
Terri A Long

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1363162/publications.pdf Version: 2024-02-01

TERRI ALONO

#	Article	IF	CITATIONS
1	E3 ligase BRUTUS Is a Negative Regulator for the Cellular Energy Level and the Expression of Energy Metabolism-Related Genes Encoded by Two Organellar Genomes in Leaf Tissues. Molecules and Cells, 2022, 45, 294-305.	2.6	1
2	A hybrid model connecting regulatory interactions with stem cell divisions in the root. Quantitative Plant Biology, 2021, 2, .	2.0	25
3	Broadening the impact of plant science through innovative, integrative, and inclusive outreach. Plant Direct, 2021, 5, e00316.	1.9	14
4	Solving the puzzle of Fe homeostasis by integrating molecular, mathematical, and societal models. Current Opinion in Plant Biology, 2021, 64, 102149.	7.1	0
5	Iron homeostasis and plant immune responses: Recent insights and translational implications. Journal of Biological Chemistry, 2020, 295, 13444-13457.	3.4	62
6	Computational solutions for modeling and controlling plant response to abiotic stresses: a review with focus on iron deficiency. Current Opinion in Plant Biology, 2020, 57, 8-15.	7.1	15
7	MAGIC: Live imaging of cellular division in plant seedlings using lightsheet microscopy. Methods in Cell Biology, 2020, 160, 405-418.	1.1	1
8	BioVision Tracker: A semi-automated image analysis software for spatiotemporal gene expression tracking in Arabidopsis thaliana. Methods in Cell Biology, 2020, 160, 419-436.	1.1	1
9	Keep talking: crosstalk between iron and sulfur networks fine-tunes growth and development to promote survival under iron limitation. Journal of Experimental Botany, 2019, 70, 4197-4210.	4.8	22
10	Dynamic modelling of the iron deficiency modulated transcriptome response in Arabidopsis thaliana roots. In Silico Plants, 2019, 1, .	1.9	6
11	Hemerythrin E3 Ubiquitin Ligases as Negative Regulators of Iron Homeostasis in Plants. Frontiers in Plant Science, 2019, 10, 98.	3.6	48
12	Automated Imaging, Tracking, and Analytics Pipeline for Differentiating Environmental Effects on Root Meristematic Cell Division. Frontiers in Plant Science, 2019, 10, 1487.	3.6	10
13	The bHLH transcription factor ILR3 modulates multiple stress responses in Arabidopsis. Plant Molecular Biology, 2018, 97, 297-309.	3.9	60
14	The E3 ligase BRUTUS facilitates degradation of VOZ1/2 transcription factors. Plant, Cell and Environment, 2018, 41, 2463-2474.	5.7	37
15	More than meets the eye: Emergent properties of transcription factors networks in Arabidopsis. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2017, 1860, 64-74.	1.9	7
16	Further insight into BRUTUS domain composition and functionality. Plant Signaling and Behavior, 2016, 11, e1204508.	2.4	29
17	Computational approaches to identify regulators of plant stress response using high-throughput gene expression data. Current Plant Biology, 2015, 3-4, 20-29.	4.7	16
18	Clustering and Differential Alignment Algorithm: Identification of Early Stage Regulators in the Arabidopsis thaliana Iron Deficiency Response. PLoS ONE, 2015, 10, e0136591.	2.5	13

Terri A Long

#	Article	IF	CITATIONS
19	Fixating on metals: new insights into the role of metals in nodulation and symbiotic nitrogen fixation. Frontiers in Plant Science, 2014, 5, 45.	3.6	87
20	Iron-Binding E3 Ligase Mediates Iron Response in Plants by Targeting Basic Helix-Loop-Helix Transcription Factors Â. Plant Physiology, 2014, 167, 273-286.	4.8	245
21	Chromate alters root system architecture and activates expression of genes involved in iron homeostasis and signaling in Arabidopsis thaliana. Plant Molecular Biology, 2014, 86, 35-50.	3.9	22
22	Ironing out the issues: Integrated approaches to understanding iron homeostasis in plants. Plant Science, 2013, 210, 250-259.	3.6	13
23	A Single Amino Acid Alteration in PGR5 Confers Resistance to Antimycin A in Cyclic Electron Transport around PSI. Plant and Cell Physiology, 2013, 54, 1525-1534.	3.1	59
24	Many needles in a haystack: cell-type specific abiotic stress responses. Current Opinion in Plant Biology, 2011, 14, 325-331.	7.1	28
25	The bHLH Transcription Factor POPEYE Regulates Response to Iron Deficiency in <i>Arabidopsis</i> Roots Â. Plant Cell, 2010, 22, 2219-2236.	6.6	561
26	Conserved role of PROTON GRADIENT REGULATION 5 in the regulation of PSI cyclic electron transport. Planta, 2008, 228, 907-918.	3.2	37
27	Cell Identity Mediates the Response of <i>Arabidopsis</i> Roots to Abiotic Stress. Science, 2008, 320, 942-945.	12.6	700
28	Systems Approaches to Identifying Gene Regulatory Networks in Plants. Annual Review of Cell and Developmental Biology, 2008, 24, 81-103.	9.4	96
29	A Balanced PGR5 Level is Required for Chloroplast Development and Optimum Operation of Cyclic Electron Transport Around Photosystem I. Plant and Cell Physiology, 2007, 48, 1462-1471.	3.1	55
30	Transcription factors and hormones: new insights into plant cell differentiation. Current Opinion in Cell Biology, 2006, 18, 710-714.	5.4	35
31	Unraveling the Dynamic Transcriptome. Plant Cell, 2006, 18, 2101-2111.	6.6	35
32	Intragenic Recombination and Diversifying Selection Contribute to the Evolution of Downy Mildew Resistance at the RPP8 Locus of Arabidopsis. Plant Cell, 1998, 10, 1861-1874.	6.6	453
33	Intragenic Recombination and Diversifying Selection Contribute to the Evolution of Downy Mildew Resistance at the RPP8 Locus of Arabidopsis. Plant Cell, 1998, 10, 1861.	6.6	37