
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1365180/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | "Sinking deadâ€â€"How zooplankton carcasses contribute to particulate organic carbon flux in the subantarctic Southern Ocean. Limnology and Oceanography, 2022, 67, 13-25.                             | 3.1  | 9         |
| 2  | Biogeography of Southern Ocean prokaryotes: a comparison of the Indian and Pacific sectors.<br>Environmental Microbiology, 2022, 24, 2449-2466.                                                        | 3.8  | 6         |
| 3  | Forensic carbon accounting: Assessing the role of seaweeds for carbon sequestration. Journal of Phycology, 2022, 58, 347-363.                                                                          | 2.3  | 53        |
| 4  | Potential negative effects of ocean afforestation on offshore ecosystems. Nature Ecology and Evolution, 2022, 6, 675-683.                                                                              | 7.8  | 26        |
| 5  | The ongoing need for rates: can physiology and omics come together to co-design the measurements needed to understand complex ocean biogeochemistry?. Journal of Plankton Research, 2022, 44, 485-495. | 1.8  | 10        |
| 6  | Transitioning global change experiments on Southern Ocean phytoplankton from lab to field settings:<br>Insights and challenges. Limnology and Oceanography, 2022, 67, 1911-1930.                       | 3.1  | 4         |
| 7  | Bioavailable iron titrations reveal oceanic <i>Synechococcus</i> ecotypes optimized for different<br>iron availabilities. ISME Communications, 2022, 2, .                                              | 4.2  | 8         |
| 8  | Resource Colimitation Drives Competition Between Phytoplankton and Bacteria in the Southern<br>Ocean. Geophysical Research Letters, 2021, 48, e2020GL088369.                                           | 4.0  | 9         |
| 9  | Exploring biogeochemical and ecological redundancy in phytoplankton communities in the global ocean. Global Change Biology, 2021, 27, 1196-1213.                                                       | 9.5  | 30        |
| 10 | An operational overview of the EXport Processes in the Ocean from RemoTe Sensing (EXPORTS)<br>Northeast Pacific field deployment. Elementa, 2021, 9, .                                                 | 3.2  | 28        |
| 11 | Cross-basin differences in the nutrient assimilation characteristics of induced phytoplankton blooms in the subtropical Pacific waters. Biogeosciences, 2021, 18, 897-915.                             | 3.3  | 3         |
| 12 | Evidence for the Impact of Climate Change on Primary Producers in the Southern Ocean. Frontiers in Ecology and Evolution, 2021, 9, .                                                                   | 2.2  | 45        |
| 13 | Testing the climate intervention potential of ocean afforestation using the Great Atlantic Sargassum<br>Belt. Nature Communications, 2021, 12, 2556.                                                   | 12.8 | 79        |
| 14 | Facing Southern Ocean warming: Temperature effects on whole animal performance of Antarctic krill<br>(Euphausia superba). Zoology, 2021, 146, 125910.                                                  | 1.2  | 8         |
| 15 | Nanomolar phosphate supply and its recycling drive net community production in the subtropical North Pacific. Nature Communications, 2021, 12, 3462.                                                   | 12.8 | 13        |
| 16 | Rate and fate of dissolved organic carbon release by seaweeds: A missing link in the coastal ocean carbon cycle. Journal of Phycology, 2021, 57, 1375-1391.                                            | 2.3  | 44        |
| 17 | Impact of Lagrangian Sea Surface Temperature Variability on Southern Ocean Phytoplankton<br>Community Growth Rates. Global Biogeochemical Cycles, 2021, 35, e2020GB006880.                             | 4.9  | 10        |
| 18 | Toward traitâ€based food webs: Universal traits and trait matching in planktonic predator–prey and<br>host–parasite relationships. Limnology and Oceanography, 2021, 66, 3857-3872.                    | 3.1  | 7         |

| #  | Article                                                                                                                                                                                                              | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Seeking natural analogs to fast-forward the assessment of marine CO2 removal. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, e2106147118.                               | 7.1  | 12        |
| 20 | Overwinter sea-ice characteristics important for Antarctic krill recruitment in the southwest<br>Atlantic. Ecological Indicators, 2021, 129, 107934.                                                                 | 6.3  | 17        |
| 21 | Implications for the mesopelagic microbial gardening hypothesis as determined by experimental fragmentation of Antarctic krill fecal pellets. Ecology and Evolution, 2021, 11, 1023-1036.                            | 1.9  | 6         |
| 22 | Microbes in a sea of sinking particles. Nature Microbiology, 2021, 6, 1479-1480.                                                                                                                                     | 13.3 | 1         |
| 23 | The Oceans' Biological Carbon Pumps: Framework for a Research Observational Community Approach.<br>Frontiers in Marine Science, 2021, 8, .                                                                           | 2.5  | 21        |
| 24 | Biogeochemical extremes and compound events in the ocean. Nature, 2021, 600, 395-407.                                                                                                                                | 27.8 | 96        |
| 25 | Assessment of leaching protocols to determine the solubility of trace metals in aerosols. Talanta, 2020, 208, 120377.                                                                                                | 5.5  | 31        |
| 26 | Evolution, Microbes, and Changing Ocean Conditions. Annual Review of Marine Science, 2020, 12, 181-208.                                                                                                              | 11.6 | 42        |
| 27 | How do we overcome abrupt degradation of marine ecosystems and meet the challenge of heat waves and climate extremes?. Global Change Biology, 2020, 26, 343-354.                                                     | 9.5  | 34        |
| 28 | Biogeochemical Controls of Particulate Phosphorus Distribution Across the Oligotrophic<br>Subtropical Pacific Ocean. Global Biogeochemical Cycles, 2020, 34, e2020GB006669.                                          | 4.9  | 19        |
| 29 | The Role of Zooplankton in Establishing Carbon Export Regimes in the Southern Ocean – A<br>Comparison of Two Representative Case Studies in the Subantarctic Region. Frontiers in Marine<br>Science, 2020, 7, .      | 2.5  | 12        |
| 30 | Changing Biogeochemistry of the Southern Ocean and Its Ecosystem Implications. Frontiers in Marine Science, 2020, 7, .                                                                                               | 2.5  | 100       |
| 31 | Subsurface Chlorophyll-a Maxima in the Southern Ocean. Frontiers in Marine Science, 2020, 7, .                                                                                                                       | 2.5  | 34        |
| 32 | Origin, transport and deposition of aerosol iron to Australian coastal waters. Atmospheric<br>Environment, 2020, 228, 117432.                                                                                        | 4.1  | 21        |
| 33 | Circumpolar projections of Antarctic krill growth potential. Nature Climate Change, 2020, 10, 568-575.                                                                                                               | 18.8 | 54        |
| 34 | Contribution of Electroactive Humic Substances to the Ironâ€Binding Ligands Released During<br>Microbial Remineralization of Sinking Particles. Geophysical Research Letters, 2020, 47, e2019GL086685.               | 4.0  | 14        |
| 35 | Atmospheric Trace Metal Deposition near the Great Barrier Reef, Australia. Atmosphere, 2020, 11, 390.                                                                                                                | 2.3  | 12        |
| 36 | Zooplankton community structure and dominant copepod population structure on the southern<br>Kerguelen Plateau during summer 2016. Deep-Sea Research Part II: Topical Studies in Oceanography,<br>2020, 174, 104788. | 1.4  | 3         |

| #  | Article                                                                                                                                                                                                                                               | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Salpa thompsoni in the Indian Sector of the Southern Ocean: Environmental drivers and life history parameters. Deep-Sea Research Part II: Topical Studies in Oceanography, 2020, 174, 104789.                                                         | 1.4  | 6         |
| 38 | Atmospheric Trace Metal Deposition from Natural and Anthropogenic Sources in Western Australia.<br>Atmosphere, 2020, 11, 474.                                                                                                                         | 2.3  | 9         |
| 39 | Remote assessment of the fate of phytoplankton in the Southern Ocean sea-ice zone. Nature<br>Communications, 2020, 11, 3108.                                                                                                                          | 12.8 | 31        |
| 40 | Diel quenching of Southern Ocean phytoplankton fluorescence is related to iron limitation.<br>Biogeosciences, 2020, 17, 793-812.                                                                                                                      | 3.3  | 25        |
| 41 | Effects of multiple drivers of ocean global change on the physiology and functional gene expression of the coccolithophore <i>Emiliania huxleyi</i> . Global Change Biology, 2020, 26, 5630-5645.                                                     | 9.5  | 17        |
| 42 | Distinct iron cycling in a Southern Ocean eddy. Nature Communications, 2020, 11, 825.                                                                                                                                                                 | 12.8 | 50        |
| 43 | Microbial Competition in the Subpolar Southern Ocean: An Fe–C Co-limitation Experiment. Frontiers<br>in Marine Science, 2020, 6, .                                                                                                                    | 2.5  | 24        |
| 44 | Metrics that matter for assessing the ocean biological carbon pump. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 9679-9687.                                                                            | 7.1  | 145       |
| 45 | The oceans' twilight zone must be studied now, before it is too late. Nature, 2020, 580, 26-28.                                                                                                                                                       | 27.8 | 73        |
| 46 | Some observations on the biogeochemical cycling of zinc in the Australian sector of the Southern<br>Ocean: a dedication to Keith Hunter. Marine and Freshwater Research, 2020, 71, 355.                                                               | 1.3  | 12        |
| 47 | Evaluation of aerosol iron solubility over Australian coastal regions based on inverse modeling:<br>implications of bushfires on bioaccessible iron concentrations in the Southern Hemisphere. Progress<br>in Earth and Planetary Science, 2020, 7, . | 3.0  | 22        |
| 48 | The Importance of Bottom-Up Approaches to International Cooperation in Ocean Science: The Iron Story. Oceanography, 2020, 33, 11-15.                                                                                                                  | 1.0  | 4         |
| 49 | Keith Hunter's legacy to Marine Science in New Zealand. Marine and Freshwater Research, 2020, 71, i.                                                                                                                                                  | 1.3  | Ο         |
| 50 | The interplay between regeneration and scavenging fluxes drives ocean iron cycling. Nature Communications, 2019, 10, 4960.                                                                                                                            | 12.8 | 41        |
| 51 | Resupply of mesopelagic dissolved iron controlled by particulate iron composition. Nature<br>Geoscience, 2019, 12, 995-1000.                                                                                                                          | 12.9 | 29        |
| 52 | The importance of Antarctic krill in biogeochemical cycles. Nature Communications, 2019, 10, 4742.                                                                                                                                                    | 12.8 | 97        |
| 53 | Iron Availability Influences the Tolerance of Southern Ocean Phytoplankton to Warming and Elevated<br>Irradiance. Frontiers in Marine Science, 2019, 6, .                                                                                             | 2.5  | 34        |
| 54 | Near-future ocean acidification does not alter the lipid content and fatty acid composition of adult<br>Antarctic krill. Scientific Reports, 2019, 9, 12375.                                                                                          | 3.3  | 13        |

| #  | Article                                                                                                                                                                                                  | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Should we fertilize oceans or seed clouds? No one knows. Nature, 2019, 570, 155-157.                                                                                                                     | 27.8 | 13        |
| 56 | Biogeochemical controls of surface ocean phosphate. Science Advances, 2019, 5, eaax0341.                                                                                                                 | 10.3 | 84        |
| 57 | Physiology and iron modulate diverse responses of diatoms to a warming Southern Ocean. Nature<br>Climate Change, 2019, 9, 148-152.                                                                       | 18.8 | 35        |
| 58 | Exploring the ecology of the mesopelagic biological pump. Progress in Oceanography, 2019, 176, 102125.                                                                                                   | 3.2  | 55        |
| 59 | Scientists' warning to humanity: microorganisms and climate change. Nature Reviews Microbiology, 2019, 17, 569-586.                                                                                      | 28.6 | 1,138     |
| 60 | Exploring mechanisms for spring bloom evolution: contrasting 2008 and 2012 blooms in the southwest Pacific Ocean. Journal of Plankton Research, 2019, 41, 329-348.                                       | 1.8  | 6         |
| 61 | Putting the silicon cycle in a bag: Field and mesocosm observations of silicon isotope fractionation in subtropical waters east of New Zealand. Marine Chemistry, 2019, 213, 1-12.                       | 2.3  | 7         |
| 62 | Multi-faceted particle pumps drive carbon sequestration in the ocean. Nature, 2019, 568, 327-335.                                                                                                        | 27.8 | 455       |
| 63 | Foresight must guide geoengineering research and development. Nature Climate Change, 2019, 9, 342-342.                                                                                                   | 18.8 | 4         |
| 64 | The Sensitivity of Subsurface Microbes to Ocean Warming Accentuates Future Declines in Particulate Carbon Export. Frontiers in Ecology and Evolution, 2019, 6, .                                         | 2.2  | 17        |
| 65 | In-situ behavioural and physiological responses of Antarctic microphytobenthos to ocean acidification. Scientific Reports, 2019, 9, 1890.                                                                | 3.3  | 7         |
| 66 | Photosynthetic adaptation to low iron, light, and temperature in Southern Ocean phytoplankton.<br>Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 4388-4393. | 7.1  | 104       |
| 67 | Experimental strategies to assess the biological ramifications of multiple drivers of global ocean change—A review. Global Change Biology, 2018, 24, 2239-2261.                                          | 9.5  | 285       |
| 68 | Insights Into the Biogeochemical Cycling of Iron, Nitrate, and Phosphate Across a 5,300Âkm South<br>Pacific Zonal Section (153°E–150°W). Global Biogeochemical Cycles, 2018, 32, 187-207.                | 4.9  | 31        |
| 69 | The GEOTRACES Intermediate Data Product 2017. Chemical Geology, 2018, 493, 210-223.                                                                                                                      | 3.3  | 257       |
| 70 | Environmental controls on the elemental composition of a Southern Hemisphere strain of the<br>coccolithophore <i>Emiliania huxleyi</i> . Biogeosciences, 2018, 15, 581-595.                              | 3.3  | 11        |
| 71 | Current understanding and challenges for oceans in a higher-CO2 world. Nature Climate Change, 2018, 8, 686-694.                                                                                          | 18.8 | 55        |
| 72 | Light regime affects the seasonal cycle of Antarctic krill (Euphausia superba): impacts on growth,<br>feeding, lipid metabolism, and maturity. Canadian Journal of Zoology, 2018, 96, 1203-1213.         | 1.0  | 15        |

| #  | Article                                                                                                                                                                                                                                   | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Modelling growth and reproduction of Antarctic krill, Euphausia superba, based on temperature,<br>food and resource allocation amongst life history functions. ICES Journal of Marine Science, 2018, 75,<br>738-750.                      | 2.5  | 18        |
| 74 | Effect of anthropogenic warming on microbial respiration and particulate organic carbon export rates in the sub-Antarctic Southern Ocean. Aquatic Microbial Ecology, 2018, 82, 111-127.                                                   | 1.8  | 23        |
| 75 | Climate engineering is not just about the atmosphere. Nature, 2018, 553, 27-27.                                                                                                                                                           | 27.8 | 4         |
| 76 | The integral role of iron in ocean biogeochemistry. Nature, 2017, 543, 51-59.                                                                                                                                                             | 27.8 | 482       |
| 77 | Biotic and abiotic retention, recycling and remineralization of metals in the ocean. Nature<br>Geoscience, 2017, 10, 167-173.                                                                                                             | 12.9 | 98        |
| 78 | Eddyâ€induced carbon transport across the Antarctic Circumpolar Current. Global Biogeochemical Cycles, 2017, 31, 1368-1386.                                                                                                               | 4.9  | 32        |
| 79 | Environmental controls on the growth, photosynthetic and calcification rates of a Southern<br>Hemisphere strain of the coccolithophore <i>Emiliania huxleyi</i> . Limnology and Oceanography, 2017,<br>62, 519-540.                       | 3.1  | 50        |
| 80 | Forecast ocean variability. Nature, 2016, 539, 162-163.                                                                                                                                                                                   | 27.8 | 5         |
| 81 | Biological responses to environmental heterogeneity under future ocean conditions. Global Change<br>Biology, 2016, 22, 2633-2650.                                                                                                         | 9.5  | 187       |
| 82 | Developing priority variables ("ecosystem Essential Ocean Variables―— eEOVs) for observing dynamics<br>and change in Southern Ocean ecosystems. Journal of Marine Systems, 2016, 161, 26-41.                                              | 2.1  | 89        |
| 83 | Development of geopolitically relevant ranking criteria for geoengineering methods. Earth's Future, 2016, 4, 523-531.                                                                                                                     | 6.3  | 6         |
| 84 | Marine phytoplankton and the changing ocean iron cycle. Nature Climate Change, 2016, 6, 1072-1079.                                                                                                                                        | 18.8 | 159       |
| 85 | Coastal ocean and shelf-sea biogeochemical cycling of trace elements and isotopes: lessons learned from GEOTRACES. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2016, 374, 20160076.            | 3.4  | 56        |
| 86 | Developing a test-bed for robust research governance of geoengineering: the contribution of ocean<br>iron biogeochemistry. Philosophical Transactions Series A, Mathematical, Physical, and Engineering<br>Sciences, 2016, 374, 20150299. | 3.4  | 9         |
| 87 | Reply to "Comment on â€~Spring blooms and annual cycles of phytoplankton: a unified perspective', by<br>Chiswellet al.― Journal of Plankton Research, 2016, 38, 688-689.                                                                  | 1.8  | 0         |
| 88 | Understanding the variability in the iron concentration of Antarctic krill. Limnology and Oceanography, 2016, 61, 1651-1660.                                                                                                              | 3.1  | 15        |
| 89 | Physiological responses of a Southern Ocean diatom to complex future ocean conditions. Nature Climate Change, 2016, 6, 207-213.                                                                                                           | 18.8 | 153       |
| 90 | Why are biotic iron pools uniform across high―and lowâ€iron pelagic ecosystems?. Global<br>Biogeochemical Cycles, 2015, 29, 1028-1043.                                                                                                    | 4.9  | 37        |

| #   | Article                                                                                                                                                                                                                          | IF   | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91  | RESPIRE: An in situ particle interceptor to conduct particle remineralization and microbial dynamics<br>studies in the oceans' <scp>T</scp> wilight <scp>Z</scp> one. Limnology and Oceanography: Methods,<br>2015, 13, 494-508. | 2.0  | 19        |
| 92  | Modes of interactions between environmental drivers and marine biota. Frontiers in Marine Science, 2015, 2, .                                                                                                                    | 2.5  | 48        |
| 93  | Toward quantifying the response of the oceans' biological pump to climate change. Frontiers in<br>Marine Science, 2015, 2, .                                                                                                     | 2.5  | 37        |
| 94  | Long-Term Conditioning to Elevated pCO2 and Warming Influences the Fatty and Amino Acid Composition of the Diatom Cylindrotheca fusiformis. PLoS ONE, 2015, 10, e0123945.                                                        | 2.5  | 57        |
| 95  | Effects of sinking velocities and microbial respiration rates on the attenuation of particulate carbon fluxes through the mesopelagic zone. Global Biogeochemical Cycles, 2015, 29, 175-193.                                     | 4.9  | 66        |
| 96  | Surface ocean-lower atmosphere study: Scientific synthesis and contribution to Earth system science.<br>Anthropocene, 2015, 12, 54-68.                                                                                           | 3.3  | 13        |
| 97  | Iron stable isotopes track pelagic iron cycling during a subtropical phytoplankton bloom.<br>Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E15-20.                                 | 7.1  | 63        |
| 98  | Using the L* concept to explore controls on the relationship between paired ligand and dissolved iron concentrations in the ocean. Marine Chemistry, 2015, 173, 52-66.                                                           | 2.3  | 20        |
| 99  | Spring blooms and annual cycles of phytoplankton: a unified perspective. Journal of Plankton<br>Research, 2015, 37, 500-508.                                                                                                     | 1.8  | 72        |
| 100 | Ocean acidification increases the accumulation of toxic phenolic compounds across trophic levels.<br>Nature Communications, 2015, 6, 8714.                                                                                       | 12.8 | 91        |
| 101 | Biological ramifications of climate-change-mediated oceanic multi-stressors. Nature Climate Change, 2015, 5, 71-79.                                                                                                              | 18.8 | 214       |
| 102 | Species-Specific Variations in the Nutritional Quality of Southern Ocean Phytoplankton in Response to Elevated pCO2. Water (Switzerland), 2014, 6, 1840-1859.                                                                    | 2.7  | 24        |
| 103 | Surface-water iron supplies in the Southern Ocean sustained by deep winter mixing. Nature Geoscience, 2014, 7, 314-320.                                                                                                          | 12.9 | 223       |
| 104 | A ventilationâ€based framework to explain the regenerationâ€scavenging balance of iron in the ocean.<br>Geophysical Research Letters, 2014, 41, 7227-7236.                                                                       | 4.0  | 23        |
| 105 | Temporal changes in particle-associated microbial communities after interception by nonlethal sediment traps. FEMS Microbiology Ecology, 2014, 87, 153-163.                                                                      | 2.7  | 50        |
| 106 | Clobal assessment of ocean carbon export by combining satellite observations and foodâ€web models.<br>Global Biogeochemical Cycles, 2014, 28, 181-196.                                                                           | 4.9  | 368       |
| 107 | Climate change and Southern Ocean ecosystems I: how changes in physical habitats directly affect marine biota. Global Change Biology, 2014, 20, 3004-3025.                                                                       | 9.5  | 448       |
| 108 | Pelagic iron cycling during the subtropical spring bloom, east of New Zealand. Marine Chemistry, 2014, 160, 18-33.                                                                                                               | 2.3  | 35        |

| #   | Article                                                                                                                                                                                                                                     | IF   | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 109 | Western Pacific atmospheric nutrient deposition fluxes, their impact on surface ocean productivity.<br>Global Biogeochemical Cycles, 2014, 28, 712-728.                                                                                     | 4.9  | 63        |
| 110 | Differential remineralization of major and trace elements in sinking diatoms. Limnology and Oceanography, 2014, 59, 689-704.                                                                                                                | 3.1  | 84        |
| 111 | Ocean–Atmosphere Interactions of Particles. Springer Earth System Sciences, 2014, , 171-246.                                                                                                                                                | 0.2  | 29        |
| 112 | Perspectives and Integration in SOLAS Science. Springer Earth System Sciences, 2014, , 247-306.                                                                                                                                             | 0.2  | 2         |
| 113 | Diffusion Boundary Layers Ameliorate the Negative Effects of Ocean Acidification on the Temperate<br>Coralline Macroalga Arthrocardia corymbosa. PLoS ONE, 2014, 9, e97235.                                                                 | 2.5  | 105       |
| 114 | EXPERIMENTAL EVOLUTION MEETS MARINE PHYTOPLANKTON. Evolution; International Journal of Organic Evolution, 2013, 67, 1849-1859.                                                                                                              | 2.3  | 122       |
| 115 | Temporal variation of dissolved methane in a subtropical mesoscale eddy during a phytoplankton bloom in the southwest Pacific Ocean. Progress in Oceanography, 2013, 116, 193-206.                                                          | 3.2  | 24        |
| 116 | Diatom traits regulate Southern Ocean silica leakage. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 20358-20359.                                                                              | 7.1  | 19        |
| 117 | Relationships between nutrient stocks and inventories and phytoplankton physiological status along<br>an oligotrophic meridional transect in the Tasman Sea. Deep-Sea Research Part I: Oceanographic<br>Research Papers, 2013, 72, 102-120. | 1.4  | 29        |
| 118 | High abundances of cyanomyoviruses in marine ecosystems demonstrate ecological relevance. FEMS<br>Microbiology Ecology, 2013, 84, 223-234.                                                                                                  | 2.7  | 32        |
| 119 | Framing biological responses to a changing ocean. Nature Climate Change, 2013, 3, 530-533.                                                                                                                                                  | 18.8 | 14        |
| 120 | Diurnal fluctuations in seawater pH influence the response of a calcifying macroalga to ocean acidification. Proceedings of the Royal Society B: Biological Sciences, 2013, 280, 20132201.                                                  | 2.6  | 174       |
| 121 | Short- and long-term conditioning of a temperate marine diatom community to acidification and warming. Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, 368, 20120437.                                         | 4.0  | 86        |
| 122 | Processes and patterns of oceanic nutrient limitation. Nature Geoscience, 2013, 6, 701-710.                                                                                                                                                 | 12.9 | 1,627     |
| 123 | Marine Phytoplankton Temperature versus Growth Responses from Polar to Tropical Waters –<br>Outcome of a Scientific Community-Wide Study. PLoS ONE, 2013, 8, e63091.                                                                        | 2.5  | 258       |
| 124 | Diatom Proteomics Reveals Unique Acclimation Strategies to Mitigate Fe Limitation. PLoS ONE, 2013, 8, e75653.                                                                                                                               | 2.5  | 86        |
| 125 | Elemental quotas and physiology of a southwestern Pacific Ocean plankton community as a function of iron availability. Aquatic Microbial Ecology, 2013, 68, 185-194.                                                                        | 1.8  | 22        |
|     |                                                                                                                                                                                                                                             |      |           |

Ocean Fertilization for Sequestration of Carbon Dioxide from the Atmosphere. , 2013, , 53-72.

0

| #   | Article                                                                                                                                                                                                                  | IF   | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 127 | Ocean fertilization for geoengineering: A review of effectiveness, environmental impacts and emerging governance. Chemical Engineering Research and Design, 2012, 90, 475-488.                                           | 5.6  | 110       |
| 128 | Microbial control of diatom bloom dynamics in the open ocean. Geophysical Research Letters, 2012, 39,                                                                                                                    | 4.0  | 61        |
| 129 | Mapping phytoplankton iron utilization: Insights into Southern Ocean supply mechanisms. Journal of<br>Geophysical Research, 2012, 117, .                                                                                 | 3.3  | 113       |
| 130 | Ironâ€light interactions differ in Southern Ocean phytoplankton. Limnology and Oceanography, 2012, 57, 1182-1200.                                                                                                        | 3.1  | 150       |
| 131 | A comparison of biogenic iron quotas during a diatom spring bloom using multiple approaches.<br>Biogeosciences, 2012, 9, 667-687.                                                                                        | 3.3  | 39        |
| 132 | Ecosystem Impacts of Geoengineering: A Review for Developing a Science Plan. Ambio, 2012, 41, 350-369.                                                                                                                   | 5.5  | 69        |
| 133 | The fishery for Antarctic krill – recent developments. Fish and Fisheries, 2012, 13, 30-40.                                                                                                                              | 5.3  | 252       |
| 134 | Production of viruses during a spring phytoplankton bloom in the South Pacific Ocean near of New<br>Zealand. FEMS Microbiology Ecology, 2012, 79, 709-719.                                                               | 2.7  | 27        |
| 135 | BEFORE OCEAN ACIDIFICATION: CALCIFIER CHEMISTRY LESSONS <sup>1</sup> . Journal of Phycology, 2012, 48, 840-843.                                                                                                          | 2.3  | 104       |
| 136 | Influence of ocean warming and acidification on trace metal biogeochemistry. Marine Ecology -<br>Progress Series, 2012, 470, 191-205.                                                                                    | 1.9  | 96        |
| 137 | Understanding the responses of ocean biota to a complex matrix of cumulative anthropogenic change. Marine Ecology - Progress Series, 2012, 470, 125-135.                                                                 | 1.9  | 155       |
| 138 | A New Database to Explore the Findings from Large-Scale Ocean Iron Enrichment Experiments.<br>Oceanography, 2012, 25, 64-71.                                                                                             | 1.0  | 15        |
| 139 | Role of the seasonal cycle in coupling climate and carbon cycling in the subantarctic zone. Eos, 2011, 92, 235-236.                                                                                                      | 0.1  | 9         |
| 140 | Vertical distributions of iron-(III) complexing ligands in the Southern Ocean. Deep-Sea Research Part II:<br>Topical Studies in Oceanography, 2011, 58, 2113-2125.                                                       | 1.4  | 75        |
| 141 | Will krill fare well under Southern Ocean acidification?. Biology Letters, 2011, 7, 288-291.                                                                                                                             | 2.3  | 87        |
| 142 | Ocean-bottom krill sex. Journal of Plankton Research, 2011, 33, 1134-1138.                                                                                                                                               | 1.8  | 33        |
| 143 | Metabolically induced <scp>pH</scp> fluctuations by some coastal calcifiers exceed projected 22nd century ocean acidification: a mechanism for differential susceptibility?. Global Change Biology, 2011, 17, 3254-3262. | 9.5  | 148       |
| 144 | Beyond ocean acidification. Nature Geoscience, 2011, 4, 273-274.                                                                                                                                                         | 12.9 | 92        |

| #   | Article                                                                                                                                                                                                                                                  | IF               | CITATIONS    |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--------------|
| 145 | Saccharides enhance iron bioavailability to Southern Ocean phytoplankton. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 1076-1081.                                                                         | 7.1              | 235          |
| 146 | Adaptive strategies by Southern Ocean phytoplankton to lessen iron limitation: Uptake of organically complexed iron and reduced cellular iron requirements. Limnology and Oceanography, 2011, 56, 1983-2002.                                             | 3.1              | 149          |
| 147 | A Climate Change Atlas for the Ocean. Oceanography, 2011, 24, 13-16.                                                                                                                                                                                     | 1.0              | 10           |
| 148 | Remineralization of upper ocean particles: Implications for iron biogeochemistry. Limnology and Oceanography, 2010, 55, 1271-1288.                                                                                                                       | 3.1              | 103          |
| 149 | Aerosol iron deposition to the surface ocean — Modes of iron supply and biological responses.<br>Marine Chemistry, 2010, 120, 128-143.                                                                                                                   | 2.3              | 135          |
| 150 | The biogeochemical cycle of iron in the ocean. Nature Geoscience, 2010, 3, 675-682.                                                                                                                                                                      | 12.9             | 750          |
| 151 | Environmental control of openâ€ocean phytoplankton groups: Now and in the future. Limnology and Oceanography, 2010, 55, 1353-1376.                                                                                                                       | 3.1              | 266          |
| 152 | Surface zooplankton distribution in the Drake Passage recorded by Continuous Plankton Recorder<br>(CPR) in late austral summer of 2000. Polar Science, 2010, 3, 235-245.                                                                                 | 1.2              | 20           |
| 153 | Acoustic characterisation of the broad-scale distribution and abundance of Antarctic krill<br>(Euphausia superba) off East Antarctica (30-80°E) in January-March 2006. Deep-Sea Research Part II:<br>Topical Studies in Oceanography, 2010, 57, 916-933. | 1.4              | 70           |
| 154 | An experimental aquarium for observing the schooling behaviour of Antarctic krill (Euphausia) Tj ETQqO 0 0 rgBT                                                                                                                                          | /Overlock<br>1.4 | 10 Tf 50 382 |
| 155 | An automated pH-controlled culture system for laboratory-based ocean acidification experiments.<br>Limnology and Oceanography: Methods, 2010, 8, 686-694.                                                                                                | 2.0              | 28           |
| 156 | Shedding light on processes that control particle export and flux attenuation in the twilight zone of the open ocean. Limnology and Oceanography, 2009, 54, 1210-1232.                                                                                   | 3.1              | 384          |
| 157 | Geopolitics of geoengineering. Nature Geoscience, 2009, 2, 812-812.                                                                                                                                                                                      | 12.9             | 9            |
| 158 | Response to Lenes et al., 2009 rebuttal in Marine Chemistry. Marine Chemistry, 2009, 116, 54-55.                                                                                                                                                         | 2.3              | 1            |
| 159 | Ocean iron cycle. Geophysical Monograph Series, 2009, , 161-179.                                                                                                                                                                                         | 0.1              | 5            |
| 160 | Ocean nutrients. Geophysical Monograph Series, 2009, , 139-160.                                                                                                                                                                                          | 0.1              | 4            |
| 161 | Biogeochemical iron budgets of the Southern Ocean south of Australia: Decoupling of iron and nutrient cycles in the subantarctic zone by the summertime supply. Global Biogeochemical Cycles, 2009, 23, .                                                | 4.9              | 164          |
| 162 | Deciphering diatom biochemical pathways via whole-cell proteomics. Aquatic Microbial Ecology, 2009, 55, 241-253.                                                                                                                                         | 1.8              | 48           |

| #   | Article                                                                                                                                                                                                                              | IF   | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 163 | Ranking geo-engineering schemes. Nature Geoscience, 2008, 1, 722-724.                                                                                                                                                                | 12.9 | 69        |
| 164 | Biogeochemistry of iron in Australian dust: From eolian uplift to marine uptake. Geochemistry,<br>Geophysics, Geosystems, 2008, 9, .                                                                                                 | 2.5  | 84        |
| 165 | Quantifying the surface–subsurface biogeochemical coupling during the VERTIGO ALOHA and K2<br>studies. Deep-Sea Research Part II: Topical Studies in Oceanography, 2008, 55, 1578-1593.                                              | 1.4  | 43        |
| 166 | Primary, new and export production in the NW Pacific subarctic gyre during the vertigo K2<br>experiments. Deep-Sea Research Part II: Topical Studies in Oceanography, 2008, 55, 1594-1604.                                           | 1.4  | 38        |
| 167 | Barium in twilight zone suspended matter as a potential proxy for particulate organic carbon<br>remineralization: Results for the North Pacific. Deep-Sea Research Part II: Topical Studies in<br>Oceanography, 2008, 55, 1673-1683. | 1.4  | 53        |
| 168 | VERTIGO (VERtical Transport In the Global Ocean): A study of particle sources and flux attenuation in the North Pacific. Deep-Sea Research Part II: Topical Studies in Oceanography, 2008, 55, 1522-1539.                            | 1.4  | 121       |
| 169 | Winterâ€ŧime dissolved iron and nutrient distributions in the Subantarctic Zone from 40–52S; 155–160E.<br>Geophysical Research Letters, 2008, 35, .                                                                                  | 4.0  | 46        |
| 170 | Ocean Iron Fertilization–Moving Forward in a Sea of Uncertainty. Science, 2008, 319, 162-162.                                                                                                                                        | 12.6 | 156       |
| 171 | Response to Comment on "The Southern Ocean Biological Response to Aeolian Iron Deposition".<br>Science, 2008, 319, 159-159.                                                                                                          | 12.6 | 10        |
| 172 | Bacterial vs. zooplankton control of sinking particle flux in the ocean's twilight zone. Limnology and<br>Oceanography, 2008, 53, 1327-1338.                                                                                         | 3.1  | 350       |
| 173 | Inorganic carbon uptake by Southern Ocean phytoplankton. Limnology and Oceanography, 2008, 53, 1266-1278.                                                                                                                            | 3.1  | 70        |
| 174 | Climate-mediated changes to mixed-layer properties in the Southern Ocean: assessing the phytoplankton response. Biogeosciences, 2008, 5, 847-864.                                                                                    | 3.3  | 78        |
| 175 | Implications of large-scale iron fertilization of the oceans. Marine Ecology - Progress Series, 2008, 364, 213-218.                                                                                                                  | 1.9  | 47        |
| 176 | Predicting and verifying the intended and unintended consequences of large-scale ocean iron fertilization. Marine Ecology - Progress Series, 2008, 364, 295-301.                                                                     | 1.9  | 50        |
| 177 | Designing the next generation of ocean iron fertilization experiments. Marine Ecology - Progress<br>Series, 2008, 364, 303-309.                                                                                                      | 1.9  | 29        |
| 178 | Iron-binding ligands and their role in the ocean biogeochemistry of iron. Environmental Chemistry, 2007, 4, 221.                                                                                                                     | 1.5  | 144       |
| 179 | Luminescent Whole-Cell Cyanobacterial Bioreporter for Measuring Fe Availability in Diverse Marine<br>Environments. Applied and Environmental Microbiology, 2007, 73, 1019-1024.                                                      | 3.1  | 43        |
| 180 | Revisiting Carbon Flux Through the Ocean's Twilight Zone. Science, 2007, 316, 567-570.                                                                                                                                               | 12.6 | 547       |

| #   | Article                                                                                                                                                                                                                                                                                            | IF   | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 181 | Mesoscale Iron Enrichment Experiments 1993-2005: Synthesis and Future Directions. Science, 2007, 315, 612-617.                                                                                                                                                                                     | 12.6 | 1,250     |
| 182 | Predictive accuracy of temperature-nitrate relationships for the oceanic mixed layer of the New Zealand region. Journal of Geophysical Research, 2007, 112, .                                                                                                                                      | 3.3  | 15        |
| 183 | Physical mixing effects on iron biogeochemical cycling: FeCycle experiment. Journal of Geophysical<br>Research, 2007, 112, .                                                                                                                                                                       | 3.3  | 43        |
| 184 | Iron findings. Nature, 2007, 446, 990-991.                                                                                                                                                                                                                                                         | 27.8 | 20        |
| 185 | Understanding the export of biogenic particles in oceanic waters: Is there consensus?. Progress in Oceanography, 2007, 72, 276-312.                                                                                                                                                                | 3.2  | 394       |
| 186 | The krill maturity cycle: a conceptual model of the seasonal cycle in Antarctic krill. Polar Biology, 2007, 30, 689-698.                                                                                                                                                                           | 1.2  | 48        |
| 187 | A method for estimating inherent optical properties of New Zealand continental shelf waters from<br>satellite ocean colour measurements. New Zealand Journal of Marine and Freshwater Research, 2006,<br>40, 227-247.                                                                              | 2.0  | 21        |
| 188 | Particulate iron dynamics during FeCycle in subantarctic waters southeast of New Zealand. Global<br>Biogeochemical Cycles, 2006, 20, n/a-n/a.                                                                                                                                                      | 4.9  | 112       |
| 189 | Modeling analysis of the effect of iron enrichment on dimethyl sulfide dynamics in the NE Pacific (SERIES experiment). Journal of Geophysical Research, 2006, 111, .                                                                                                                               | 3.3  | 19        |
| 190 | Soil abrasion and eolian dust production: Implications for iron partitioning and solubility.<br>Geochemistry, Geophysics, Geosystems, 2006, 7, n/a-n/a.                                                                                                                                            | 2.5  | 38        |
| 191 | Development of a robust marine ecosystem model to predict the role of iron in biogeochemical cycles:<br>A comparison of results for iron-replete and iron-limited areas, and the SOIREE iron-enrichment<br>experiment. Deep-Sea Research Part I: Oceanographic Research Papers, 2006, 53, 333-366. | 1.4  | 61        |
| 192 | Matching carbon pools and fluxes for the Southern Ocean Iron Release Experiment (SOIREE). Deep-Sea<br>Research Part I: Oceanographic Research Papers, 2006, 53, 1941-1960.                                                                                                                         | 1.4  | 7         |
| 193 | Modeling studies investigating the causes of preferential depletion of silicic acid relative to nitrate during SERIES, a mesoscale iron enrichment in the NE subarctic Pacific. Deep-Sea Research Part II: Topical Studies in Oceanography, 2006, 53, 2297-2326.                                   | 1.4  | 9         |
| 194 | Patch evolution and the biogeochemical impact of entrainment during an iron fertilisation<br>experiment in the sub-Arctic Pacific. Deep-Sea Research Part II: Topical Studies in Oceanography, 2006,<br>53, 2012-2033.                                                                             | 1.4  | 41        |
| 195 | Nutrient and phytoplankton dynamics during the stationary and declining phases of a phytoplankton<br>bloom induced by iron-enrichment in the eastern subarctic Pacific. Deep-Sea Research Part II: Topical<br>Studies in Oceanography, 2006, 53, 2168-2181.                                        | 1.4  | 18        |
| 196 | Observations of Small-Scale Processes Associated with the Internal Tide Encountering an Island.<br>Journal of Physical Oceanography, 2005, 35, 1553-1567.                                                                                                                                          | 1.7  | 9         |
| 197 | The evolution and termination of an iron-induced mesoscale bloom in the northeast subarctic Pacific.<br>Limnology and Oceanography, 2005, 50, 1872-1886.                                                                                                                                           | 3.1  | 106       |
| 198 | Intercomparison of ocean colour band-ratio algorithms for chlorophyll concentration in the<br>Subtropical Front east of New Zealand. Remote Sensing of Environment, 2005, 97, 382-402.                                                                                                             | 11.0 | 24        |

| #   | Article                                                                                                                                                                                                                             | IF   | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 199 | A mechanism for onset of diatom blooms in a fjord with persistent salinity stratification. Estuarine,<br>Coastal and Shelf Science, 2005, 64, 546-560.                                                                              | 2.1  | 53        |
| 200 | Global Iron Connections Between Desert Dust, Ocean Biogeochemistry, and Climate. Science, 2005, 308, 67-71.                                                                                                                         | 12.6 | 2,365     |
| 201 | Fe and Zn effects on the Si cycle and diatom community structure in two contrasting high and<br>low-silicate HNLC areas. Deep-Sea Research Part I: Oceanographic Research Papers, 2005, 52, 1842-1864.                              | 1.4  | 98        |
| 202 | Simulating the cloud processing of iron in Australian dust: pH and dust concentration. Geophysical Research Letters, 2005, 32, .                                                                                                    | 4.0  | 76        |
| 203 | Synthesis of iron fertilization experiments: From the Iron Age in the Age of Enlightenment. Journal of<br>Geophysical Research, 2005, 110, .                                                                                        | 3.3  | 596       |
| 204 | Temporal coupling between surface and deep ocean biogeochemical processes in contrasting subtropical and subantarctic water masses, southwest Pacific Ocean. Journal of Geophysical Research, 2005, 110, .                          | 3.3  | 35        |
| 205 | Tracking changes in bioavailable Fe within high-nitrate low-chlorophyll oceanic waters: A first<br>estimate using a heterotrophic bacterial bioreporter. Global Biogeochemical Cycles, 2005, 19, n/a-n/a.                           | 4.9  | 19        |
| 206 | Acquisition of iron bound to strong organic complexes, with different Fe binding groups and photochemical reactivities, by plankton communities in Fe-limited subantarctic waters. Global Biogeochemical Cycles, 2005, 19, n/a-n/a. | 4.9  | 130       |
| 207 | Impact of phytoplankton on the biogeochemical cycling of iron in subantarctic waters southeast of<br>New Zealand during FeCycle. Global Biogeochemical Cycles, 2005, 19, n/a-n/a.                                                   | 4.9  | 34        |
| 208 | Spinning the "Ferrous Wheel― The importance of the microbial community in an iron budget during<br>the FeCycle experiment. Global Biogeochemical Cycles, 2005, 19, n/a-n/a.                                                         | 4.9  | 128       |
| 209 | FeCycle: Attempting an iron biogeochemical budget from a mesoscale SF6tracer experiment in unperturbed low iron waters. Global Biogeochemical Cycles, 2005, 19, n/a-n/a.                                                            | 4.9  | 114       |
| 210 | Role of algal aggregation in vertical carbon export during SOIREE and in other low biomass environments. Geophysical Research Letters, 2005, 32, .                                                                                  | 4.0  | 74        |
| 211 | OCEAN SCIENCE: Ironing Out Algal Issues in the Southern Ocean. Science, 2004, 304, 396-397.                                                                                                                                         | 12.6 | 51        |
| 212 | The decline and fate of an iron-induced subarctic phytoplankton bloom. Nature, 2004, 428, 549-553.                                                                                                                                  | 27.8 | 476       |
| 213 | Validation of SeaWiFS data from around New Zealand. Advances in Space Research, 2004, 33, 1160-1167.                                                                                                                                | 2.6  | 17        |
| 214 | Possible impacts of zooplankton grazing on dimethylsulfide production in the Antarctic Ocean.<br>Canadian Journal of Fisheries and Aquatic Sciences, 2004, 61, 736-743.                                                             | 1.4  | 36        |
| 215 | Episodic enhancement of phytoplankton stocks in New Zealand subantarctic waters: Contribution of atmospheric and oceanic iron supply. Global Biogeochemical Cycles, 2004, 18, n/a-n/a.                                              | 4.9  | 88        |
| 216 | Selenium speciation in subantarctic and subtropical waters east of New Zealand: trends and temporal variations. Deep-Sea Research Part I: Oceanographic Research Papers, 2004, 51, 491-506.                                         | 1.4  | 20        |

| #   | Article                                                                                                                                                                                                                                            | IF   | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 217 | Pilot trophic model for subantarctic water over the Southern Plateau, New Zealand: a low biomass,<br>high transfer efficiency system. Journal of Experimental Marine Biology and Ecology, 2003, 289,<br>223-262.                                   | 1.5  | 53        |
| 218 | The Impact of Climate Change and Feedback Processes on the Ocean Carbon Cycle. , 2003, , 157-193.                                                                                                                                                  |      | 42        |
| 219 | CLIMATE CHANGE: Will Ocean Fertilization Work?. Science, 2003, 300, 67-68.                                                                                                                                                                         | 12.6 | 107       |
| 220 | Are mesoscale perturbation experiments in polar waters prone to physical artefacts? Evidence from algal aggregation modelling studies. Geophysical Research Letters, 2002, 29, 36-1.                                                               | 4.0  | 27        |
| 221 | Modelling regional responses by marine pelagic ecosystems to global climate change. Geophysical<br>Research Letters, 2002, 29, 53-1-53-4.                                                                                                          | 4.0  | 281       |
| 222 | The role of iron in the biogeochemistry of the Southern Ocean and equatorial Pacific: a comparison of in situ iron enrichments. Deep-Sea Research Part II: Topical Studies in Oceanography, 2002, 49, 1803-1821.                                   | 1.4  | 78        |
| 223 | Seasonal and interannual trends in heterotrophic bacterial processes between 1995 and 1999 in the subarctic NE Pacific. Deep-Sea Research Part II: Topical Studies in Oceanography, 2002, 49, 5775-5791.                                           | 1.4  | 14        |
| 224 | Modelling particle transformations and the downward organic carbon flux in the NE Atlantic Ocean.<br>Progress in Oceanography, 2002, 52, 1-29.                                                                                                     | 3.2  | 23        |
| 225 | ENVIRONMENTAL FACTORS CONTROLLING PHYTOPLANKTON PROCESSES IN THE SOUTHERN OCEAN1.<br>Journal of Phycology, 2002, 38, 844-861.                                                                                                                      | 2.3  | 265       |
| 226 | A persistent subsurface chlorophyll maximum in the Interpolar Frontal Zone south of Australia:<br>Seasonal progression and implications for phytoplankton-light-nutrient interactions. Journal of<br>Geophysical Research, 2001, 106, 31543-31557. | 3.3  | 103       |
| 227 | Control of phytoplankton growth by iron and silicic acid availability in the subantarctic Southern<br>Ocean: Experimental results from the SAZ Project. Journal of Geophysical Research, 2001, 106,<br>31559-31572.                                | 3.3  | 126       |
| 228 | Control of phytoplankton growth by iron supply and irradiance in the subantarctic Southern Ocean:<br>Experimental results from the SAZ Project. Journal of Geophysical Research, 2001, 106, 31573-31583.                                           | 3.3  | 130       |
| 229 | Particle transformations and export flux during anin situiron-stimulated algal bloom in the<br>Southern Ocean. Geophysical Research Letters, 2001, 28, 2409-2412.                                                                                  | 4.0  | 37        |
| 230 | Retention of dissolved iron and Fellin an iron induced Southern Ocean phytoplankton bloom.<br>Geophysical Research Letters, 2001, 28, 3425-3428.                                                                                                   | 4.0  | 132       |
| 231 | Effects of iron, silicate, and light on dimethylsulfoniopropionate production in the Australian<br>Subantarctic Zone. Journal of Geophysical Research, 2001, 106, 31585-31595.                                                                     | 3.3  | 11        |
| 232 | Size-fractionated primary production and nitrogen uptake during a North Atlantic phytoplankton<br>bloom: implications for carbon export estimates. Deep-Sea Research Part I: Oceanographic Research<br>Papers, 2001, 48, 689-720.                  | 1.4  | 66        |
| 233 | The Southern Ocean Iron RElease Experiment (SOIREE)—introduction and summary. Deep-Sea Research<br>Part II: Topical Studies in Oceanography, 2001, 48, 2425-2438.                                                                                  | 1.4  | 107       |
| 234 | Iron-mediated changes in phytoplankton photosynthetic competence during SOIREE. Deep-Sea Research<br>Part II: Topical Studies in Oceanography, 2001, 48, 2529-2550.                                                                                | 1.4  | 133       |

| #   | Article                                                                                                                                                                                                                                              | IF   | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 235 | Phytoplankton processes. Part 1: Community structure during the Southern Ocean Iron RElease<br>Experiment (SOIREE). Deep-Sea Research Part II: Topical Studies in Oceanography, 2001, 48, 2551-2570.                                                 | 1.4  | 127       |
| 236 | Phytoplankton processes. Part 2: Rates of primary production and factors controlling algal growth<br>during the Southern Ocean Iron RElease Experiment (SOIREE). Deep-Sea Research Part II: Topical Studies<br>in Oceanography, 2001, 48, 2571-2590. | 1.4  | 74        |
| 237 | The fate of added iron during a mesoscale fertilisation experiment in the Southern Ocean. Deep-Sea<br>Research Part II: Topical Studies in Oceanography, 2001, 48, 2703-2743.                                                                        | 1.4  | 160       |
| 238 | Modeling the bloom evolution and carbon flows during SOIREE: Implications for future in situ<br>iron-enrichments in the Southern Ocean. Deep-Sea Research Part II: Topical Studies in Oceanography,<br>2001, 48, 2745-2773.                          | 1.4  | 42        |
| 239 | Phytoplankton distributions around New Zealand derived from SeaWiFS remotelyâ€sensed ocean colour data. New Zealand Journal of Marine and Freshwater Research, 2001, 35, 343-362.                                                                    | 2.0  | 191       |
| 240 | Iron uptake and physiological response of phytoplankton during a mesoscale Southern Ocean iron enrichment. Limnology and Oceanography, 2001, 46, 1802-1808.                                                                                          | 3.1  | 78        |
| 241 | A mesoscale phytoplankton bloom in the polar Southern Ocean stimulated by iron fertilization.<br>Nature, 2000, 407, 695-702.                                                                                                                         | 27.8 | 1,417     |
| 242 | Importance of stirring in the development of an iron-fertilized phytoplankton bloom. Nature, 2000, 407, 727-730.                                                                                                                                     | 27.8 | 260       |
| 243 | Effect of iron supply on Southern Ocean CO2 uptake and implications for glacial atmospheric CO2.<br>Nature, 2000, 407, 730-733.                                                                                                                      | 27.8 | 449       |
| 244 | Pelagic ecosystem structure and functioning in the subtropical front region east of New Zealand in austral winter and spring 1993. Journal of Plankton Research, 1999, 21, 405-428.                                                                  | 1.8  | 105       |
| 245 | Comparison of factors controlling phytoplankton productivity in the NE and NW subarctic Pacific gyres. Progress in Oceanography, 1999, 43, 205-234.                                                                                                  | 3.2  | 218       |
| 246 | Does planktonic community structure determine downward particulate organic carbon flux in<br>different oceanic provinces?. Deep-Sea Research Part I: Oceanographic Research Papers, 1999, 46, 63-91.                                                 | 1.4  | 263       |
| 247 | The Joint Global Ocean Flux Study (Canada) in the NE subarctic Pacific. Deep-Sea Research Part II:<br>Topical Studies in Oceanography, 1999, 46, 2345-2350.                                                                                          | 1.4  | 16        |
| 248 | Phytoplankton dynamics in the NE subarctic Pacific. Deep-Sea Research Part II: Topical Studies in Oceanography, 1999, 46, 2405-2432.                                                                                                                 | 1.4  | 190       |
| 249 | Co-limitation of phytoplankton growth by light and Fe during winter in the NE subarctic Pacific<br>Ocean. Deep-Sea Research Part II: Topical Studies in Oceanography, 1999, 46, 2475-2485.                                                           | 1.4  | 119       |
| 250 | Seasonal and spatial patterns of heterotrophic bacterial production, respiration, and biomass in the subarctic NE Pacific. Deep-Sea Research Part II: Topical Studies in Oceanography, 1999, 46, 2557-2578.                                          | 1.4  | 60        |
| 251 | Mesozooplankton grazing manipulations during in vitro iron enrichment studies in the NE subarctic<br>Pacific. Deep-Sea Research Part II: Topical Studies in Oceanography, 1999, 46, 2645-2668.                                                       | 1.4  | 27        |
| 252 | Transformations of biogenic particulates from the pelagic to the deep ocean realm. Deep-Sea Research<br>Part II: Topical Studies in Oceanography, 1999, 46, 2761-2792.                                                                               | 1.4  | 91        |

| #                        | Article                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | IF                       | CITATIONS            |
|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|----------------------|
| 253                      | Limitation of algal growth by iron deficiency in the Australian Subantarctic Region. Geophysical<br>Research Letters, 1999, 26, 2865-2868.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4.0                      | 109                  |
| 254                      | Role of iron, light, and silicate in controlling algal biomass in subantarctic waters SE of New<br>Zealand. Journal of Geophysical Research, 1999, 104, 13395-13408.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.3                      | 265                  |
| 255                      | Predicting rates of primary production in the vicinity of the Subtropical Convergence east of New<br>Zealand. New Zealand Journal of Marine and Freshwater Research, 1999, 33, 443-455.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.0                      | 18                   |
| 256                      | Biogeochemistry of trace metals in the ocean. Marine and Freshwater Research, 1999, 50, 739.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.3                      | 22                   |
| 257                      | Modeling the relative contributions of autotrophs and heterotrophs to carbon flow at a Lagrangian<br>JGOFS station in the Northeast Atlantic: The importance of DOC. Limnology and Oceanography, 1999,<br>44, 80-94.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.1                      | 83                   |
| 258                      | In vitro iron enrichment experiments at iron-rich and -poor sites in the NE subarctic Pacific. Journal of Experimental Marine Biology and Ecology, 1998, 227, 133-151.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.5                      | 48                   |
| 259                      | Carbon flux in ice–ocean–plankton systems of the Bellingshausen Sea during a period of ice retreat.<br>Journal of Marine Systems, 1998, 17, 207-227.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.1                      | 13                   |
| 260                      | Atmospheric iron supply and enhanced vertical carbon flux in the NE subarctic Pacific: Is there a connection?. Global Biogeochemical Cycles, 1998, 12, 429-441.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4.9                      | 114                  |
| 261                      | Interannual variability in nitrate supply to surface waters of the Northeast Pacific Ocean. Marine<br>Ecology - Progress Series, 1998, 170, 15-23.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.9                      | 85                   |
| 262                      | Measuring Biogenic Carbon Flux in the Ocean. Science, 1997, 275, 554-555.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 12.6                     | 17                   |
|                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                          |                      |
| 263                      | Micro-algal carbon and nitrogen uptake in post-coccolithophore bloom conditions in the northeast<br>Atlantic, July 1991. Deep-Sea Research Part I: Oceanographic Research Papers, 1997, 44, 1497-1517.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.4                      | 19                   |
| 263<br>264               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.4                      | 19<br>30             |
|                          | Atlantic, July 1991. Deep-Sea Research Part I: Oceanographic Research Papers, 1997, 44, 1497-1517.<br>Physical, chemical and biological features of a cyclonic eddy in the region of 61°10'N 19°50'W in the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                          |                      |
| 264                      | Atlantic, July 1991. Deep-Sea Research Part I: Oceanographic Research Papers, 1997, 44, 1497-1517.<br>Physical, chemical and biological features of a cyclonic eddy in the region of 61°10'N 19°50'W in the<br>North Atlantic. Deep-Sea Research Part I: Oceanographic Research Papers, 1997, 44, 1815-1839.<br>A novel delta-subdivision proteobacterial lineage from the lower ocean surface layer. Applied and                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.4                      | 30                   |
| 264<br>265               | <ul> <li>Atlantic, July 1991. Deep-Sea Research Part I: Oceanographic Research Papers, 1997, 44, 1497-1517.</li> <li>Physical, chemical and biological features of a cyclonic eddy in the region of 61Ű10'N 19Ű50'W in the North Atlantic. Deep-Sea Research Part I: Oceanographic Research Papers, 1997, 44, 1815-1839.</li> <li>A novel delta-subdivision proteobacterial lineage from the lower ocean surface layer. Applied and Environmental Microbiology, 1997, 63, 1441-1448.</li> <li>Comparison of radiocarbon and fluorescence based (pump and probe) measurements of phytoplankton photosynthetic characteristics in the Northeast Atlantic Ocean. Marine Ecology - Progress Series,</li> </ul>                                                                                                                                    | 1.4<br>3.1               | <b>30</b><br>98      |
| 264<br>265<br>266        | <ul> <li>Atlantic, July 1991. Deep-Sea Research Part I: Oceanographic Research Papers, 1997, 44, 1497-1517.</li> <li>Physical, chemical and biological features of a cyclonic eddy in the region of 61Ű10'N 19Ű50'W in the North Atlantic. Deep-Sea Research Part I: Oceanographic Research Papers, 1997, 44, 1815-1839.</li> <li>A novel delta-subdivision proteobacterial lineage from the lower ocean surface layer. Applied and Environmental Microbiology, 1997, 63, 1441-1448.</li> <li>Comparison of radiocarbon and fluorescence based (pump and probe) measurements of phytoplankton photosynthetic characteristics in the Northeast Atlantic Ocean. Marine Ecology - Progress Series, 1997, 149, 215-226.</li> <li>An assessment of the role of the marginal ice zone in the carbon cycle of the Southern Ocean.</li> </ul>         | 1.4<br>3.1<br>1.9        | 30<br>98<br>33       |
| 264<br>265<br>266<br>267 | Atlantic, July 1991. Deep-Sea Research Part I: Oceanographic Research Papers, 1997, 44, 1497-1517.<br>Physical, chemical and biological features of a cyclonic eddy in the region of 61°10'N 19°50'W in the<br>North Atlantic. Deep-Sea Research Part I: Oceanographic Research Papers, 1997, 44, 1815-1839.<br>A novel delta-subdivision proteobacterial lineage from the lower ocean surface layer. Applied and<br>Environmental Microbiology, 1997, 63, 1441-1448.<br>Comparison of radiocarbon and fluorescence based (pump and probe) measurements of phytoplankton<br>photosynthetic characteristics in the Northeast Atlantic Ocean. Marine Ecology - Progress Series,<br>1997, 149, 215-226.<br>An assessment of the role of the marginal ice zone in the carbon cycle of the Southern Ocean.<br>Antarctic Science, 1996, 8, 349-358. | 1.4<br>3.1<br>1.9<br>0.9 | 30<br>98<br>33<br>27 |

| #   | Article                                                                                                                                                                                                              | IF   | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 271 | Seientifie Diving Under Sea lee in the Southern Oeean. Underwater Technology, 1995, 21, 21-27.                                                                                                                       | 0.3  | 1         |
| 272 | Phytoplankton production and biomass estimates in the northeast Atlantic Ocean, May–June 1990.<br>Deep-Sea Research Part I: Oceanographic Research Papers, 1995, 42, 599-617.                                        | 1.4  | 48        |
| 273 | Evidence of the potential influence of planktonic community structure on the interannual variability of particulate organic carbon flux. Deep-Sea Research Part I: Oceanographic Research Papers, 1995, 42, 619-639. | 1.4  | 186       |
| 274 | Phytoplankton distributions and production in the Bellingshausen sea, Austral spring 1992. Deep-Sea<br>Research Part II: Topical Studies in Oceanography, 1995, 42, 1201-1224.                                       | 1.4  | 59        |
| 275 | Water column and sea-ice primary production during Austral spring in the Bellingshausen Sea.<br>Deep-Sea Research Part II: Topical Studies in Oceanography, 1995, 42, 1177-1200.                                     | 1.4  | 88        |
| 276 | A comparison of isotopic and chemiluminescent methods of estimating microalgal nitrate uptake in the NE Atlantic. Marine Ecology - Progress Series, 1995, 116, 199-205.                                              | 1.9  | 10        |
| 277 | standing stocks. Marine Ecology - Progress Series, 1995, 128, 11-24.                                                                                                                                                 | 1.9  | 61        |
| 278 | The impact of a coccolithophore bloom on oceanic carbon uptake in the northeast Atlantic during summer 1991. Deep-Sea Research Part I: Oceanographic Research Papers, 1994, 41, 297-314.                             | 1.4  | 146       |
| 279 | Relationship between Recruitment of the Antarctic Krill and the Degree of Ice Cover near the South<br>Shetland Islands. Fisheries Science, 1994, 60, 123-124.                                                        | 1.6  | 41        |
| 280 | Elevated consumption of carbon relative to nitrogen in the surface ocean. Nature, 1993, 363, 248-250.                                                                                                                | 27.8 | 323       |
| 281 | Size-fractionated primary productivity in the northeast Atlantic in May–July 1989. Deep-Sea Research<br>Part II: Topical Studies in Oceanography, 1993, 40, 423-440.                                                 | 1.4  | 77        |
| 282 | A biogeochemical study of the coccolithophore, <i>Emiliania huxleyi</i> , in the North Atlantic. Global<br>Biogeochemical Cycles, 1993, 7, 879-900.                                                                  | 4.9  | 450       |
| 283 | Production of organic and inorganic carbon within a large-scale coccolithophore bloom in the northeast Atlantic Ocean. Marine Ecology - Progress Series, 1993, 97, 271-285.                                          | 1.9  | 134       |
| 284 | Ferrioxamine Siderophores Detected amongst Iron Binding Ligands Produced during the Remineralization of Marine Particles. Frontiers in Marine Science, 0, 3, .                                                       | 2.5  | 40        |
| 285 | Toward a Regional Classification to Provide a More Inclusive Examination of the Ocean<br>Biogeochemistry of Iron-Binding Ligands. Frontiers in Marine Science, 0, 4, .                                               | 2.5  | 51        |
| 286 | Status, Change, and Futures of Zooplankton in the Southern Ocean. Frontiers in Ecology and Evolution, 0, 9, .                                                                                                        | 2.2  | 28        |