List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1365380/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Tumor exosome-based nanoparticles are efficient drug carriers for chemotherapy. Nature Communications, 2019, 10, 3838.	12.8	535
2	Properties and chemical modifications of lignin: Towards lignin-based nanomaterials for biomedical applications. Progress in Materials Science, 2018, 93, 233-269.	32.8	526
3	Biocompatibility of Thermally Hydrocarbonized Porous Silicon Nanoparticles and their Biodistribution in Rats. ACS Nano, 2010, 4, 3023-3032.	14.6	316
4	Applications of bacterial cellulose in food, cosmetics and drug delivery. Cellulose, 2016, 23, 2291-2314.	4.9	312
5	InÂvitro evaluation of biodegradable lignin-based nanoparticles for drug delivery and enhanced antiproliferation effect in cancer cells. Biomaterials, 2017, 121, 97-108.	11.4	296
6	Mathematical Modeling of Release Kinetics from Supramolecular Drug Delivery Systems. Pharmaceutics, 2019, 11, 140.	4.5	289
7	The versatile biomedical applications of bismuth-based nanoparticles and composites: therapeutic, diagnostic, biosensing, and regenerative properties. Chemical Society Reviews, 2020, 49, 1253-1321.	38.1	261
8	Advances in biomedical and pharmaceutical applications of functional bacterial cellulose-based nanocomposites. Carbohydrate Polymers, 2016, 150, 330-352.	10.2	248
9	Turbiscan Lab® Expert analysis of the stability of ethosomes® and ultradeformable liposomes containing a bilayer fluidizing agent. Colloids and Surfaces B: Biointerfaces, 2009, 72, 155-160.	5.0	233
10	A Versatile and Robust Microfluidic Platform Toward High Throughput Synthesis of Homogeneous Nanoparticles with Tunable Properties. Advanced Materials, 2015, 27, 2298-2304.	21.0	203
11	Polymer-based nanoparticles for oral insulin delivery: Revisited approaches. Biotechnology Advances, 2015, 33, 1342-1354.	11.7	189
12	Microfluidic-assisted fabrication of carriers for controlled drug delivery. Lab on A Chip, 2017, 17, 1856-1883.	6.0	183
13	Selenium Nanoparticles for Biomedical Applications: From Development and Characterization to Therapeutics. Advanced Healthcare Materials, 2021, 10, e2100598.	7.6	182
14	Electrospun Fibrous Architectures for Drug Delivery, Tissue Engineering and Cancer Therapy. Advanced Functional Materials, 2019, 29, 1802852.	14.9	179
15	Engineered Extracellular Vesicles for Cancer Therapy. Advanced Materials, 2021, 33, e2005709.	21.0	171
16	Dual chitosan/albumin-coated alginate/dextran sulfate nanoparticles for enhanced oral delivery of insulin. Journal of Controlled Release, 2016, 232, 29-41.	9.9	168
17	Protein Coating of DNA Nanostructures for Enhanced Stability and Immunocompatibility. Advanced Healthcare Materials, 2017, 6, 1700692.	7.6	166
18	The mechanisms of surface chemistry effects of mesoporous silicon nanoparticles on immunotoxicity and biocompatibility. Biomaterials, 2013, 34, 7776-7789.	11.4	163

#	Article	IF	CITATIONS
19	Current developments and applications of microfluidic technology toward clinical translation of nanomedicines. Advanced Drug Delivery Reviews, 2018, 128, 54-83.	13.7	159
20	In vitro cytotoxicity of porous silicon microparticles: Effect of the particle concentration, surface chemistry and size. Acta Biomaterialia, 2010, 6, 2721-2731.	8.3	158
21	Drug permeation across intestinal epithelial cells using porous silicon nanoparticles. Biomaterials, 2011, 32, 2625-2633.	11.4	157
22	Porous silicon nanoparticles for nanomedicine: preparation and biomedical applications. Nanomedicine, 2014, 9, 535-554.	3.3	155
23	Laser-Activatable CuS Nanodots to Treat Multidrug-Resistant Bacteria and Release Copper Ion to Accelerate Healing of Infected Chronic Nonhealing Wounds. ACS Applied Materials & Interfaces, 2019, 11, 3809-3822.	8.0	155
24	Electrospun Photocrosslinkable Hydrogel Fibrous Scaffolds for Rapid In Vivo Vascularized Skin Flap Regeneration. Advanced Functional Materials, 2017, 27, 1604617.	14.9	154
25	On the issue of transparency and reproducibility in nanomedicine. Nature Nanotechnology, 2019, 14, 629-635.	31.5	149
26	Intravenous Delivery of Hydrophobin-Functionalized Porous Silicon Nanoparticles: Stability, Plasma Protein Adsorption and Biodistribution. Molecular Pharmaceutics, 2012, 9, 654-663.	4.6	146
27	Drug Delivery Formulations of Ordered and Nonordered Mesoporous Silica: Comparison of Three Drug Loading Methods. Journal of Pharmaceutical Sciences, 2011, 100, 3294-3306.	3.3	144
28	Multistaged Nanovaccines Based on Porous Silicon@Acetalated Dextran@Cancer Cell Membrane for Cancer Immunotherapy. Advanced Materials, 2017, 29, 1603239.	21.0	144
29	A Hydrogenâ€Bonded Extracellular Matrixâ€Mimicking Bactericidal Hydrogel with Radical Scavenging and Hemostatic Function for pHâ€Responsive Wound Healing Acceleration. Advanced Healthcare Materials, 2021, 10, e2001122.	7.6	142
30	Co-delivery of a hydrophobic small molecule and a hydrophilic peptide by porous silicon nanoparticles. Journal of Controlled Release, 2013, 170, 268-278.	9.9	141
31	Multifunctional porous silicon nanoparticles for cancer theranostics. Biomaterials, 2015, 48, 108-118.	11.4	141
32	Selfâ€Healing and Injectable Hydrogel for Matching Skin Flap Regeneration. Advanced Science, 2019, 6, 1801555.	11.2	140
33	Fabrication of a Multifunctional Nanoâ€inâ€micro Drug Delivery Platform by Microfluidic Templated Encapsulation of Porous Silicon in Polymer Matrix. Advanced Materials, 2014, 26, 4497-4503.	21.0	138
34	Microfluidic assisted one-step fabrication of porous silicon@acetalated dextran nanocomposites for precisely controlled combination chemotherapy. Biomaterials, 2015, 39, 249-259.	11.4	133
35	Long time effect on the stability of silver nanoparticles in aqueous medium: Effect of the synthesis and storage conditions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010, 364, 19-25.	4.7	132
36	Microneedles for painless transdermal immunotherapeutic applications. Journal of Controlled Release, 2021, 330, 185-217.	9.9	131

#	Article	IF	CITATIONS
37	Failure of MTT as a Toxicity Testing Agent for Mesoporous Silicon Microparticles. Chemical Research in Toxicology, 2007, 20, 1913-1918.	3.3	129
38	The impact of nanoparticles on the mucosal translocation and transport of GLP-1 across the intestinal epithelium. Biomaterials, 2014, 35, 9199-9207.	11.4	127
39	Tailoring Porous Silicon for Biomedical Applications: From Drug Delivery to Cancer Immunotherapy. Advanced Materials, 2018, 30, e1703740.	21.0	127
40	Advanced liposome-loaded scaffolds for therapeutic and tissue engineering applications. Biomaterials, 2020, 232, 119706.	11.4	127
41	The mucoadhesive and gastroretentive properties of hydrophobin-coated porous silicon nanoparticle oral drug delivery systems. Biomaterials, 2012, 33, 3353-3362.	11.4	125
42	Polyethylene glycol (PEG)-dendron phospholipids as innovative constructs for the preparation of super stealth liposomes for anticancer therapy. Journal of Controlled Release, 2015, 199, 106-113.	9.9	125
43	Comparison of mesoporous silicon and non-ordered mesoporous silica materials as drug carriers for itraconazole. International Journal of Pharmaceutics, 2011, 414, 148-156.	5.2	124
44	Core/Shell Nanocomposites Produced by Superfast Sequential Microfluidic Nanoprecipitation. Nano Letters, 2017, 17, 606-614.	9.1	123
45	Anticancer activity of liposomal bergamot essential oil (BEO) on human neuroblastoma cells. Colloids and Surfaces B: Biointerfaces, 2013, 112, 548-553.	5.0	122
46	Diatom silica microparticles for sustained release and permeation enhancement following oral delivery of prednisone and mesalamine. Biomaterials, 2013, 34, 9210-9219.	11.4	116
47	Production of pure drug nanocrystals and nano co-crystals by confinement methods. Advanced Drug Delivery Reviews, 2018, 131, 3-21.	13.7	115
48	Inhibition of Multidrug Resistance of Cancer Cells by Coâ€Delivery of DNA Nanostructures and Drugs Using Porous Silicon Nanoparticles@Giant Liposomes. Advanced Functional Materials, 2015, 25, 3330-3340.	14.9	114
49	Nanostructured porous Si-based nanoparticles for targeted drug delivery. Biomatter, 2012, 2, 296-312.	2.6	112
50	Gelatin Templated Polypeptide Co ross‣inked Hydrogel for Bone Regeneration. Advanced Healthcare Materials, 2020, 9, e1901239.	7.6	112
51	Upregulating Hifâ€1α by Hydrogel Nanofibrous Scaffolds for Rapidly Recruiting Angiogenesis Relative Cells in Diabetic Wound. Advanced Healthcare Materials, 2016, 5, 907-918.	7.6	110
52	Gemcitabine-loaded PEGylated unilamellar liposomes vs GEMZAR®: Biodistribution, pharmacokinetic features and in vivo antitumor activity. Journal of Controlled Release, 2010, 144, 144-150.	9.9	109
53	Microfluidic assembly of a nano-in-micro dual drug delivery platform composed of halloysite nanotubes and a pH-responsive polymer for colon cancer therapy. Acta Biomaterialia, 2017, 48, 238-246.	8.3	109
54	Amine Modification of Thermally Carbonized Porous Silicon with Silane Coupling Chemistry. Langmuir, 2012, 28, 14045-14054.	3.5	108

#	Article	IF	CITATIONS
55	Amine-modified hyaluronic acid-functionalized porous silicon nanoparticles for targeting breast cancer tumors. Nanoscale, 2014, 6, 10377-10387.	5.6	108
56	Microfluidic Assembly of Monodisperse Multistage pHâ€Responsive Polymer/Porous Silicon Composites for Precisely Controlled Multiâ€Drug Delivery. Small, 2014, 10, 2029-2038.	10.0	105
57	Chitosan-modified porous silicon microparticles for enhanced permeability of insulin across intestinal cell monolayers. Biomaterials, 2014, 35, 7172-7179.	11.4	105
58	Metal Species–Encapsulated Mesoporous Silica Nanoparticles: Current Advancements and Latest Breakthroughs. Advanced Functional Materials, 2019, 29, 1902652.	14.9	104
59	Combination Therapy of Killing Diseases by Injectable Hydrogels: From Concept to Medical Applications. Advanced Healthcare Materials, 2021, 10, e2001571.	7.6	104
60	Gold–silver nanoshells promote wound healing from drug-resistant bacteria infection and enable monitoring via surface-enhanced Raman scattering imaging. Biomaterials, 2020, 234, 119763.	11.4	102
61	Photoluminescent Hybrids of Cellulose Nanocrystals and Carbon Quantum Dots as Cytocompatible Probes for <i>in Vitro</i> Bioimaging. Biomacromolecules, 2017, 18, 2045-2055.	5.4	100
62	Latest Advances on Bacterial Celluloseâ€Based Materials for Wound Healing, Delivery Systems, and Tissue Engineering. Biotechnology Journal, 2019, 14, e1900059.	3.5	100
63	The Progress and Prospect of Zeolitic Imidazolate Frameworks in Cancer Therapy, Antibacterial Activity, and Biomineralization. Advanced Healthcare Materials, 2020, 9, e2000248.	7.6	99
64	Effects of Lipid Composition and Preparation Conditions on Physical-Chemical Properties, Technological Parameters and In Vitro Biological Activity of Gemcitabine-Loaded Liposomes. Current Drug Delivery, 2007, 4, 89-101.	1.6	97
65	Helicobacter pylori ATCC 43629/NCTC 11639 Outer Membrane Vesicles (OMVs) from Biofilm and Planktonic Phase Associated with Extracellular DNA (eDNA). Frontiers in Microbiology, 2015, 6, 1369.	3.5	97
66	Multifunctional Porous Silicon for Therapeutic Drug Delivery and Imaging. Current Drug Discovery Technologies, 2011, 8, 228-249.	1.2	97
67	Shrinkage of pegylated and non-pegylated liposomes in serum. Colloids and Surfaces B: Biointerfaces, 2014, 114, 294-300.	5.0	96
68	Microfluidic Assembly of a Multifunctional Tailorable Composite System Designed for Site Specific Combined Oral Delivery of Peptide Drugs. ACS Nano, 2015, 9, 8291-8302.	14.6	96
69	Functionalization of carboxylated lignin nanoparticles for targeted and pH-responsive delivery of anticancer drugs. Nanomedicine, 2017, 12, 2581-2596.	3.3	96
70	Copper-free azide–alkyne cycloaddition of targeting peptides toÂporous silicon nanoparticles for intracellular drug uptake. Biomaterials, 2014, 35, 1257-1266.	11.4	94
71	Thiolation and Cellâ€Penetrating Peptide Surface Functionalization of Porous Silicon Nanoparticles for Oral Delivery of Insulin. Advanced Functional Materials, 2016, 26, 3405-3416.	14.9	94
72	Engineered neutrophil-derived exosome-like vesicles for targeted cancer therapy. Science Advances, 2022, 8, eabj8207.	10.3	94

#	Article	IF	CITATIONS
73	Development and optimization of methotrexate-loaded lipid-polymer hybrid nanoparticles for controlled drug delivery applications. International Journal of Pharmaceutics, 2017, 533, 156-168.	5.2	93
74	The solid progress of nanomedicine. Drug Delivery and Translational Research, 2020, 10, 726-729.	5.8	91
75	Microfluidics-assisted engineering of polymeric microcapsules with high encapsulation efficiency for protein drug delivery. International Journal of Pharmaceutics, 2014, 472, 82-87.	5.2	89
76	Targeting the thyroid gland with thyroid-stimulating hormone (TSH)-nanoliposomes. Biomaterials, 2014, 35, 7101-7109.	11.4	88
77	Cytotoxicity study of ordered mesoporous silica MCM-41 and SBA-15 microparticles on Caco-2 cells. European Journal of Pharmaceutics and Biopharmaceutics, 2010, 74, 483-494.	4.3	87
78	Multifaceted polymersome platforms: Spanning from self-assembly to drug delivery and protocells. Progress in Polymer Science, 2016, 60, 51-85.	24.7	87
79	The importance of microfluidics for the preparation of nanoparticles as advanced drug delivery systems. Expert Opinion on Drug Delivery, 2018, 15, 469-479.	5.0	87
80	Artificially cloaked viral nanovaccine for cancer immunotherapy. Nature Communications, 2019, 10, 5747.	12.8	86
81	Photothermal-responsive nanosized hybrid polymersome as versatile therapeutics codelivery nanovehicle for effective tumor suppression. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 7744-7749.	7.1	85
82	Drugâ€Loaded Multifunctional Nanoparticles Targeted to the Endocardial Layer of the Injured Heart Modulate Hypertrophic Signaling. Small, 2017, 13, 1701276.	10.0	82
83	Mesoporous Silica Nanoparticles for Targeted and Stimuliâ€Responsive Delivery of Chemotherapeutics: A Review. Advanced Biology, 2018, 2, 1800020.	3.0	82
84	Surface bioengineering of diatomite based nanovectors for efficient intracellular uptake and drug delivery. Nanoscale, 2015, 7, 20063-20074.	5.6	81
85	Acetylated Nanocellulose for Single-Component Bioinks and Cell Proliferation on 3D-Printed Scaffolds. Biomacromolecules, 2019, 20, 2770-2778.	5.4	81
86	Evaluation of anticancer activity of celastrol liposomes in prostate cancer cells. Journal of Microencapsulation, 2014, 31, 501-507.	2.8	80
87	A comprehensive review of the neonatal Fc receptor and its application in drug delivery. , 2016, 161, 22-39.		80
88	Detection and Physicochemical Characterization of Membrane Vesicles (MVs) of Lactobacillus reuteri DSM 17938. Frontiers in Microbiology, 2017, 8, 1040.	3.5	80
89	Multifunctional Nanohybrid Based on Porous Silicon Nanoparticles, Gold Nanoparticles, and Acetalated Dextran for Liver Regeneration and Acute Liver Failure Theranostics. Advanced Materials, 2018, 30, e1703393.	21.0	80
90	<i>Euryale Ferox</i> Seedâ€Inspired Superlubricated Nanoparticles for Treatment of Osteoarthritis. Advanced Functional Materials, 2019, 29, 1807559.	14.9	80

#	Article	IF	CITATIONS
91	A new cocrystal and salts of itraconazole: Comparison of solid-state properties, stability and dissolution behavior. International Journal of Pharmaceutics, 2012, 436, 403-409.	5.2	78
92	Dual-drug delivery by porous silicon nanoparticles for improved cellular uptake, sustained release, and combination therapy. Acta Biomaterialia, 2015, 16, 206-214.	8.3	78
93	Multistage pH-responsive mucoadhesive nanocarriers prepared by aerosol flow reactor technology: A controlled dual protein-drug delivery system. Biomaterials, 2015, 68, 9-20.	11.4	77
94	Tumour homing peptide-functionalized porous silicon nanovectors for cancer therapy. Biomaterials, 2013, 34, 9134-9141.	11.4	76
95	Microfluidic assembly of multistage porous silicon–lipid vesicles for controlled drug release. Lab on A Chip, 2014, 14, 1083-1086.	6.0	75
96	Microfluidics as a cutting-edge technique for drug delivery applications. Journal of Drug Delivery Science and Technology, 2016, 34, 76-87.	3.0	75
97	InÂvivo biocompatibility of porous silicon biomaterials for drug delivery to the heart. Biomaterials, 2014, 35, 8394-8405.	11.4	73
98	Gold Nanorods Conjugated Porous Silicon Nanoparticles Encapsulated in Calcium Alginate Nano Hydrogels Using Microemulsion Templates. Nano Letters, 2018, 18, 1448-1453.	9.1	73
99	Hierarchical structured and programmed vehicles deliver drugs locally to inflamed sites of intestine. Biomaterials, 2018, 185, 322-332.	11.4	73
100	Dual rosslinked Dynamic Hydrogel Incorporating {Mo ₁₅₄ } with pH and NIR Responsiveness for Chemoâ€Photothermal Therapy. Advanced Materials, 2021, 33, e2007761.	21.0	73
101	Nanostructured Porous Siliconâ€Solid Lipid Nanocomposite: Towards Enhanced Cytocompatibility and Stability, Reduced Cellular Association, and Prolonged Drug Release. Advanced Functional Materials, 2013, 23, 1893-1902.	14.9	72
102	Surface chemistry dependent immunostimulative potential of porous silicon nanoplatforms. Biomaterials, 2014, 35, 9224-9235.	11.4	72
103	InÂvitro and inÂvivo assessment of heart-homing porous silicon nanoparticles. Biomaterials, 2016, 94, 93-104.	11.4	72
104	Delivery of therapeutics with nanoparticles: what's new in cancer immunotherapy?. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2017, 9, e1421.	6.1	72
105	Peptide-guided resiquimod-loaded lignin nanoparticles convert tumor-associated macrophages from M2 to M1 phenotype for enhanced chemotherapy. Acta Biomaterialia, 2021, 133, 231-243.	8.3	72
106	Functional hydrophobin-coating of thermally hydrocarbonized porous silicon microparticles. Biomaterials, 2011, 32, 9089-9099.	11.4	71
107	Inhibition of Influenza A Virus Infection <i>in Vitro</i> by Saliphenylhalamide-Loaded Porous Silicon Nanoparticles. ACS Nano, 2013, 7, 6884-6893.	14.6	71
108	Determination of ciprofloxacin and levofloxacin in human sputum collected from cystic fibrosis patients using microextraction by packed sorbent-high performance liquid chromatography photodiode array detector. Journal of Chromatography A, 2015, 1419, 58-66.	3.7	71

#	Article	IF	CITATIONS
109	Aqueous-core PEG-coated PLA nanocapsules for an efficient entrapment of water soluble anticancer drugs and a smart therapeutic response. European Journal of Pharmaceutics and Biopharmaceutics, 2015, 89, 30-39.	4.3	71
110	Overcoming Nanoparticle-Mediated Complement Activation by Surface PEG Pairing. Nano Letters, 2020, 20, 4312-4321.	9.1	70
111	pH and Reactive Oxygen Speciesâ€Sequential Responsive Nanoâ€inâ€Micro Composite for Targeted Therapy of Inflammatory Bowel Disease. Advanced Functional Materials, 2018, 28, 1806175.	14.9	68
112	<p>Lipid-polymer hybrid nanoparticles for controlled delivery of hydrophilic and lipophilic doxorubicin for breast cancer therapy</p> . International Journal of Nanomedicine, 2019, Volume 14, 4961-4974.	6.7	67
113	Geneâ€Hydrogel Microenvironment Regulates Extracellular Matrix Metabolism Balance in Nucleus Pulposus. Advanced Science, 2020, 7, 1902099.	11.2	67
114	Improving Oral Absorption Via Drug-Loaded Nanocarriers: Absorption Mechanisms, Intestinal Models and Rational Fabrication. Current Drug Metabolism, 2013, 14, 28-56.	1.2	66
115	Simple Microfluidic Approach to Fabricate Monodisperse Hollow Microparticles for Multidrug Delivery. ACS Applied Materials & Interfaces, 2015, 7, 14822-14832.	8.0	66
116	¹⁸ F-Labeled Modified Porous Silicon Particles for Investigation of Drug Delivery Carrier Distribution in Vivo with Positron Emission Tomography. Molecular Pharmaceutics, 2011, 8, 1799-1806.	4.6	65
117	Cellular delivery of enzyme-loaded DNA origami. Chemical Communications, 2016, 52, 14161-14164.	4.1	65
118	Electrospun Polyhydroxybutyrate/Poly(ε-caprolactone)/Sol–Gel-Derived Silica Hybrid Scaffolds with Drug Releasing Function for Bone Tissue Engineering Applications. ACS Applied Materials & Interfaces, 2018, 10, 14540-14548.	8.0	65
119	Conductive vancomycin-loaded mesoporous silica polypyrrole-based scaffolds for bone regeneration. International Journal of Pharmaceutics, 2018, 536, 241-250.	5.2	65
120	pH-responsive cationic liposome for endosomal escape mediated drug delivery. Colloids and Surfaces B: Biointerfaces, 2020, 188, 110804.	5.0	65
121	Cellular interactions of surface modified nanoporous silicon particles. Nanoscale, 2012, 4, 3184.	5.6	63
122	Smart Porous Silicon Nanoparticles with Polymeric Coatings for Sequential Combination Therapy. Molecular Pharmaceutics, 2015, 12, 4038-4047.	4.6	63
123	Microfluidics for Production of Particles: Mechanism, Methodology, and Applications. Small, 2020, 16, e1904673.	10.0	63
124	Augmented cellular trafficking and endosomal escape of porous silicon nanoparticles via zwitterionic bilayer polymer surface engineering. Biomaterials, 2014, 35, 7488-7500.	11.4	61
125	DNA Hydrogel Assemblies: Bridging Synthesis Principles to Biomedical Applications. Advanced Therapeutics, 2018, 1, 1800042.	3.2	61
126	Nutlinâ€3a and Cytokine Coâ€loaded Spermineâ€Modified Acetalated Dextran Nanoparticles for Cancer Chemoâ€Immunotherapy. Advanced Functional Materials, 2017, 27, 1703303.	14.9	61

#	Article	IF	CITATIONS
127	Onâ€Chip Selfâ€Assembly of a Smart Hybrid Nanocomposite for Antitumoral Applications. Advanced Functional Materials, 2015, 25, 1488-1497.	14.9	60
128	Improved stability and biocompatibility of nanostructured silicon drug carrier for intravenous administration. Acta Biomaterialia, 2015, 13, 207-215.	8.3	60
129	Dualâ€Drug Delivery Using Dextranâ€Functionalized Nanoparticles Targeting Cardiac Fibroblasts for Cellular Reprogramming. Advanced Functional Materials, 2018, 28, 1705134.	14.9	60
130	Using microfluidic platforms to develop CNS-targeted polymeric nanoparticles for HIV therapy. European Journal of Pharmaceutics and Biopharmaceutics, 2019, 138, 111-124.	4.3	60
131	Preparation of cetyl palmitate-based PEGylated solid lipid nanoparticles by microfluidic technique. Acta Biomaterialia, 2021, 121, 566-578.	8.3	59
132	Preparation and Characterization of Dentin Phosphophorynâ€Derived Peptideâ€Functionalized Lignin Nanoparticles for Enhanced Cellular Uptake. Small, 2019, 15, e1901427.	10.0	57
133	Fabrication and Characterization of Drug-Loaded Conductive Poly(glycerol) Tj ETQq1 1 0.784314 rgBT /Overlock Materials & amp; Interfaces, 2020, 12, 6899-6909.	10 Tf 50 5 8.0	07 Td (sebac 57
134	Functionalized materials for multistage platforms in the oral delivery of biopharmaceuticals. Progress in Materials Science, 2017, 89, 306-344.	32.8	56
135	Cyclodextrin-Modified Porous Silicon Nanoparticles for Efficient Sustained Drug Delivery and Proliferation Inhibition of Breast Cancer Cells. ACS Applied Materials & Interfaces, 2015, 7, 23197-23204.	8.0	55
136	Gold Nanorods, DNA Origami, and Porous Silicon Nanoparticleâ€functionalized Biocompatible Double Emulsion for Versatile Targeted Therapeutics and Antibody Combination Therapy. Advanced Materials, 2016, 28, 10195-10203.	21.0	55
137	Nanostructured porous silicon in preclinical imaging: Moving from bench to bedside. Journal of Materials Research, 2013, 28, 152-164.	2.6	54
138	A prospective cancer chemo-immunotherapy approach mediated by synergistic CD326 targeted porous silicon nanovectors. Nano Research, 2015, 8, 1505-1521.	10.4	54
139	Biomimetic Engineering Using Cancer Cell Membranes for Designing Compartmentalized Nanoreactors with Organelleâ€Like Functions. Advanced Materials, 2017, 29, 1605375.	21.0	54
140	Anticancer activity of all- trans retinoic acid-loaded liposomes on human thyroid carcinoma cells. Colloids and Surfaces B: Biointerfaces, 2017, 150, 408-416.	5.0	54
141	Nanoparticulate devices for brain drug delivery. Medicinal Research Reviews, 2011, 31, 716-756.	10.5	53
142	Engineered Multifunctional Albuminâ€Decorated Porous Silicon Nanoparticles for FcRn Translocation of Insulin. Small, 2018, 14, e1800462.	10.0	53
143	Multifunctional 3Dâ€Printed Patches for Longâ€Term Drug Release Therapies after Myocardial Infarction. Advanced Functional Materials, 2020, 30, 2003440.	14.9	53
144	Receptor-Mediated Surface Charge Inversion Platform Based on Porous Silicon Nanoparticles for Efficient Cancer Cell Recognition and Combination Therapy. ACS Applied Materials & Interfaces, 2017, 9, 10034-10046.	8.0	51

#	Article	IF	CITATIONS
145	Paclitaxel-loaded sodium deoxycholate-stabilized zein nanoparticles: characterization and in vitro cytotoxicity. Heliyon, 2019, 5, e02422.	3.2	51
146	Cellular Internalization–Induced Aggregation of Porous Silicon Nanoparticles for Ultrasound Imaging and Proteinâ€Mediated Protection of Stem Cells. Small, 2019, 15, e1804332.	10.0	51
147	Physicochemical stability of high indomethacin payload ordered mesoporous silica MCM-41 and SBA-15 microparticles. International Journal of Pharmaceutics, 2011, 416, 242-51.	5.2	50
148	Bioactive isoflavones from Pueraria lobata root and starch: Different extraction techniques and carbonic anhydrase inhibition. Food and Chemical Toxicology, 2018, 112, 441-447.	3.6	50
149	Microfluidic fabrication and characterization of Sorafenib-loaded lipid-polymer hybrid nanoparticles for controlled drug delivery. International Journal of Pharmaceutics, 2020, 581, 119275.	5.2	50
150	Nanostructured porous silicon materials: potential candidates for improving drug delivery. Nanomedicine, 2012, 7, 1281-1284.	3.3	49
151	Quercetinâ€Based Modified Porous Silicon Nanoparticles for Enhanced Inhibition of Doxorubicinâ€Resistant Cancer Cells. Advanced Healthcare Materials, 2017, 6, 1601009.	7.6	49
152	Mathematical Models as Tools to Predict the Release Kinetic of Fluorescein from Lyotropic Colloidal Liquid Crystals. Materials, 2019, 12, 693.	2.9	49
153	Emerging insights on drug delivery by fatty acid mediated synthesis of lipophilic prodrugs as novel nanomedicines. Journal of Controlled Release, 2020, 326, 556-598.	9.9	49
154	Ammonium glycyrrhizate skin delivery from ultradeformable liposomes: A novel use as an anti-inflammatory agent in topical drug delivery. Colloids and Surfaces B: Biointerfaces, 2020, 193, 111152.	5.0	49
155	Biomimetic platelet membrane-coated nanoparticles for targeted therapy. European Journal of Pharmaceutics and Biopharmaceutics, 2022, 172, 1-15.	4.3	49
156	Mild temperature photothermal assisted anti-bacterial and anti-inflammatory nanosystem for synergistic treatment of post-cataract surgery endophthalmitis. Theranostics, 2020, 10, 8541-8557.	10.0	48
157	Microfluidics platform for glass capillaries and its application in droplet and nanoparticle fabrication. International Journal of Pharmaceutics, 2017, 516, 100-105.	5.2	47
158	Microfluidic Nanoassembly of Bioengineered Chitosan-Modified FcRn-Targeted Porous Silicon Nanoparticles @ Hypromellose Acetate Succinate for Oral Delivery of Antidiabetic Peptides. ACS Applied Materials & Interfaces, 2018, 10, 44354-44367.	8.0	47
159	Process optimization of ecological probe sonication technique for production of rifampicin loaded niosomes. Journal of Drug Delivery Science and Technology, 2019, 50, 27-33.	3.0	46
160	Close-loop dynamic nanohybrids on collagen-ark with <i>in situ</i> gelling transformation capability for biomimetic stage-specific diabetic wound healing. Materials Horizons, 2019, 6, 385-393.	12.2	46
161	A Biomimetic 3D‣elfâ€Forming Approach for Microvascular Scaffolds. Advanced Science, 2020, 7, 1903553.	11.2	46
162	Microfluidic Templated Mesoporous Silicon–Solid Lipid Microcomposites for Sustained Drug Delivery. ACS Applied Materials & Interfaces, 2013, 5, 12127-12134.	8.0	45

#	Article	IF	CITATIONS
163	Fabrication, characterization and evaluation of bacterial cellulose-based capsule shells for oral drug delivery. Cellulose, 2017, 24, 1445-1454.	4.9	45
164	LinTT1 peptide-functionalized liposomes for targeted breast cancer therapy. International Journal of Pharmaceutics, 2021, 597, 120346.	5.2	45
165	pHâ€ S witch Nanoprecipitation of Polymeric Nanoparticles for Multimodal Cancer Targeting and Intracellular Triggered Delivery of Doxorubicin. Advanced Healthcare Materials, 2016, 5, 1904-1916.	7.6	44
166	Oral hypoglycaemic effect of GLP-1 and DPP4 inhibitor based nanocomposites in a diabetic animal model. Journal of Controlled Release, 2016, 232, 113-119.	9.9	44
167	A Versatile Carbonic Anhydrase IX Targeting Ligand-Functionalized Porous Silicon Nanoplatform for Dual Hypoxia Cancer Therapy and Imaging. ACS Applied Materials & Interfaces, 2017, 9, 13976-13987.	8.0	44
168	Bioengineered Porous Silicon Nanoparticles@Macrophages Cell Membrane as Composite Platforms for Rheumatoid Arthritis. Advanced Functional Materials, 2018, 28, 1801355.	14.9	44
169	A Virusâ€Mimicking pHâ€Responsive Acetalated Dextranâ€Based Membraneâ€Active Polymeric Nanoparticle for Intracellular Delivery of Antitumor Therapeutics. Advanced Functional Materials, 2019, 29, 1905352.	14.9	43
170	Emerging Theranostic Nanomaterials in Diabetes and Its Complications. Advanced Science, 2022, 9, e2102466.	11.2	43
171	Poly(methyl vinyl etherâ€ <i>alt</i> â€maleic acid)â€Functionalized Porous Silicon Nanoparticles for Enhanced Stability and Cellular Internalization. Macromolecular Rapid Communications, 2014, 35, 624-629.	3.9	42
172	Angiopep2-functionalized polymersomes for targeted doxorubicin delivery to glioblastoma cells. International Journal of Pharmaceutics, 2016, 511, 794-803.	5.2	42
173	Niosomes as Drug Nanovectors: Multiscale pH-Dependent Structural Response. Langmuir, 2016, 32, 1241-1249.	3.5	42
174	A Nanoâ€inâ€Nano Vector: Merging the Best of Polymeric Nanoparticles and Drug Nanocrystals. Advanced Functional Materials, 2017, 27, 1604508.	14.9	42
175	Adjustable hardness of hydrogel for promoting vascularization and maintaining stemness of stem cells in skin flap regeneration. Applied Materials Today, 2018, 13, 54-63.	4.3	42
176	Dual-peptide functionalized acetalated dextran-based nanoparticles for sequential targeting of macrophages during myocardial infarction. Nanoscale, 2020, 12, 2350-2358.	5.6	42
177	Immunogenicity of Polyethylene Glycol Based Nanomedicines: Mechanisms, Clinical Implications and Systematic Approach. Advanced Therapeutics, 2020, 3, 1900170.	3.2	42
178	Colorectal cancer triple co-culture spheroid model to assess the biocompatibility and anticancer properties of polymeric nanoparticles. Journal of Controlled Release, 2020, 323, 398-411.	9.9	42
179	Chemically Engineered Immune Cellâ€Derived Microrobots and Biomimetic Nanoparticles: Emerging Biodiagnostic and Therapeutic Tools. Advanced Science, 2021, 8, 2002499.	11.2	42
180	Programmable immune activating electrospun fibers for skin regeneration. Bioactive Materials, 2021, 6, 3218-3230.	15.6	42

#	Article	IF	CITATIONS
181	Metabolism of the Antituberculosis Drug Ethionamide. Current Drug Metabolism, 2013, 14, 151-158.	1.2	41
182	Interaction between PEG lipid and DSPE/DSPC phospholipids: An insight of PEGylation degree and kinetics of de-PEGylation. Colloids and Surfaces B: Biointerfaces, 2017, 155, 266-275.	5.0	41
183	Acetalated Dextran Nanoparticles Loaded into an Injectable Alginate Cryogel for Combined Chemotherapy and Cancer Vaccination. Advanced Functional Materials, 2019, 29, 1903686.	14.9	41
184	Development of vaccine formulations: past, present, and future. Drug Delivery and Translational Research, 2021, 11, 353-372.	5.8	41
185	Biodegradable Photothermal and pH Responsive Calcium Carbonate@Phospholipid@Acetalated Dextran Hybrid Platform for Advancing Biomedical Applications. Advanced Functional Materials, 2016, 26, 6158-6169.	14.9	40
186	Surface modification of acetaminophen particles by atomic layer deposition. International Journal of Pharmaceutics, 2017, 525, 160-174.	5.2	40
187	Non-invasive strategies for targeting the posterior segment of eye. International Journal of Pharmaceutics, 2017, 530, 326-345.	5.2	40
188	Toxicological Profile of Therapeutic Nanodelivery Systems. Current Drug Metabolism, 2012, 13, 1068-1086.	1.2	39
189	Oral Delivery of Glucagon-like Peptide-1 and Analogs: Alternatives for Diabetes Control?. Journal of Diabetes Science and Technology, 2012, 6, 1486-1497.	2.2	39
190	Multistage vector delivery of sulindac and silymarin for prevention of colon cancer. Colloids and Surfaces B: Biointerfaces, 2015, 136, 694-703.	5.0	39
191	pH-responsive chitosan based hydrogels affect the release of dapsone: Design, set-up, and physicochemical characterization. International Journal of Biological Macromolecules, 2019, 133, 1268-1279.	7.5	39
192	3D scaffolding of fast photocurable polyurethane for soft tissue engineering by stereolithography: Influence of materials and geometry on growth of fibroblast cells. European Polymer Journal, 2020, 139, 109988.	5.4	39
193	High drug-loaded microspheres enabled by controlled in-droplet precipitation promote functional recovery after spinal cord injury. Nature Communications, 2022, 13, 1262.	12.8	39
194	Systematic inÂvitro and inÂvivo study on porous silicon to improve the oral bioavailability of celecoxib. Biomaterials, 2015, 52, 44-55.	11.4	38
195	Safety and toxicity concerns of orally delivered nanoparticles as drug carriers. Expert Opinion on Drug Metabolism and Toxicology, 2015, 11, 381-393.	3.3	38
196	Microfluidic Encapsulation of Prickly Zincâ€Đoped Copper Oxide Nanoparticles with VD1142 Modified Spermine Acetalated Dextran for Efficient Cancer Therapy. Advanced Healthcare Materials, 2017, 6, 1601406.	7.6	38
197	Biodegradable Spheres Protect Traumatically Injured Spinal Cord by Alleviating the Glutamateâ€Induced Excitotoxicity. Advanced Materials, 2018, 30, e1706032.	21.0	38
198	Endovascular Metal Devices for the Treatment of Cerebrovascular Diseases. Advanced Materials, 2019, 31, e1805452.	21.0	38

#	Article	IF	CITATIONS
199	New times, new trends for ethionamide: In vitro evaluation of drug-loaded thermally carbonized porous silicon microparticles. European Journal of Pharmaceutics and Biopharmaceutics, 2012, 81, 314-323.	4.3	37
200	Analysis of imidazoles and triazoles in biological samples after MicroExtraction by packed sorbent. Journal of Enzyme Inhibition and Medicinal Chemistry, 2017, 32, 1053-1063.	5.2	37
201	Lightâ€Activatable Assembled Nanoparticles to Improve Tumor Penetration and Eradicate Metastasis in Triple Negative Breast Cancer. Advanced Functional Materials, 2018, 28, 1801738.	14.9	37
202	Biohybrid Vaccines for Improved Treatment of Aggressive Melanoma with Checkpoint Inhibitor. ACS Nano, 2019, 13, 6477-6490.	14.6	36
203	Nanoparticleâ€mediated siRNA delivery systems for cancer therapy. View, 2021, 2, 20200111.	5.3	36
204	Non-viral nanoparticles for RNA interference: Principles of design and practical guidelines. Advanced Drug Delivery Reviews, 2021, 174, 576-612.	13.7	36
205	Challenges towards Targeted Drug Delivery in Cancer Nanomedicines. Processes, 2021, 9, 1527.	2.8	36
206	Electrochemical Properties of Phospholipid Monolayers at Liquid–Liquid Interfaces. ChemPhysChem, 2010, 11, 28-41.	2.1	35
207	Solid state transformations in consequence of electrospraying – A novel polymorphic form of piroxicam. European Journal of Pharmaceutics and Biopharmaceutics, 2015, 89, 182-189.	4.3	35
208	Multifunctional Nanotube–Mucoadhesive Poly(methyl vinyl etherâ€ <i>co</i> â€maleic) Tj ETQq0 0 0 rgBT /Ove Delivery. Advanced Healthcare Materials, 2017, 6, 1700629.	rlock 10 T 7.6	f 50 387 Td (35
209	Localized Controlled Delivery of Gemcitabine via Microsol Electrospun Fibers to Prevent Pancreatic Cancer Recurrence. Advanced Healthcare Materials, 2018, 7, e1800593.	7.6	35
210	Intraoperative Assessment and Photothermal Ablation of the Tumor Margins Using Gold Nanoparticles. Advanced Science, 2021, 8, 2002788.	11.2	34
211	Nanonutraceuticals: The New Frontier of Supplementary Food. Nanomaterials, 2021, 11, 792.	4.1	34
212	Functionalization of Alkyne-Terminated Thermally Hydrocarbonized Porous Silicon Nanoparticles With Targeting Peptides and Antifouling Polymers: Effect on the Human Plasma Protein Adsorption. ACS Applied Materials & Interfaces, 2015, 7, 2006-2015.	8.0	33
213	Platelet Lysate-Modified Porous Silicon Microparticles for Enhanced Cell Proliferation in Wound Healing Applications. ACS Applied Materials & Interfaces, 2016, 8, 988-996.	8.0	33
214	Requirements for Animal Experiments: Problems and Challenges. Small, 2021, 17, e2004182.	10.0	33
215	Electrochemical Study of Interfacial Composite Nanostructures:Â Polyelectrolyte/Gold Nanoparticle Multilayers Assembled on Phospholipid/Dextran Sulfate Monolayers at a Liquidâ°'Liquid Interface. Journal of Physical Chemistry B, 2005, 109, 20105-20114.	2.6	32
216	Immunostimulation and Immunosuppression: Nanotechnology on the Brink. Small Methods, 2018, 2, 1700347.	8.6	32

#	Article	IF	CITATIONS
217	Radiolabeled Molecular Imaging Probes for the In Vivo Evaluation of Cellulose Nanocrystals for Biomedical Applications. Biomacromolecules, 2019, 20, 674-683.	5.4	32
218	Systematic in vitro biocompatibility studies of multimodal cellulose nanocrystal and lignin nanoparticles. Journal of Biomedical Materials Research - Part A, 2020, 108, 770-783.	4.0	32
219	Extracellular vesicle therapeutics from plasma and adipose tissue. Nano Today, 2021, 39, 101159.	11.9	32
220	Tablet preformulations of indomethacin-loaded mesoporous silicon microparticles. International Journal of Pharmaceutics, 2012, 422, 125-131.	5.2	31
221	An In Situ Gelling Drug Delivery System for Improved Recovery after Spinal Cord Injury. Advanced Healthcare Materials, 2016, 5, 1513-1521.	7.6	31
222	Intracellular responsive dual delivery by endosomolytic polyplexes carrying DNA anchored porous silicon nanoparticles. Journal of Controlled Release, 2017, 249, 111-122.	9.9	31
223	Coating Nanoparticles with Plant-Produced Transferrin–Hydrophobin Fusion Protein Enhances Their Uptake in Cancer Cells. Bioconjugate Chemistry, 2017, 28, 1639-1648.	3.6	31
224	An immunological electrospun scaffold for tumor cell killing and healthy tissue regeneration. Materials Horizons, 2018, 5, 1082-1091.	12.2	31
225	Confinement Effects on Drugs in Thermally Hydrocarbonized Porous Silicon. Langmuir, 2014, 30, 2196-2205.	3.5	30
226	Bridging the Knowledge of Different Worlds to Understand the Big Picture of Cancer Nanomedicines. Advanced Healthcare Materials, 2018, 7, 1700432.	7.6	30
227	Doxorubicin Hydrochloride-Loaded Nonionic Surfactant Vesicles to Treat Metastatic and Non-Metastatic Breast Cancer. ACS Omega, 2021, 6, 2973-2989.	3.5	30
228	Spatioâ€Design of Multidimensional Prickly Znâ€Doped CuO Nanoparticle for Efficient Bacterial Killing. Advanced Materials Interfaces, 2016, 3, 1600472.	3.7	29
229	Cardiac Actions of a Small Molecule Inhibitor Targeting GATA4–NKX2-5 Interaction. Scientific Reports, 2018, 8, 4611.	3.3	29
230	Post-insertion parameters of PEG-derivatives in phosphocholine-liposomes. International Journal of Pharmaceutics, 2018, 552, 414-421.	5.2	29
231	Polyoxometalate Composites in Cancer Therapy and Diagnostics. European Journal of Inorganic Chemistry, 2020, 2020, 2121-2132.	2.0	29
232	Controlled Dissolution of Griseofulvin Solid Dispersions from Electrosprayed Enteric Polymer Micromatrix Particles: Physicochemical Characterization and <i>in Vitro</i> Evaluation. Molecular Pharmaceutics, 2015, 12, 2254-2264.	4.6	28
233	Targeted Reinforcement of Macrophage Reprogramming Toward M2 Polarization by IL-4-Loaded Hyaluronic Acid Particles. ACS Omega, 2018, 3, 18444-18455.	3.5	28
234	All-in-one microfluidic assembly of insulin-loaded pH-responsive nano-in-microparticles for oral insulin delivery. Biomaterials Science, 2020, 8, 3270-3277.	5.4	28

#	Article	IF	CITATIONS
235	DNAâ€Grafted Hyaluronic Acid System with Enhanced Injectability and Biostability for Photoâ€Controlled Osteoarthritis Gene Therapy. Advanced Science, 2021, 8, 2004793.	11.2	28
236	<i>In Vivo</i> Evaluation of Porous Silicon and Porous Silicon Solid Lipid Nanocomposites for Passive Targeting and Imaging. Molecular Pharmaceutics, 2014, 11, 2876-2886.	4.6	27
237	Simultaneous determination of eperisone hydrochloride and paracetamol in mouse plasma by high performance liquid chromatography-photodiode array detector. Journal of Chromatography A, 2015, 1388, 79-86.	3.7	26
238	Reactive oxygen species responsive nanoplatforms as smart drug delivery systems for gastrointestinal tract targeting. Biopolymers, 2020, 111, e23336.	2.4	26
239	Oneâ€Pot Synthesis of pHâ€Responsive Eudragitâ€Mesoporous Silica Nanocomposites Enable Colonic Delivery of Glucocorticoids for the Treatment of Inflammatory Bowel Disease. Advanced Therapeutics, 2021, 4, 2000165.	3.2	26
240	Interfacial Interaction between Dextran Sulfate and Lipid Monolayers: An Electrochemical Studyâ€. Langmuir, 2005, 21, 5475-5484.	3.5	25
241	In vitro assessment of biopolymer-modified porous silicon microparticles for wound healing applications. European Journal of Pharmaceutics and Biopharmaceutics, 2014, 88, 635-642.	4.3	25
242	Influence of Surface Chemistry on Ibuprofen Adsorption and Confinement in Mesoporous Silicon Microparticles. Langmuir, 2016, 32, 13020-13029.	3.5	25
243	In vitro and in vivo trans-epidermal water loss evaluation following topical drug delivery systems application for pharmaceutical analysis. Journal of Pharmaceutical and Biomedical Analysis, 2020, 186, 113295.	2.8	25
244	Synthesis and therapeutic potential of stimuli-responsive metal-organic frameworks. Chemical Engineering Journal, 2021, 408, 127233.	12.7	25
245	Acetalated dextran based nano- and microparticles: synthesis, fabrication, and therapeutic applications. Chemical Communications, 2021, 57, 4212-4229.	4.1	25
246	Multifunctional Biomimetic Nanovaccines Based on Photothermal and Weakâ€Immunostimulatory Nanoparticulate Cores for the Immunotherapy of Solid Tumors. Advanced Materials, 2022, 34, e2108012.	21.0	25
247	Fabrication of Calcium Phosphateâ€Based Nanocomposites Incorporating DNA Origami, Gold Nanorods, and Anticancer Drugs for Biomedical Applications. Advanced Healthcare Materials, 2017, 6, 1700664.	7.6	24
248	Antimicrobial Colloidal Silver–Lignin Particles via Ion and Solvent Exchange. ACS Sustainable Chemistry and Engineering, 2019, 7, 15297-15303.	6.7	24
249	A Theranostic Cellulose Nanocrystalâ€Based Drug Delivery System with Enhanced Retention in Pulmonary Metastasis of Melanoma. Small, 2021, 17, e2007705.	10.0	24
250	Mesoporous Materials and Nanocrystals for Enhancing the Dissolution Behavior of Poorly Water-soluble Drugs. Current Pharmaceutical Biotechnology, 2014, 14, 926-938.	1.6	24
251	Physicochemical characterization of pH-responsive and fusogenic self-assembled non-phospholipid vesicles for a potential multiple targeting therapy. International Journal of Pharmaceutics, 2017, 528, 18-32.	5.2	23
252	Acronychiabaueri Analogue Derivative-Loaded Ultradeformable Vesicles: Physicochemical Characterization and Potential Applications. Planta Medica, 2017, 83, 482-491.	1.3	23

#	Article	IF	CITATIONS
253	Engineered antibody-functionalized porous silicon nanoparticles for therapeutic targeting of pro-survival pathway in endogenous neuroblasts after stroke. Biomaterials, 2020, 227, 119556.	11.4	23
254	Near-infrared light and magnetic field dual-responsive porous silicon-based nanocarriers to overcome multidrug resistance in breast cancer cells with enhanced efficiency. Journal of Materials Chemistry B, 2020, 8, 546-557.	5.8	23
255	Formulation optimization and in vitro characterization of rifampicin and ceftriaxone dual drug loaded niosomes with high energy probe sonication technique. Journal of Drug Delivery Science and Technology, 2020, 58, 101763.	3.0	23
256	Liposome-Embedding Silicon Microparticle for Oxaliplatin Delivery in Tumor Chemotherapy. Pharmaceutics, 2020, 12, 559.	4.5	23
257	One-step microfluidics production of enzyme-loaded liposomes for the treatment of inflammatory diseases. Colloids and Surfaces B: Biointerfaces, 2021, 199, 111556.	5.0	23
258	Neonatal Fc receptor-targeted lignin-encapsulated porous silicon nanoparticles for enhanced cellular interactions and insulin permeation across the intestinal epithelium. Bioactive Materials, 2022, 9, 299-315.	15.6	23
259	Functionalized Bacterial Cellulose Microparticles for Drug Delivery in Biomedical Applications. Current Pharmaceutical Design, 2019, 25, 3692-3701.	1.9	23
260	Microfluidic preparation and in vitro evaluation of iRGD-functionalized solid lipid nanoparticles for targeted delivery of paclitaxel to tumor cells. International Journal of Pharmaceutics, 2021, 610, 121246.	5.2	23
261	Mussel-Inspired and Bioclickable Peptide Engineered Surface to Combat Thrombosis and Infection. Research, 2022, 2022, 9780879.	5.7	22
262	Microfluidics Fabrication of Micrometerâ€Sized Hydrogels with Precisely Controlled Geometries for Biomedical Applications. Advanced Healthcare Materials, 2022, 11, .	7.6	22
263	Impact of Pore Size and Surface Chemistry of Porous Silicon Particles and Structure of Phospholipids on Their Interactions. ACS Biomaterials Science and Engineering, 2018, 4, 2308-2313.	5.2	21
264	Detection and Quantification of eDNA-Associated Bacterial Membrane Vesicles by Flow Cytometry. International Journal of Molecular Sciences, 2019, 20, 5307.	4.1	21
265	Lightâ€Controlled Nanosystem with Sizeâ€Flexibility Improves Targeted Retention for Tumor Suppression. Advanced Functional Materials, 2021, 31, 2101262.	14.9	21
266	Thermodynamic analysis of binding between drugs and glycosaminoglycans by isothermal titration calorimetry and fluorescence spectroscopy. European Journal of Pharmaceutical Sciences, 2007, 32, 105-114.	4.0	20
267	Advanced Nanomedicines for the Treatment and Diagnosis of Myocardial Infarction and Heart Failure. Current Drug Targets, 2015, 16, 1682-1697.	2.1	20
268	Progress in Stimuliâ€Responsive Biomaterials for Treating Cardiovascular and Cerebrovascular Diseases. Small, 2022, 18, e2200291.	10.0	20
269	Recent progress in the design of DNA vaccines against tuberculosis. Drug Discovery Today, 2020, 25, 1971-1987.	6.4	19
270	Microfibers synthesized by wet-spinning of chitin nanomaterials: mechanical, structural and cell proliferation properties. RSC Advances, 2020, 10, 29450-29459.	3.6	19

#	Article	IF	CITATIONS
271	Development of a novel electrospun nanofibrous delivery system for poorly water-soluble β-sitosterol. Asian Journal of Pharmaceutical Sciences, 2016, 11, 500-506.	9.1	18
272	Hierarchical Microplates as Drug Depots with Controlled Geometry, Rigidity, and Therapeutic Efficacy. ACS Applied Materials & Interfaces, 2018, 10, 9280-9289.	8.0	18
273	Recent trends on the development of systems for cancer diagnosis and treatment by microfluidic technology. Applied Materials Today, 2020, 18, 100450.	4.3	18
274	Gelatin‣ysozyme Nanofibrils Electrospun Patches with Improved Mechanical, Antioxidant, and Bioresorbability Properties for Myocardial Regeneration Applications. Advanced Functional Materials, 2022, 32, .	14.9	18
275	Coherent anti-Stokes Raman scattering microscopy driving the future of loaded mesoporous silica imaging. Acta Biomaterialia, 2014, 10, 4870-4877.	8.3	17
276	Recombination Monophosphoryl Lipid A-Derived Vacosome for the Development of Preventive Cancer Vaccines. ACS Applied Materials & Interfaces, 2020, 12, 44554-44562.	8.0	17
277	Nanoliposomes as Multidrug Carrier of Gemcitabine/Paclitaxel for the Effective Treatment of Metastatic Breast Cancer Disease: A Comparison with Gemzar and Taxol. Advanced Therapeutics, 2021, 4, .	3.2	17
278	Engineering of 2D nanomaterials to trap and kill SARS-CoV-2: a new insight from multi-microsecond atomistic simulations. Drug Delivery and Translational Research, 2021, , 1.	5.8	17
279	Multimodal non-linear optical imaging for the investigation of drug nano-/microcrystal–cell interactions. European Journal of Pharmaceutics and Biopharmaceutics, 2015, 96, 338-348.	4.3	16
280	An insight of in vitro transport of PEGylated non-ionic surfactant vesicles (NSVs) across the intestinal polarized enterocyte monolayers. European Journal of Pharmaceutics and Biopharmaceutics, 2018, 127, 432-442.	4.3	16
281	Manipulating Superparamagnetic Microparticles with an Electromagnetic Needle. Advanced Materials Technologies, 2018, 3, 1700177.	5.8	16
282	Superfast and controllable microfluidic inking of anti-inflammatory melanin-like nanoparticles inspired by cephalopods. Materials Horizons, 2020, 7, 1573-1580.	12.2	16
283	A multifunctional nanocomplex for enhanced cell uptake, endosomal escape and improved cancer therapeutic effect. Nanomedicine, 2017, 12, 1401-1420.	3.3	15
284	Cell Membrane-Based Nanoreactor To Mimic the Bio-Compartmentalization Strategy of a Cell. ACS Biomaterials Science and Engineering, 2018, 4, 1471-1478.	5.2	15
285	Landing a lethal blow on bacterial infections: an emerging advance of nanodots for wound healing acceleration. Nanomedicine, 2019, 14, 2269-2272.	3.3	15
286	Mitochondriaâ€Targeted Bovine Serum Albumin@Copper Sulfide Nanocomposites Conjugated with Rhodamineâ€110 Dye for an Enhanced Efficacy of Cancer Photothermal Therapy. Particle and Particle Systems Characterization, 2021, 38, 2100013.	2.3	15
287	Prospective Cancer Therapies Using Stimuliâ€Responsive DNA Nanostructures. Macromolecular Bioscience, 2021, 21, e2100272.	4.1	15
288	Non-animal models used in drug discovery: drug absorption and metabolism. Current Drug Metabolism, 2013, 14, 2-3.	1.2	15

#	Article	IF	CITATIONS
289	Nuts and Bolts: Microfluidics for the Production of Biomaterials. Advanced Materials Technologies, 2019, 4, 1800611.	5.8	14
290	Tendon Tissue Repair in Prospective of Drug Delivery, Regenerative Medicines, and Innovative Bioscaffolds. Stem Cells International, 2021, 2021, 1-23.	2.5	14
291	Porous-based biomaterials for tissue engineering and drug delivery applications. Biomatter, 2012, 2, 237-238.	2.6	13
292	Microparticles to enhance delivery of drugs and growth factors into wound sites. Therapeutic Delivery, 2016, 7, 711-732.	2.2	13
293	Utilization of green formulation technique and efficacy estimation on cell line studies for dual anticancer drug therapy with niosomes. International Journal of Pharmaceutics, 2019, 572, 118764.	5.2	13
294	Intracellular Delivery of Budesonide and Polydopamine Co‣oaded in Endosomolytic Poly(butyl) Tj ETQq0 0 0 rg from M1 to M2. Advanced Therapeutics, 2021, 4, 2000058.	BT /Overlo 3.2	ock 10 Tf 50 5 13
295	Prevention of diabetes-associated fibrosis: Strategies in FcRn-targeted nanosystems for oral drug delivery. Advanced Drug Delivery Reviews, 2021, 175, 113778.	13.7	13
296	Investigation of silicon nanoparticles produced by centrifuge chemical vapor deposition for applications in therapy and diagnostics. European Journal of Pharmaceutics and Biopharmaceutics, 2021, 158, 254-265.	4.3	13
297	Targeting Membrane Transporters and Receptors as a mean to Optimize Orally Delivered Biotechnological based Drugs through Nanoparticle Delivery Systems. Current Pharmaceutical Biotechnology, 2014, 15, 650-658.	1.6	13
298	In Vitro Evaluation of the Therapeutic Effects of Dualâ€Drug Loaded Spermineâ€Acetalated Dextran Nanoparticles Coated with Tannic Acid for Cardiac Applications. Advanced Functional Materials, 2022, 32, 2109032.	14.9	13
299	Artificial Intelligence Deep Exploration of Influential Parameters on Physicochemical Properties of Curcumin‣oaded Electrospun Nanofibers. Advanced NanoBiomed Research, 2022, 2, .	3.6	13
300	New designs for MRI contrast agents. Journal of Computer-Aided Molecular Design, 2003, 17, 463-473.	2.9	12
301	Effect of Gramicidin on Phospholipid-Modified Monolayers and on Ion Transfer at a Liquid–Liquid Interface. ChemPhysChem, 2007, 8, 913-920.	2.1	12
302	Preparation of nanostructures composed of dextran sulfate/ruthenium nanoparticles and their interaction with phospholipid monolayers at a liquid–liquid interface. Journal of Electroanalytical Chemistry, 2007, 599, 194-202.	3.8	12
303	Analysis of adsorption of phospholipids at the 1,2-dichloroethane/water interface by electrochemical impedance spectroscopy: A study of the effect of the saturated alkyl chain. Journal of Electroanalytical Chemistry, 2007, 599, 367-375.	3.8	12
304	Inorganic Nanoparticles in Targeted Drug Delivery and Imaging. Advances in Delivery Science and Technology, 2015, , 571-613.	0.4	12
305	HPLC–FLD and spectrofluorometer apparatus: How to best detect fluorescent probe-loaded niosomes in biological samples. Colloids and Surfaces B: Biointerfaces, 2015, 135, 575-580.	5.0	12
306	Active diffusion of nanoparticles of maternal origin within the embryonic brain. Nanomedicine, 2016, 11, 2471-2481.	3.3	12

#	Article	IF	CITATIONS
307	Novel RET agonist for the treatment of experimental neuropathies. Molecular Pain, 2020, 16, 174480692095086.	2.1	12
308	Adsorption–Penetration Studies of Glucose Oxidase into Phospholipid Monolayers at the 1,2-Dichloroethane/Water Interface. ChemPhysChem, 2007, 8, 1540-1547.	2.1	11
309	Antiproliferative Activity and Cellular Uptake of Evodiamine and Rutaecarpine Based on 3D Tumor Models. Molecules, 2016, 21, 954.	3.8	11
310	The impact of porous silicon nanoparticles on human cytochrome P450 metabolism in human liver microsomes in vitro. European Journal of Pharmaceutical Sciences, 2017, 104, 124-132.	4.0	11
311	Preparation and biological evaluation of ethionamide-mesoporous silicon nanoparticles against Mycobacterium tuberculosis. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 403-405.	2.2	11
312	Physicochemical properties of inclusion complexes of highly soluble β-cyclodextrins with highly hydrophobic testosterone propionate. International Journal of Pharmaceutics, 2017, 534, 316-324.	5.2	11
313	Porous Silicon as a Platform for Radiation Theranostics Together with a Novel RIB-Based Radiolanthanoid. Contrast Media and Molecular Imaging, 2019, 2019, 1-9.	0.8	11
314	Influence of Cell Membrane Wrapping on the Cellâ^'Porous Silicon Nanoparticle Interactions. Advanced Healthcare Materials, 2020, 9, e2000529.	7.6	11
315	Tandemâ€Massâ€Tag Based Proteomic Analysis Facilitates Analyzing Critical Factors of Porous Silicon Nanoparticles in Determining Their Biological Responses under Diseased Condition. Advanced Science, 2020, 7, 2001129.	11.2	11
316	Hybrid red blood cell membrane coated porous silicon nanoparticles functionalized with cancer antigen induce depletion of T cells. RSC Advances, 2020, 10, 35198-35205.	3.6	10
317	Cationic Supramolecular Vesicular Aggregates for Pulmonary Tissue Selective Delivery in Anticancer Therapy. ChemMedChem, 2016, 11, 1734-1744.	3.2	9
318	Preparation and in vivo evaluation of red blood cell membrane coated porous silicon nanoparticles implanted with 155Tb. Nuclear Medicine and Biology, 2020, 84-85, 102-110.	0.6	9
319	An organic-inorganic hybrid scaffold with honeycomb-like structures enabled by one-step self-assembly-driven electrospinning. Materials Science and Engineering C, 2021, 124, 112079.	7.3	9
320	Antihyperglycemic Potential of Incretins Orally Delivered via Nano and Microsystems and Subsequent Glucoregulatory Effects. Current Pharmaceutical Biotechnology, 2014, 15, 609-619.	1.6	9
321	Scaffold Vaccines for Generating Robust and Tunable Antibody Responses. Advanced Functional Materials, 2022, 32, .	14.9	9
322	3D printing: prospects and challenges. , 2018, , 299-379.		8
323	The Emerging Role of Multifunctional Theranostic Materials in Cancer Nanomedicine. , 2018, , 1-31.		8
324	Autologous Skin Fibroblastâ€Based PLGA Nanoparticles for Treating Multiorgan Fibrosis. Advanced Science, 2022, 9, .	11.2	8

#	Article	IF	CITATIONS
325	Polydocanol foam stabilized by liposomes: Supramolecular nanoconstructs for sclerotherapy. Colloids and Surfaces B: Biointerfaces, 2019, 175, 469-476.	5.0	7
326	Microfluidic mixing and devices for preparing nanoparticulate drug delivery systems. , 2019, , 155-177.		7
327	Evaluation of the effects of nanoprecipitation process parameters on the size and morphology of poly(ethylene oxide)-block-polycaprolactone nanostructures. International Journal of Pharmaceutics, 2020, 590, 119900.	5.2	7
328	Current Trends in Simultaneous Determination of Co-Administered Drugs. Separations, 2020, 7, 29.	2.4	7
329	Inhibiting Phase Transfer of Protein Nanoparticles by Surface Camouflage–A Versatile and Efficient Protein Encapsulation Strategy. Nano Letters, 2021, 21, 9458-9467.	9.1	7
330	Surface Adsorptionâ€Mediated Ultrahigh Efficient Peptide Encapsulation with a Precise Ratiometric Control for Type 1 and 2 Diabetic Therapy. Small, 2022, 18, e2200449.	10.0	7
331	Controlled Shape and Nucleation Switching of Interfacially Polymerizable Nanoassemblies by Methyl Substitution. Chemistry of Materials, 2015, 27, 8170-8178.	6.7	6
332	Enhanced Photoluminescence in Acetylene-Treated ZnO Nanorods. Nanoscale Research Letters, 2016, 11, 413.	5.7	6
333	Nano-Particles for Biomedical Applications. Springer Handbooks, 2017, , 643-691.	0.6	6
334	Multistage signal-interactive nanoparticles improve tumor targeting through efficient nanoparticle-cell communications. Cell Reports, 2021, 35, 109131.	6.4	6
335	Conventional Nanosized Drug Delivery Systems for Cancer Applications. Advances in Experimental Medicine and Biology, 2021, 1295, 3-27.	1.6	6
336	Multidrug Idebenone/Naproxen Coâ€loaded Aspasomes for Significant in vivo Antiâ€inflammatory Activity. ChemMedChem, 2022, 17, .	3.2	6
337	Promoting Cardiac Repair through Simple Engineering of Nanoparticles with Exclusive Targeting Capability toward Myocardial Reperfusion Injury by Thermal Resistant Microfluidic Platform. Advanced Functional Materials, 2022, 32, .	14.9	6
338	Drug Delivery: Thiolation and Cell-Penetrating Peptide Surface Functionalization of Porous Silicon Nanoparticles for Oral Delivery of Insulin (Adv. Funct. Mater. 20/2016). Advanced Functional Materials, 2016, 26, 3374-3374.	14.9	5
339	Insights into Caco-2 cell culture structure using coherent anti-Stokes Raman scattering (CARS) microscopy. International Journal of Pharmaceutics, 2017, 523, 270-280.	5.2	5
340	Revolutionary impact of nanovaccines on immunotherapy. European Journal of Molecular and Clinical Medicine, 2017, 2, 44.	0.1	5
341	Sequential Antifouling Surface for Efficient Modulation of the Nanoparticle–Cell Interactions in Proteinâ€Rich Environments. Advanced Therapeutics, 2018, 1, 1800013.	3.2	5
342	Outer–inner dual reinforced micro/nano hierarchical scaffolds for promoting osteogenesis. Nanoscale, 2019, 11, 15794-15803.	5.6	5

#	Article	IF	CITATIONS
343	Cellâ€Nanoparticle Interactions at (Sub)–Nanometer Resolution Analyzed by Electron Microscopy and Correlative Coherent Anti‧tokes Raman Scattering. Biotechnology Journal, 2019, 14, 1800413.	3.5	5
344	Microfluidics: Microfluidics for Production of Particles: Mechanism, Methodology, and Applications (Small 9/2020). Small, 2020, 16, 2070048.	10.0	5
345	Quantitative Analysis of Porous Silicon Nanoparticles Functionalization by ¹ H NMR. ACS Biomaterials Science and Engineering, 2022, 8, 4132-4139.	5.2	5
346	Molecular scale study on the interactions of biocompatible nanoparticles with macrophage membrane and blood proteins. Nano Select, 2022, 3, 1252-1263.	3.7	5
347	Mucus as a Barrier for Biopharmaceuticals and Drug Delivery Systems. , 2014, , 59-97.		4
348	Nanohybrids: Multifunctional Nanohybrid Based on Porous Silicon Nanoparticles, Gold Nanoparticles, and Acetalated Dextran for Liver Regeneration and Acute Liver Failure Theranostics (Adv. Mater. 24/2018). Advanced Materials, 2018, 30, 1870168.	21.0	4
349	Biofunctionalized Mesoporous Silica Nanomaterials for Targeted Drug Delivery. , 2018, , 489-520.		4
350	Conjugation of Peptides to Antisense Interleukin-6 Via Click Chemistry. Current Medicinal Chemistry, 2014, 21, 1247-1254.	2.4	4
351	Functional biomaterials. APL Bioengineering, 2022, 6, 010401.	6.2	4
352	Current trends in delivery of non-viral nucleic acid-based therapeutics for improved efficacy. Advanced Drug Delivery Reviews, 2022, 185, 114297.	13.7	4
353	Evaluation of the Physicochemical and Biopharmaceutical Properties of Fluoro-Indomethacin. Current Drug Metabolism, 2013, 14, 80-89.	1.2	3
354	Biocompatibility of porous silicon for biomedical applications. , 2014, , 129-181.		3
355	Cell-based in vitro models forÂbuccal permeability studies. , 2016, , 31-40.		3
356	Targeted Cancer Therapy: pHâ€Switch Nanoprecipitation of Polymeric Nanoparticles for Multimodal Cancer Targeting and Intracellular Triggered Delivery of Doxorubicin (Adv. Healthcare Mater. 15/2016). Advanced Healthcare Materials, 2016, 5, 1834-1834.	7.6	3
357	Microfluidics: Nuts and Bolts: Microfluidics for the Production of Biomaterials (Adv. Mater.) Tj ETQq1 1 0.784314	ŀrg₿Ţ /Ove	erlgck 10 Tr
358	Design, synthesis and characterization of a PEGylated stanozolol for potential therapeutic applications. International Journal of Pharmaceutics, 2020, 573, 118826.	5.2	3
359	Advanced Nanosystems for Clinical Translation. Advanced Therapeutics, 2021, 4, 2000215.	3.2	3

#	Article	IF	CITATIONS
361	Drug Delivery: On hip Selfâ€Assembly of a Smart Hybrid Nanocomposite for Antitumoral Applications (Adv. Funct. Mater. 10/2015). Advanced Functional Materials, 2015, 25, 1612-1612.	14.9	2
362	Materials Science in Finland. Advanced Materials, 2018, 30, 1802557.	21.0	2
363	Photosensitive materials for constructing on-demanded drug-release systems. , 2019, , 193-210.		2
364	Metalâ€Based Stents: Endovascular Metal Devices for the Treatment of Cerebrovascular Diseases (Adv.) Tj ETQqC	0.0 rgBT 21.0	/Overlock 10
365	Automatic methodologies to perform loading and release assays of anticancer drugs from mesoporous silicon nanoparticles. Talanta, 2019, 196, 277-283.	5.5	2
366	Nonresonant CARS Imaging of Porous and Solid Silicon Nanoparticles in Human Cells. ACS Biomaterials Science and Engineering, 2022, 8, 4185-4195.	5.2	2
367	Chemotherapy with Porous Silicon. , 2016, , 1-15.		2
368	Opinion Paper: Microfluidics Technique to Revolutionize the Drug Delivery Field: Current Developments and Applications. Current Drug Delivery, 2015, 12, 642-644.	1.6	2
369	Silica-Based Nanovectors: From Mother Nature to Biomedical Applications. , 2016, , .		1
370	Multinuclear NMR analysis of the antitubercular drug ethionamide. Journal of Molecular Structure, 2016, 1105, 286-292.	3.6	1
371	Drug Delivery: A Nanoâ€inâ€Nano Vector: Merging the Best of Polymeric Nanoparticles and Drug Nanocrystals (Adv. Funct. Mater. 9/2017). Advanced Functional Materials, 2017, 27, .	14.9	1
372	Nanoreactors: Biomimetic Engineering Using Cancer Cell Membranes for Designing Compartmentalized Nanoreactors with Organelle‣ike Functions (Adv. Mater. 11/2017). Advanced Materials, 2017, 29, .	21.0	1
373	Advanced Nanovaccines for Immunotherapy Applications: From Concept to Animal Tests. , 2019, , 231-260.		1
374	Antitumor Therapeutics: A Virusâ€Mimicking pHâ€Responsive Acetalated Dextranâ€Based Membraneâ€Active Polymeric Nanoparticle for Intracellular Delivery of Antitumor Therapeutics (Adv. Funct. Mater.) Tj ETQq0 0 0 rgB1	∏/ Ωwe rlocl	k 110 Tf 50 21
375	Microvascular Scaffolds: A Biomimetic 3Dâ€Selfâ€Forming Approach for Microvascular Scaffolds (Adv.) Tj ETQq1	1 0.7843] 11.2	14 ₁ rgBT /Ove
376	Porous Silicon Nanoparticles. , 2013, , 235-275.		1
377	Editorial [Hot Topic: Innovative Technologies for Drug Delivery Applications: From Biopolymers and Nanocapsules to Inorganic Materials (Guest Editor: Helder A. Santos)]. Current Drug Discovery Technologies, 2011, 8, 155-156.	1.2	0
378	Evaluation of the Physicochemical and Biopharmaceutical Properties of Fluoro-Indomethacin. Current Drug Metabolism, 2012, 14, 80-89.	1.2	0

#	Article	IF	CITATIONS
379	3.5 Current Trends and Developments for Nanotechnology in Cancer. , 2015, , 290-342.		0

Belitorial (Thematic Issue: Supramolecular Systems in Nanomedicines: Therapeutic Applications and) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 5

381	Copper-Free Click Chemistry Modification of Nanovectors for Integrin-Targeted Cancer Therapy. Methods in Pharmacology and Toxicology, 2015, , 35-49.	0.2	0
382	Drug Delivery: Gold Nanorods, DNA Origami, and Porous Silicon Nanoparticle-functionalized Biocompatible Double Emulsion for Versatile Targeted Therapeutics and Antibody Combination Therapy (Adv. Mater. 46/2016). Advanced Materials, 2016, 28, 10194-10194.	21.0	0
383	Drug Co-Delivery: Biodegradable Photothermal and pH Responsive Calcium Carbonate@Phospholipid@Acetalated Dextran Hybrid Platform for Advancing Biomedical Applications (Adv. Funct. Mater. 34/2016). Advanced Functional Materials, 2016, 26, 6138-6138.	14.9	0
384	Nanovaccines: Multistaged Nanovaccines Based on Porous Silicon@Acetalated Dextran@Cancer Cell Membrane for Cancer Immunotherapy (Adv. Mater. 7/2017). Advanced Materials, 2017, 29, .	21.0	0
385	Inside Cover Image, Volume 9, Issue 1. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2017, 9, e1459.	6.1	0
386	Neuroprotection: Biodegradable Spheres Protect Traumatically Injured Spinal Cord by Alleviating the Glutamate-Induced Excitotoxicity (Adv. Mater. 14/2018). Advanced Materials, 2018, 30, 1870095.	21.0	0
387	Selfâ€Healing: Selfâ€Healing and Injectable Hydrogel for Matching Skin Flap Regeneration (Adv. Sci. 3/2019). Advanced Science, 2019, 6, 1970019.	11.2	0
388	New insights into ethionamide metabolism: influence of oxidized methionine on its degradation path. RSC Medicinal Chemistry, 2020, 11, 1423-1428.	3.9	0
389	Biohybrid Nanosystems for Cancer Treatment: Merging the Best of Two Worlds. Advances in Experimental Medicine and Biology, 2021, 1295, 135-162.	1.6	0
390	Requirements and properties of biomaterials for biomedical applications. , 2021, , 195-226.		0
391	Copolymers: Drug Delivery. , 0, , 2192-2202.		0
392	Chemotherapy with Porous Silicon. , 2018, , 1403-1417.		0
393	Multifunctional Biomimetic Nanovaccines Based on Photothermal and Weakâ€Immunostimulatory Nanoparticulate Cores for the Immunotherapy of Solid Tumors (Adv. Mater. 9/2022). Advanced Materials, 2022, 34, .	21.0	0
394	Folic acid-mesoporous silicon nanoparticles enhance the anticancer activity of the p73-activating small molecule LEM2. International Journal of Pharmaceutics, 2022, 624, 121959.	5.2	0