Zhiming M Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1364003/publications.pdf

Version: 2024-02-01

39 papers 2,208 citations

236925 25 h-index 302126 39 g-index

40 all docs

40 docs citations

times ranked

40

2157 citing authors

#	Article	IF	CITATIONS
1	Fibrous cathode materials for advanced sodium-chalcogen batteries. Energy Storage Materials, 2022, 45, 265-280.	18.0	15
2	Role of Interfacial Engineering of "Giant―Core–Shell Quantum Dots. ACS Applied Energy Materials, 2022, 5, 1447-1459.	5.1	14
3	Plasmonic Nanocrystals with Complex Shapes for Photocatalysis and Growth: Contrasting Anisotropic Hotâ€Electron Generation with the Photothermal Effect. Advanced Optical Materials, 2022, 10, .	7.3	15
4	Nanostructure Engineering Strategies of Cathode Materials for Room-Temperature Na–S Batteries. ACS Nano, 2022, 16, 5103-5130.	14.6	27
5	Ultraflexible Photothermal Superhydrophobic Coating with Multifunctional Applications Based on Plasmonic TiN Nanoparticles. Advanced Optical Materials, 2022, 10, .	7.3	18
6	Toward Continuous-Wave Pumped Metal Halide Perovskite Lasers: Strategies and Challenges. ACS Nano, 2022, 16, 7116-7143.	14.6	32
7	DNA-Assembled Chiral Satellite-Core Nanoparticle Superstructures: Two-State Chiral Interactions from Dynamic and Static Conformations. Nano Letters, 2022, 22, 4784-4791.	9.1	10
8	Chiral Bioinspired Plasmonics: A Paradigm Shift for Optical Activity and Photochemistry. ACS Photonics, 2022, 9, 2219-2236.	6.6	26
9	Photoluminescence and Raman Spectra of One-Dimensional Lead-free Perovskite CsCu ₂ 1 ₃ Single-Crystal Wires. Journal of Physical Chemistry Letters, 2022, 13, 6447-6454.	4.6	13
10	"Greenâ€, gradient multi-shell CuInSe2/(CuInSexS1-x)5/CuInS2 quantum dots for photo-electrochemical hydrogen generation. Applied Catalysis B: Environmental, 2021, 280, 119402.	20.2	46
11	Efficient and stable photoelectrochemical hydrogen generation using optimized colloidal heterostructured quantum dots. Nano Energy, 2021, 79, 105416.	16.0	43
12	Metal-based electrocatalysts for room-temperature Na–S batteries. Materials Horizons, 2021, 8, 2870-2885.	12.2	29
13	Materials engineering for adsorption and catalysis in room-temperature Na–S batteries. Energy and Environmental Science, 2021, 14, 3757-3795.	30.8	62
14	An Emerging Energy Storage System: Advanced Na–Se Batteries. ACS Nano, 2021, 15, 5876-5903.	14.6	56
15	Rechargeable Potassium–Selenium Batteries. Advanced Functional Materials, 2021, 31, 2102326.	14.9	30
16	Engineering plasmonic hot carrier dynamics toward efficient photodetection. Applied Physics Reviews, 2021, 8, .	11.3	47
17	Emerging light-emitting diodes for next-generation data communications. Nature Electronics, 2021, 4, 559-572.	26.0	102
18	Chiral Optofluidics with a Plasmonic Metasurface Using the Photothermal Effect. ACS Nano, 2021, 15, 16357-16367.	14.6	23

#	Article	IF	CITATIONS
19	High efficiency photoelectrochemical hydrogen generation using eco-friendly Cu doped Zn-In-Se colloidal quantum dots. Nano Energy, 2021, 88, 106220.	16.0	23
20	Red phosphorus: A rising star of anode materials for advanced K-ion batteries. Energy Storage Materials, 2021, 42, 193-208.	18.0	22
21	Advanced Highâ€Performance Potassium–Chalcogen (S, Se, Te) Batteries. Small, 2021, 17, e2004369.	10.0	45
22	Quantum Dotsâ€Based Photoelectrochemical Hydrogen Evolution from Water Splitting. Advanced Energy Materials, 2021, 11, 2003233.	19.5	51
23	Broadband Tamm plasmon-enhanced planar hot-electron photodetector. Nanoscale, 2020, 12, 23945-23952.	5.6	37
24	Signature of $\langle i \rangle p \langle j \rangle$ -type semiconductor features in paper-based back gate metal-organic framework thin-film transistors. Applied Physics Letters, 2020, 117, .	3.3	5
25	Planar hot-electron photodetector utilizing high refractive index MoS2 in Fabry–Pérot perfect absorber. Nanotechnology, 2020, 31, 274001.	2.6	24
26	Hot Electrons Generated in Chiral Plasmonic Nanocrystals as a Mechanism for Surface Photochemistry and Chiral Growth. Journal of the American Chemical Society, 2020, 142, 4193-4205.	13.7	58
27	Core/Shell Quantum Dots Solar Cells. Advanced Functional Materials, 2020, 30, 1908762.	14.9	98
28	The fast and the furious: Ultrafast hot electrons in plasmonic metastructures. Size and structure matter. Nano Today, 2019, 27, 120-145.	11.9	112
29	Generation of hot electrons in nanostructures incorporating conventional and unconventional plasmonic materials. Faraday Discussions, 2019, 214, 199-213.	3.2	24
30	Generation of Hot Electrons with Chiral Metamaterial Perfect Absorbers: Giant Optical Chirality for Polarization-Sensitive Photochemistry. ACS Photonics, 2019, 6, 3241-3252.	6.6	64
31	Electronic Structure of the Plasmons in Metal Nanocrystals: Fundamental Limitations for the Energy Efficiency of Hot Electron Generation. ACS Energy Letters, 2019, 4, 2552-2568.	17.4	98
32	Chiral Plasmonic Nanocrystals for Generation of Hot Electrons: Toward Polarization-Sensitive Photochemistry. Nano Letters, 2019, 19, 1395-1407.	9.1	83
33	Interfacial engineering in colloidal "giant―quantum dots for high-performance photovoltaics. Nano Energy, 2019, 55, 377-388.	16.0	44
34	Broadband Metamaterial Absorbers. Advanced Optical Materials, 2019, 7, 1800995.	7.3	404
35	Photothermal Circular Dichroism Induced by Plasmon Resonances in Chiral Metamaterial Absorbers and Bolometers. Nano Letters, 2018, 18, 2001-2008.	9.1	123
36	Structure/Property Relations in "Giant―Semiconductor Nanocrystals: Opportunities in Photonics and Electronics. Accounts of Chemical Research, 2018, 51, 609-618.	15.6	51

ZHIMING M WANG

#	Article	IF	CITATIONS
37	Metamaterial perfect absorber with unabated size-independent absorption. Optics Express, 2018, 26, 20471.	3.4	63
38	Highly Stable Colloidal "Giant―Quantum Dots Sensitized Solar Cells. Advanced Functional Materials, 2017, 27, 1701468.	14.9	92
39	Rational Synthesis of Branched CoMoO ₄ @CoNiO ₂ Core/Shell Nanowire Arrays for All-Solid-State Supercapacitors with Improved Performance. ACS Applied Materials & Samp; Interfaces, 2015, 7, 24204-24211.	8.0	79