nanocomplex for enhanced cell uptake, endosomal escape and improved cancer therapeutic effect. Nanomedicine, 2017, 12, 1401-1420.	3.3	15
213	Photoluminescent Hybrids of Cellulose Nanocrystals and Carbon Quantum Dots as Cytocompatible Probes for <i>in Vitro</i> Bioimaging. Biomacromolecules, 2017, 18, 2045-2055.	5.4	100
214	Functionalized materials for multistage platforms in the oral delivery of biopharmaceuticals. Progress in Materials Science, 2017, 89, 306-344.	32.8	56
215	Coating Nanoparticles with Plant-Produced Transferrin–Hydrophobin Fusion Protein Enhances Their Uptake in Cancer Cells. Bioconjugate Chemistry, 2017, 28, 1639-1648.	3.6	31
216	Physicochemical characterization of pH-responsive and fusogenic self-assembled non-phospholipid vesicles for a potential multiple targeting therapy. International Journal of Pharmaceutics, 2017, 528, 18-32.	5.2	23

#	Article	IF	Citations
217	A Versatile Carbonic Anhydrase IX Targeting Ligand-Functionalized Porous Silicon Nanoplatform for Dual Hypoxia Cancer Therapy and Imaging. ACS Applied Materials & Samp; Interfaces, 2017, 9, 13976-13987.	8.0	44
218	The impact of porous silicon nanoparticles on human cytochrome P450 metabolism in human liver microsomes in vitro. European Journal of Pharmaceutical Sciences, 2017, 104, 124-132.	4.0	11
219	Insights into Caco-2 cell culture structure using coherent anti-Stokes Raman scattering (CARS) microscopy. International Journal of Pharmaceutics, 2017, 523, 270-280.	5. 2	5
220	Nanoreactors: Biomimetic Engineering Using Cancer Cell Membranes for Designing Compartmentalized Nanoreactors with Organelleâ€Like Functions (Adv. Mater. 11/2017). Advanced Materials, 2017, 29, .	21.0	1
221	Multistaged Nanovaccines Based on Porous Silicon@Acetalated Dextran@Cancer Cell Membrane for Cancer Immunotherapy. Advanced Materials, 2017, 29, 1603239.	21.0	144
222	Preparation and biological evaluation of ethionamide-mesoporous silicon nanoparticles against Mycobacterium tuberculosis. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 403-405.	2.2	11
223	Quercetinâ€Based Modified Porous Silicon Nanoparticles for Enhanced Inhibition of Doxorubicinâ€Resistant Cancer Cells. Advanced Healthcare Materials, 2017, 6, 1601009.	7.6	49
224	Functionalization of carboxylated lignin nanoparticles for targeted and pH-responsive delivery of anticancer drugs. Nanomedicine, 2017, 12, 2581-2596.	3.3	96
225	Development and optimization of methotrexate-loaded lipid-polymer hybrid nanoparticles for controlled drug delivery applications. International Journal of Pharmaceutics, 2017, 533, 156-168.	5.2	93
226	Physicochemical properties of inclusion complexes of highly soluble \hat{l}^2 -cyclodextrins with highly hydrophobic testosterone propionate. International Journal of Pharmaceutics, 2017, 534, 316-324.	5.2	11
227	Fabrication of Calcium Phosphateâ€Based Nanocomposites Incorporating DNA Origami, Gold Nanorods, and Anticancer Drugs for Biomedical Applications. Advanced Healthcare Materials, 2017, 6, 1700664.	7.6	24
228	Protein Coating of DNA Nanostructures for Enhanced Stability and Immunocompatibility. Advanced Healthcare Materials, 2017, 6, 1700692.	7.6	166
229	Multifunctional Nanotube–Mucoadhesive Poly(methyl vinyl etherâ€ <i>co</i> â€maleic) Tj ETQq1 1 0.784314 r Delivery. Advanced Healthcare Materials, 2017, 6, 1700629.	gBT /Overl	ock 10 Tf 50 35
230	Drug‣oaded Multifunctional Nanoparticles Targeted to the Endocardial Layer of the Injured Heart Modulate Hypertrophic Signaling. Small, 2017, 13, 1701276.	10.0	82
231	Non-invasive strategies for targeting the posterior segment of eye. International Journal of Pharmaceutics, 2017, 530, 326-345.	5.2	40
232	Inside Cover Image, Volume 9, Issue 1. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2017, 9, e1459.	6.1	0
233	Analysis of imidazoles and triazoles in biological samples after MicroExtraction by packed sorbent. Journal of Enzyme Inhibition and Medicinal Chemistry, 2017, 32, 1053-1063.	5.2	37
234	Nano-Particles for Biomedical Applications. Springer Handbooks, 2017, , 643-691.	0.6	6

#	Article	IF	CITATIONS
235	Electrospun Photocrosslinkable Hydrogel Fibrous Scaffolds for Rapid In Vivo Vascularized Skin Flap Regeneration. Advanced Functional Materials, 2017, 27, 1604617.	14.9	154
236	Microfluidic assembly of a nano-in-micro dual drug delivery platform composed of halloysite nanotubes and a pH-responsive polymer for colon cancer therapy. Acta Biomaterialia, 2017, 48, 238-246.	8.3	109
237	Anticancer activity of all- trans retinoic acid-loaded liposomes on human thyroid carcinoma cells. Colloids and Surfaces B: Biointerfaces, 2017, 150, 408-416.	5.0	54
238	Delivery of therapeutics with nanoparticles: what's new in cancer immunotherapy?. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2017, 9, e1421.	6.1	72
239	Acronychiabaueri Analogue Derivative-Loaded Ultradeformable Vesicles: Physicochemical Characterization and Potential Applications. Planta Medica, 2017, 83, 482-491.	1.3	23
240	Microfluidics platform for glass capillaries and its application in droplet and nanoparticle fabrication. International Journal of Pharmaceutics, 2017, 516, 100-105.	5.2	47
241	Revolutionary impact of nanovaccines on immunotherapy. European Journal of Molecular and Clinical Medicine, 2017, 2, 44.	0.1	5
242	Detection and Physicochemical Characterization of Membrane Vesicles (MVs) of Lactobacillus reuteri DSM 17938. Frontiers in Microbiology, 2017, 8, 1040.	3.5	80
243	Nutlinâ€3a and Cytokine Coâ€loaded Spermineâ€Modified Acetalated Dextran Nanoparticles for Cancer Chemoâ€lmmunotherapy. Advanced Functional Materials, 2017, 27, 1703303.	14.9	61
244	Silica-Based Nanovectors: From Mother Nature to Biomedical Applications. , 2016, , .		1
245	Cell-based in vitro models forÂbuccal permeability studies. , 2016, , 31-40.		3
246	Antiproliferative Activity and Cellular Uptake of Evodiamine and Rutaecarpine Based on 3D Tumor Models. Molecules, 2016, 21, 954.	3.8	11
247	pHâ€Switch Nanoprecipitation of Polymeric Nanoparticles for Multimodal Cancer Targeting and Intracellular Triggered Delivery of Doxorubicin. Advanced Healthcare Materials, 2016, 5, 1904-1916.	7.6	44
248	Thiolation and Cellâ€Penetrating Peptide Surface Functionalization of Porous Silicon Nanoparticles for Oral Delivery of Insulin. Advanced Functional Materials, 2016, 26, 3405-3416.	14.9	94
249	Drug Delivery: Thiolation and Cell-Penetrating Peptide Surface Functionalization of Porous Silicon Nanoparticles for Oral Delivery of Insulin (Adv. Funct. Mater. 20/2016). Advanced Functional Materials, 2016, 26, 3374-3374.	14.9	5
250	Drug Delivery: Gold Nanorods, DNA Origami, and Porous Silicon Nanoparticle-functionalized Biocompatible Double Emulsion for Versatile Targeted Therapeutics and Antibody Combination Therapy (Adv. Mater. 46/2016). Advanced Materials, 2016, 28, 10194-10194.	21.0	0
251	Advances in biomedical and pharmaceutical applications of functional bacterial cellulose-based nanocomposites. Carbohydrate Polymers, 2016, 150, 330-352.	10.2	248
252	Multifaceted polymersome platforms: Spanning from self-assembly to drug delivery and protocells. Progress in Polymer Science, 2016, 60, 51-85.	24.7	87

#	Article	IF	CITATIONS
253	InÂvitro and inÂvivo assessment of heart-homing porous silicon nanoparticles. Biomaterials, 2016, 94, 93-104.	11.4	72
254	Oral hypoglycaemic effect of GLP-1 and DPP4 inhibitor based nanocomposites in a diabetic animal model. Journal of Controlled Release, 2016, 232, 113-119.	9.9	44
255	Dual chitosan/albumin-coated alginate/dextran sulfate nanoparticles for enhanced oral delivery of insulin. Journal of Controlled Release, 2016, 232, 29-41.	9.9	168
256	Development of a novel electrospun nanofibrous delivery system for poorly water-soluble \hat{l}^2 -sitosterol. Asian Journal of Pharmaceutical Sciences, 2016, 11, 500-506.	9.1	18
257	Drug Co-Delivery: Biodegradable Photothermal and pH Responsive Calcium Carbonate@Phospholipid@Acetalated Dextran Hybrid Platform for Advancing Biomedical Applications (Adv. Funct. Mater. 34/2016). Advanced Functional Materials, 2016, 26, 6138-6138.	14.9	O
258	Gold Nanorods, DNA Origami, and Porous Silicon Nanoparticleâ€functionalized Biocompatible Double Emulsion for Versatile Targeted Therapeutics and Antibody Combination Therapy. Advanced Materials, 2016, 28, 10195-10203.	21.0	55
259	Angiopep2-functionalized polymersomes for targeted doxorubicin delivery to glioblastoma cells. International Journal of Pharmaceutics, 2016, 511, 794-803.	5.2	42
260	Targeted Cancer Therapy: pHâ€Switch Nanoprecipitation of Polymeric Nanoparticles for Multimodal Cancer Targeting and Intracellular Triggered Delivery of Doxorubicin (Adv. Healthcare Mater. 15/2016). Advanced Healthcare Materials, 2016, 5, 1834-1834.	7.6	3
261	Spatioâ€Design of Multidimensional Prickly Znâ€Doped CuO Nanoparticle for Efficient Bacterial Killing. Advanced Materials Interfaces, 2016, 3, 1600472.	3.7	29
262	Active diffusion of nanoparticles of maternal origin within the embryonic brain. Nanomedicine, 2016, 11, 2471-2481.	3.3	12
263	Biodegradable Photothermal and pH Responsive Calcium Carbonate@Phospholipid@Acetalated Dextran Hybrid Platform for Advancing Biomedical Applications. Advanced Functional Materials, 2016, 26, 6158-6169.	14.9	40
264	Influence of Surface Chemistry on Ibuprofen Adsorption and Confinement in Mesoporous Silicon Microparticles. Langmuir, 2016, 32, 13020-13029.	3.5	25
265	Cellular delivery of enzyme-loaded DNA origami. Chemical Communications, 2016, 52, 14161-14164.	4.1	65
266	Microparticles to enhance delivery of drugs and growth factors into wound sites. Therapeutic Delivery, 2016, 7, 711-732.	2.2	13
267	Enhanced Photoluminescence in Acetylene-Treated ZnO Nanorods. Nanoscale Research Letters, 2016, 11, 413.	5.7	6
268	An In Situ Gelling Drug Delivery System for Improved Recovery after Spinal Cord Injury. Advanced Healthcare Materials, 2016, 5, 1513-1521.	7.6	31
269	Cationic Supramolecular Vesicular Aggregates for Pulmonary Tissue Selective Delivery in Anticancer Therapy. ChemMedChem, 2016, 11, 1734-1744.	3.2	9
270	Applications of bacterial cellulose in food, cosmetics and drug delivery. Cellulose, 2016, 23, 2291-2314.	4.9	312

#	Article	IF	CITATIONS
271	Upregulating Hifâ€lα by Hydrogel Nanofibrous Scaffolds for Rapidly Recruiting Angiogenesis Relative Cells in Diabetic Wound. Advanced Healthcare Materials, 2016, 5, 907-918.	7.6	110
272	Platelet Lysate-Modified Porous Silicon Microparticles for Enhanced Cell Proliferation in Wound Healing Applications. ACS Applied Materials & Samp; Interfaces, 2016, 8, 988-996.	8.0	33
273	A comprehensive review of the neonatal Fc receptor and its application in drug delivery. , 2016, 161, 22-39.		80
274	Microfluidics as a cutting-edge technique for drug delivery applications. Journal of Drug Delivery Science and Technology, 2016, 34, 76-87.	3.0	75
275	Niosomes as Drug Nanovectors: Multiscale pH-Dependent Structural Response. Langmuir, 2016, 32, 1241-1249.	3.5	42
276	Multinuclear NMR analysis of the antitubercular drug ethionamide. Journal of Molecular Structure, 2016, 1105, 286-292.	3.6	1
277	Chemotherapy with Porous Silicon. , 2016, , 1-15.		2
278	3.5 Current Trends and Developments for Nanotechnology in Cancer. , 2015, , 290-342.		0
279	Helicobacter pylori ATCC 43629/NCTC 11639 Outer Membrane Vesicles (OMVs) from Biofilm and Planktonic Phase Associated with Extracellular DNA (eDNA). Frontiers in Microbiology, 2015, 6, 1369.	3.5	97
280	Editorial (Thematic Issue: Supramolecular Systems in Nanomedicines: Therapeutic Applications and) Tj ETQq0 0		
280	Laterial (memacie issael eapramolecalai eystems in varionicalemesi merapeatie / ppileations ana) ij 1 eqq o	0 rgBT /O\	verlock 10 Tf 5
281	Multifunctional porous silicon nanoparticles for cancer theranostics. Biomaterials, 2015, 48, 108-118.	0 rgBT /Ov	verlock 10 Tf S
		2.1	o .
281	Multifunctional porous silicon nanoparticles for cancer theranostics. Biomaterials, 2015, 48, 108-118. Polyethylene glycol (PEG)-dendron phospholipids as innovative constructs for the preparation of	11.4	141
281	Multifunctional porous silicon nanoparticles for cancer theranostics. Biomaterials, 2015, 48, 108-118. Polyethylene glycol (PEG)-dendron phospholipids as innovative constructs for the preparation of super stealth liposomes for anticancer therapy. Journal of Controlled Release, 2015, 199, 106-113. A Versatile and Robust Microfluidic Platform Toward High Throughput Synthesis of Homogeneous	11.4	141
281 282 283	Multifunctional porous silicon nanoparticles for cancer theranostics. Biomaterials, 2015, 48, 108-118. Polyethylene glycol (PEG)-dendron phospholipids as innovative constructs for the preparation of super stealth liposomes for anticancer therapy. Journal of Controlled Release, 2015, 199, 106-113. A Versatile and Robust Microfluidic Platform Toward High Throughput Synthesis of Homogeneous Nanoparticles with Tunable Properties. Advanced Materials, 2015, 27, 2298-2304. Functionalization of Alkyne-Terminated Thermally Hydrocarbonized Porous Silicon Nanoparticles With Targeting Peptides and Antifouling Polymers: Effect on the Human Plasma Protein Adsorption.	11.4 9.9 21.0	141 125 203
281 282 283 284	Multifunctional porous silicon nanoparticles for cancer theranostics. Biomaterials, 2015, 48, 108-118. Polyethylene glycol (PEG)-dendron phospholipids as innovative constructs for the preparation of super stealth liposomes for anticancer therapy. Journal of Controlled Release, 2015, 199, 106-113. A Versatile and Robust Microfluidic Platform Toward High Throughput Synthesis of Homogeneous Nanoparticles with Tunable Properties. Advanced Materials, 2015, 27, 2298-2304. Functionalization of Alkyne-Terminated Thermally Hydrocarbonized Porous Silicon Nanoparticles With Targeting Peptides and Antifouling Polymers: Effect on the Human Plasma Protein Adsorption. ACS Applied Materials & Dual-drug delivery by porous silicon nanoparticles for improved cellular uptake, sustained release,	11.4 9.9 21.0 8.0	141 125 203 33
281 282 283 284	Multifunctional porous silicon nanoparticles for cancer theranostics. Biomaterials, 2015, 48, 108-118. Polyethylene glycol (PEG)-dendron phospholipids as innovative constructs for the preparation of super stealth liposomes for anticancer therapy. Journal of Controlled Release, 2015, 199, 106-113. A Versatile and Robust Microfluidic Platform Toward High Throughput Synthesis of Homogeneous Nanoparticles with Tunable Properties. Advanced Materials, 2015, 27, 2298-2304. Functionalization of Alkyne-Terminated Thermally Hydrocarbonized Porous Silicon Nanoparticles With Targeting Peptides and Antifouling Polymers: Effect on the Human Plasma Protein Adsorption. ACS Applied Materials & Dual-drug delivery by porous silicon nanoparticles for improved cellular uptake, sustained release, and combination therapy. Acta Biomaterialia, 2015, 16, 206-214. Onâ€Chip Selfâ€Assembly of a Smart Hybrid Nanocomposite for Antitumoral Applications. Advanced	11.4 9.9 21.0 8.0	141 125 203 33

#	Article	IF	CITATIONS
289	Simultaneous determination of eperisone hydrochloride and paracetamol in mouse plasma by high performance liquid chromatography-photodiode array detector. Journal of Chromatography A, 2015, 1388, 79-86.	3.7	26
290	Polymer-based nanoparticles for oral insulin delivery: Revisited approaches. Biotechnology Advances, 2015, 33, 1342-1354.	11.7	189
291	Drug Delivery: Onâ€Chip Selfâ€Assembly of a Smart Hybrid Nanocomposite for Antitumoral Applications (Adv. Funct. Mater. 10/2015). Advanced Functional Materials, 2015, 25, 1612-1612.	14.9	2
292	Multistage pH-responsive mucoadhesive nanocarriers prepared by aerosol flow reactor technology: A controlled dual protein-drug delivery system. Biomaterials, 2015, 68, 9-20.	11.4	77
293	Microfluidic Assembly of a Multifunctional Tailorable Composite System Designed for Site Specific Combined Oral Delivery of Peptide Drugs. ACS Nano, 2015, 9, 8291-8302.	14.6	96
294	Simple Microfluidic Approach to Fabricate Monodisperse Hollow Microparticles for Multidrug Delivery. ACS Applied Materials & Samp; Interfaces, 2015, 7, 14822-14832.	8.0	66
295	Controlled Dissolution of Griseofulvin Solid Dispersions from Electrosprayed Enteric Polymer Micromatrix Particles: Physicochemical Characterization and <i>in Vitro</i> Evaluation. Molecular Pharmaceutics, 2015, 12, 2254-2264.	4.6	28
296	Inhibition of Multidrug Resistance of Cancer Cells by Coâ€Delivery of DNA Nanostructures and Drugs Using Porous Silicon Nanoparticles@Giant Liposomes. Advanced Functional Materials, 2015, 25, 3330-3340.	14.9	114
297	Inorganic Nanoparticles in Targeted Drug Delivery and Imaging. Advances in Delivery Science and Technology, 2015, , 571-613.	0.4	12
298	Copper-Free Click Chemistry Modification of Nanovectors for Integrin-Targeted Cancer Therapy. Methods in Pharmacology and Toxicology, 2015, , 35-49.	0.2	0
299	Smart Porous Silicon Nanoparticles with Polymeric Coatings for Sequential Combination Therapy. Molecular Pharmaceutics, 2015, 12, 4038-4047.	4.6	63
300	Surface bioengineering of diatomite based nanovectors for efficient intracellular uptake and drug delivery. Nanoscale, 2015, 7, 20063-20074.	5.6	81
301	Determination of ciprofloxacin and levofloxacin in human sputum collected from cystic fibrosis patients using microextraction by packed sorbent-high performance liquid chromatography photodiode array detector. Journal of Chromatography A, 2015, 1419, 58-66.	3.7	71
302	Cyclodextrin-Modified Porous Silicon Nanoparticles for Efficient Sustained Drug Delivery and Proliferation Inhibition of Breast Cancer Cells. ACS Applied Materials & Interfaces, 2015, 7, 23197-23204.	8.0	55
303	Multistage vector delivery of sulindac and silymarin for prevention of colon cancer. Colloids and Surfaces B: Biointerfaces, 2015, 136, 694-703.	5.0	39
304	Multimodal non-linear optical imaging for the investigation of drug nano-/microcrystal–cell interactions. European Journal of Pharmaceutics and Biopharmaceutics, 2015, 96, 338-348.	4.3	16
305	HPLC–FLD and spectrofluorometer apparatus: How to best detect fluorescent probe-loaded niosomes in biological samples. Colloids and Surfaces B: Biointerfaces, 2015, 135, 575-580.	5.0	12
306	Controlled Shape and Nucleation Switching of Interfacially Polymerizable Nanoassemblies by Methyl Substitution. Chemistry of Materials, 2015, 27, 8170-8178.	6.7	6

#	Article	IF	CITATIONS
307	Safety and toxicity concerns of orally delivered nanoparticles as drug carriers. Expert Opinion on Drug Metabolism and Toxicology, 2015, 11, 381-393.	3.3	38
308	Microfluidic assisted one-step fabrication of porous silicon@acetalated dextran nanocomposites for precisely controlled combination chemotherapy. Biomaterials, 2015, 39, 249-259.	11.4	133
309	Solid state transformations in consequence of electrospraying $\hat{a} \in A$ novel polymorphic form of piroxicam. European Journal of Pharmaceutics and Biopharmaceutics, 2015, 89, 182-189.	4.3	35
310	Aqueous-core PEG-coated PLA nanocapsules for an efficient entrapment of water soluble anticancer drugs and a smart therapeutic response. European Journal of Pharmaceutics and Biopharmaceutics, 2015, 89, 30-39.	4.3	71
311	Improved stability and biocompatibility of nanostructured silicon drug carrier for intravenous administration. Acta Biomaterialia, 2015, 13, 207-215.	8.3	60
312	Advanced Nanomedicines for the Treatment and Diagnosis of Myocardial Infarction and Heart Failure. Current Drug Targets, 2015, 16, 1682-1697.	2.1	20
313	Opinion Paper: Microfluidics Technique to Revolutionize the Drug Delivery Field: Current Developments and Applications. Current Drug Delivery, 2015, 12, 642-644.	1.6	2
314	Evaluation of anticancer activity of celastrol liposomes in prostate cancer cells. Journal of Microencapsulation, 2014, 31, 501-507.	2.8	80
315	In vitro assessment of biopolymer-modified porous silicon microparticles for wound healing applications. European Journal of Pharmaceutics and Biopharmaceutics, 2014, 88, 635-642.	4.3	25
316	Mucus as a Barrier for Biopharmaceuticals and Drug Delivery Systems., 2014,, 59-97.		4
317	Poly(methyl vinyl etherâ€∢i>alt∢/i>â€maleic acid)â€Functionalized Porous Silicon Nanoparticles for Enhanced Stability and Cellular Internalization. Macromolecular Rapid Communications, 2014, 35, 624-629.	3.9	42
318	Microfluidic Assembly of Monodisperse Multistage pHâ€Responsive Polymer/Porous Silicon Composites for Precisely Controlled Multiâ€Drug Delivery. Small, 2014, 10, 2029-2038.	10.0	105
319	Fabrication of a Multifunctional Nanoâ€inâ€micro Drug Delivery Platform by Microfluidic Templated Encapsulation of Porous Silicon in Polymer Matrix. Advanced Materials, 2014, 26, 4497-4503.	21.0	138
320	Shrinkage of pegylated and non-pegylated liposomes in serum. Colloids and Surfaces B: Biointerfaces, 2014, 114, 294-300.	5.0	96
321	Microfluidic assembly of multistage porous silicon–lipid vesicles for controlled drug release. Lab on A Chip, 2014, 14, 1083-1086.	6.0	75
322	Amine-modified hyaluronic acid-functionalized porous silicon nanoparticles for targeting breast cancer tumors. Nanoscale, 2014, 6, 10377-10387.	5.6	108
323	Porous silicon nanoparticles for nanomedicine: preparation and biomedical applications. Nanomedicine, 2014, 9, 535-554.	3.3	155
324	Coherent anti-Stokes Raman scattering microscopy driving the future of loaded mesoporous silica imaging. Acta Biomaterialia, 2014, 10, 4870-4877.	8.3	17

#	Article	IF	Citations
325	Confinement Effects on Drugs in Thermally Hydrocarbonized Porous Silicon. Langmuir, 2014, 30, 2196-2205.	3.5	30
326	The impact of nanoparticles on the mucosal translocation and transport of GLP-1 across the intestinal epithelium. Biomaterials, 2014, 35, 9199-9207.	11.4	127
327	<i>In Vivo</i> Evaluation of Porous Silicon and Porous Silicon Solid Lipid Nanocomposites for Passive Targeting and Imaging. Molecular Pharmaceutics, 2014, 11, 2876-2886.	4.6	27
328	Surface chemistry dependent immunostimulative potential of porous silicon nanoplatforms. Biomaterials, 2014, 35, 9224-9235.	11.4	72
329	Copper-free azide–alkyne cycloaddition of targeting peptides toÂporous silicon nanoparticles for intracellular drug uptake. Biomaterials, 2014, 35, 1257-1266.	11.4	94
330	InÂvivo biocompatibility of porous silicon biomaterials for drug delivery to the heart. Biomaterials, 2014, 35, 8394-8405.	11.4	73
331	Biocompatibility of porous silicon for biomedical applications. , 2014, , 129-181.		3
332	Chitosan-modified porous silicon microparticles for enhanced permeability of insulin across intestinal cell monolayers. Biomaterials, 2014, 35, 7172-7179.	11.4	105
333	Augmented cellular trafficking and endosomal escape of porous silicon nanoparticles via zwitterionic bilayer polymer surface engineering. Biomaterials, 2014, 35, 7488-7500.	11.4	61
334	Microfluidics-assisted engineering of polymeric microcapsules with high encapsulation efficiency for protein drug delivery. International Journal of Pharmaceutics, 2014, 472, 82-87.	5.2	89
335	Targeting the thyroid gland with thyroid-stimulating hormone (TSH)-nanoliposomes. Biomaterials, 2014, 35, 7101-7109.	11.4	88
336	Conjugation of Peptides to Antisense Interleukin-6 Via Click Chemistry. Current Medicinal Chemistry, 2014, 21, 1247-1254.	2.4	4
337	Mesoporous Materials and Nanocrystals for Enhancing the Dissolution Behavior of Poorly Water-soluble Drugs. Current Pharmaceutical Biotechnology, 2014, 14, 926-938.	1.6	24
338	Antihyperglycemic Potential of Incretins Orally Delivered via Nano and Microsystems and Subsequent Glucoregulatory Effects. Current Pharmaceutical Biotechnology, 2014, 15, 609-619.	1.6	9
339	Targeting Membrane Transporters and Receptors as a mean to Optimize Orally Delivered Biotechnological based Drugs through Nanoparticle Delivery Systems. Current Pharmaceutical Biotechnology, 2014, 15, 650-658.	1.6	13
340	The mechanisms of surface chemistry effects of mesoporous silicon nanoparticles on immunotoxicity and biocompatibility. Biomaterials, 2013, 34, 7776-7789.	11.4	163
341	Inhibition of Influenza A Virus Infection <i>in Vitro</i> by Saliphenylhalamide-Loaded Porous Silicon Nanoparticles. ACS Nano, 2013, 7, 6884-6893.	14.6	71
342	Co-delivery of a hydrophobic small molecule and a hydrophilic peptide by porous silicon nanoparticles. Journal of Controlled Release, 2013, 170, 268-278.	9.9	141

#	Article	IF	CITATIONS
343	Tumour homing peptide-functionalized porous silicon nanovectors for cancer therapy. Biomaterials, 2013, 34, 9134-9141.	11.4	76
344	Diatom silica microparticles for sustained release and permeation enhancement following oral delivery of prednisone and mesalamine. Biomaterials, 2013, 34, 9210-9219.	11.4	116
345	Anticancer activity of liposomal bergamot essential oil (BEO) on human neuroblastoma cells. Colloids and Surfaces B: Biointerfaces, 2013, 112, 548-553.	5.0	122
346	Nanostructured Porous Siliconâ€Solid Lipid Nanocomposite: Towards Enhanced Cytocompatibility and Stability, Reduced Cellular Association, and Prolonged Drug Release. Advanced Functional Materials, 2013, 23, 1893-1902.	14.9	72
347	Microfluidic Templated Mesoporous Silicon–Solid Lipid Microcomposites for Sustained Drug Delivery. ACS Applied Materials & Interfaces, 2013, 5, 12127-12134.	8.0	45
348	Nanostructured porous silicon in preclinical imaging: Moving from bench to bedside. Journal of Materials Research, 2013, 28, 152-164.	2.6	54
349	Metabolism of the Antituberculosis Drug Ethionamide. Current Drug Metabolism, 2013, 14, 151-158.	1.2	41
350	Improving Oral Absorption Via Drug-Loaded Nanocarriers: Absorption Mechanisms, Intestinal Models and Rational Fabrication. Current Drug Metabolism, 2013, 14, 28-56.	1.2	66
351	Evaluation of the Physicochemical and Biopharmaceutical Properties of Fluoro-Indomethacin. Current Drug Metabolism, 2013, 14, 80-89.	1.2	3
352	Porous Silicon for Drug Delivery. , 2013, , 1772-1780.		3
352 353	Porous Silicon for Drug Delivery. , 2013, , 1772-1780. Porous Silicon Nanoparticles. , 2013, , 235-275.		3
		1.2	
353	Porous Silicon Nanoparticles. , 2013, , 235-275. Non-animal models used in drug discovery: drug absorption and metabolism. Current Drug	1.2 2.6	1
353 354	Porous Silicon Nanoparticles., 2013,, 235-275. Non-animal models used in drug discovery: drug absorption and metabolism. Current Drug Metabolism, 2013, 14, 2-3. Porous-based biomaterials for tissue engineering and drug delivery applications. Biomatter, 2012, 2,		1 15
353 354 355	Porous Silicon Nanoparticles. , 2013, , 235-275. Non-animal models used in drug discovery: drug absorption and metabolism. Current Drug Metabolism, 2013, 14, 2-3. Porous-based biomaterials for tissue engineering and drug delivery applications. Biomatter, 2012, 2, 237-238.	2.6	1 15 13
353 354 355 356	Porous Silicon Nanoparticles. , 2013, , 235-275. Non-animal models used in drug discovery: drug absorption and metabolism. Current Drug Metabolism, 2013, 14, 2-3. Porous-based biomaterials for tissue engineering and drug delivery applications. Biomatter, 2012, 2, 237-238. Nanostructured porous Si-based nanoparticles for targeted drug delivery. Biomatter, 2012, 2, 296-312. Toxicological Profile of Therapeutic Nanodelivery Systems. Current Drug Metabolism, 2012, 13,	2.6	1 15 13 112
353 354 355 356	Porous Silicon Nanoparticles. , 2013, , 235-275. Non-animal models used in drug discovery: drug absorption and metabolism. Current Drug Metabolism, 2013, 14, 2-3. Porous-based biomaterials for tissue engineering and drug delivery applications. Biomatter, 2012, 2, 237-238. Nanostructured porous Si-based nanoparticles for targeted drug delivery. Biomatter, 2012, 2, 296-312. Toxicological Profile of Therapeutic Nanodelivery Systems. Current Drug Metabolism, 2012, 13, 1068-1086. Intravenous Delivery of Hydrophobin-Functionalized Porous Silicon Nanoparticles: Stability, Plasma	2.6 2.6 1.2	1 15 13 112 39

#	Article	IF	Citations
361	Oral Delivery of Glucagon-like Peptide-1 and Analogs: Alternatives for Diabetes Control?. Journal of Diabetes Science and Technology, 2012, 6, 1486-1497.	2.2	39
362	New times, new trends for ethionamide: In vitro evaluation of drug-loaded thermally carbonized porous silicon microparticles. European Journal of Pharmaceutics and Biopharmaceutics, 2012, 81, 314-323.	4.3	37
363	Nanostructured porous silicon materials: potential candidates for improving drug delivery. Nanomedicine, 2012, 7, 1281-1284.	3.3	49
364	Cellular interactions of surface modified nanoporous silicon particles. Nanoscale, 2012, 4, 3184.	5.6	63
365	Evaluation of the Physicochemical and Biopharmaceutical Properties of Fluoro-Indomethacin. Current Drug Metabolism, 2012, 14, 80-89.	1.2	0
366	Tablet preformulations of indomethacin-loaded mesoporous silicon microparticles. International Journal of Pharmaceutics, 2012, 422, 125-131.	5.2	31
367	The mucoadhesive and gastroretentive properties of hydrophobin-coated porous silicon nanoparticle oral drug delivery systems. Biomaterials, 2012, 33, 3353-3362.	11.4	125
368	¹⁸ F-Labeled Modified Porous Silicon Particles for Investigation of Drug Delivery Carrier Distribution in Vivo with Positron Emission Tomography. Molecular Pharmaceutics, 2011, 8, 1799-1806.	4.6	65
369	Editorial [Hot Topic: Innovative Technologies for Drug Delivery Applications: From Biopolymers and Nanocapsules to Inorganic Materials (Guest Editor: Helder A. Santos)]. Current Drug Discovery Technologies, 2011, 8, 155-156.	1.2	0
370	Physicochemical stability of high indomethacin payload ordered mesoporous silica MCM-41 and SBA-15 microparticles. International Journal of Pharmaceutics, 2011, 416, 242-51.	5.2	50
371	Functional hydrophobin-coating of thermally hydrocarbonized porous silicon microparticles. Biomaterials, 2011, 32, 9089-9099.	11.4	71
372	Drug Delivery Formulations of Ordered and Nonordered Mesoporous Silica: Comparison of Three Drug Loading Methods. Journal of Pharmaceutical Sciences, 2011, 100, 3294-3306.	3.3	144
373	Nanoparticulate devices for brain drug delivery. Medicinal Research Reviews, 2011, 31, 716-756.	10.5	53
374	Drug permeation across intestinal epithelial cells using porous silicon nanoparticles. Biomaterials, 2011, 32, 2625-2633.	11.4	157
375	Comparison of mesoporous silicon and non-ordered mesoporous silica materials as drug carriers for itraconazole. International Journal of Pharmaceutics, 2011, 414, 148-156.	5.2	124
376	Multifunctional Porous Silicon for Therapeutic Drug Delivery and Imaging. Current Drug Discovery Technologies, 2011, 8, 228-249.	1.2	97
377	Gemcitabine-loaded PEGylated unilamellar liposomes vs GEMZARÂ $^{\odot}$: Biodistribution, pharmacokinetic features and in vivo antitumor activity. Journal of Controlled Release, 2010, 144, 144-150.	9.9	109
378	Electrochemical Properties of Phospholipid Monolayers at Liquid–Liquid Interfaces. ChemPhysChem, 2010, 11, 28-41.	2.1	35

#	Article	IF	Citations
379	In vitro cytotoxicity of porous silicon microparticles: Effect of the particle concentration, surface chemistry and size. Acta Biomaterialia, 2010, 6, 2721-2731.	8.3	158
380	Long time effect on the stability of silver nanoparticles in aqueous medium: Effect of the synthesis and storage conditions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010, 364, 19-25.	4.7	132
381	Cytotoxicity study of ordered mesoporous silica MCM-41 and SBA-15 microparticles on Caco-2 cells. European Journal of Pharmaceutics and Biopharmaceutics, 2010, 74, 483-494.	4.3	87
382	Biocompatibility of Thermally Hydrocarbonized Porous Silicon Nanoparticles and their Biodistribution in Rats. ACS Nano, 2010, 4, 3023-3032.	14.6	316
383	Turbiscan Lab® Expert analysis of the stability of ethosomes® and ultradeformable liposomes containing a bilayer fluidizing agent. Colloids and Surfaces B: Biointerfaces, 2009, 72, 155-160.	5.0	233
384	Effects of Lipid Composition and Preparation Conditions on Physical-Chemical Properties, Technological Parameters and In Vitro Biological Activity of Gemcitabine-Loaded Liposomes. Current Drug Delivery, 2007, 4, 89-101.	1.6	97
385	Failure of MTT as a Toxicity Testing Agent for Mesoporous Silicon Microparticles. Chemical Research in Toxicology, 2007, 20, 1913-1918.	3.3	129
386	Effect of Gramicidin on Phospholipid-Modified Monolayers and on Ion Transfer at a Liquid–Liquid Interface. ChemPhysChem, 2007, 8, 913-920.	2.1	12
387	Adsorption–Penetration Studies of Glucose Oxidase into Phospholipid Monolayers at the 1,2-Dichloroethane/Water Interface. ChemPhysChem, 2007, 8, 1540-1547.	2.1	11
388	Preparation of nanostructures composed of dextran sulfate/ruthenium nanoparticles and their interaction with phospholipid monolayers at a liquid–liquid interface. Journal of Electroanalytical Chemistry, 2007, 599, 194-202.	3.8	12
389	Analysis of adsorption of phospholipids at the 1,2-dichloroethane/water interface by electrochemical impedance spectroscopy: A study of the effect of the saturated alkyl chain. Journal of Electroanalytical Chemistry, 2007, 599, 367-375.	3.8	12
390	Thermodynamic analysis of binding between drugs and glycosaminoglycans by isothermal titration calorimetry and fluorescence spectroscopy. European Journal of Pharmaceutical Sciences, 2007, 32, 105-114.	4.0	20
391	Electrochemical Study of Interfacial Composite Nanostructures:Â Polyelectrolyte/Gold Nanoparticle Multilayers Assembled on Phospholipid/Dextran Sulfate Monolayers at a Liquidâ°'Liquid Interface. Journal of Physical Chemistry B, 2005, 109, 20105-20114.	2.6	32
392	Interfacial Interaction between Dextran Sulfate and Lipid Monolayers: An Electrochemical Studyâ€. Langmuir, 2005, 21, 5475-5484.	3.5	25
393	New designs for MRI contrast agents. Journal of Computer-Aided Molecular Design, 2003, 17, 463-473.	2.9	12
394	Copolymers: Drug Delivery. , 0, , 2192-2202.		0