Kieran F Harvey

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1362858/publications.pdf

Version: 2024-02-01

76326 95266 8,233 68 40 68 citations h-index g-index papers 75 75 75 9571 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	TAZ-CAMTA1 and YAP-TFE3 alter the TAZ/YAP transcriptome by recruiting the ATAC histone acetyltransferase complex. ELife, 2021, 10, .	6.0	27
2	Yap regulates skeletal muscle fatty acid oxidation and adiposity in metabolic disease. Nature Communications, 2021, 12, 2887.	12.8	18
3	The PP2A-Integrator-CDK9 axis fine-tunes transcription and can be targeted therapeutically in cancer. Cell, 2021, 184, 3143-3162.e32.	28.9	103
4	Crumbs and the apical spectrin cytoskeleton regulate R8 cell fate in the Drosophila eye. PLoS Genetics, 2021, 17, e1009146.	3.5	5
5	The Hippo pathway uses different machinery to control cell fate and organ size. IScience, 2021, 24, 102830.	4.1	9
6	The Hippo Pathway as a Driver of Select Human Cancers. Trends in Cancer, 2020, 6, 781-796.	7.4	39
7	The Hippo pathway oncoprotein YAP promotes melanoma cell invasion and spontaneous metastasis. Oncogene, 2020, 39, 5267-5281.	5.9	53
8	Conserved Tao Kinase Activity Regulates Dendritic Arborization, Cytoskeletal Dynamics, and Sensory Function in <i>Drosophila </i> Journal of Neuroscience, 2020, 40, 1819-1833.	3.6	19
9	The regulation of Yorkie, YAP and TAZ: new insights into the Hippo pathway. Development (Cambridge), 2020, 147, .	2.5	50
10	Pits and CtBP Control Tissue Growth in Drosophila melanogaster with the Hippo Pathway Transcription Repressor Tgi. Genetics, 2020, 215, 117-128.	2.9	2
11	The dPix-Git complex is essential to coordinate epithelial morphogenesis and regulate myosin during Drosophila egg chamber development. PLoS Genetics, 2019, 15, e1008083.	3.5	9
12	Somatic Hypermutation of the <i>YAP</i> Oncogene in a Human Cutaneous Melanoma. Molecular Cancer Research, 2019, 17, 1435-1449.	3.4	39
13	The Scalloped and Nerfin-1 Transcription Factors Cooperate to Maintain Neuronal Cell Fate. Cell Reports, 2018, 25, 1561-1576.e7.	6.4	31
14	A Hippo-like Signaling Pathway Controls Tracheal Morphogenesis in Drosophila melanogaster. Developmental Cell, 2018, 47, 564-575.e5.	7.0	24
15	Dynamic Fluctuations in Subcellular Localization of the Hippo Pathway Effector Yorkie InÂVivo. Current Biology, 2018, 28, 1651-1660.e4.	3.9	66
16	Regulation of Tissue Growth by the Mammalian Hippo Signaling Pathway. Frontiers in Physiology, 2017, 8, 942.	2.8	39
17	Hippo Wades into Cancer Immunology. Developmental Cell, 2016, 39, 635-637.	7.0	11
18	A Drosophila RNAi library modulates Hippo pathway-dependent tissue growth. Nature Communications, 2016, 7, 10368.	12.8	66

#	Article	IF	CITATIONS
19	Minibrain and Wings apart control organ growth and tissue patterning through down-regulation of Capicua. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 10583-10588.	7.1	26
20	The Hippo Pathway Regulates Neuroblasts and Brain Size in Drosophila melanogaster. Current Biology, 2016, 26, 1034-1042.	3.9	85
21	Control of Organ Growth by Patterning and Hippo Signaling in <i>Drosophila</i> . Cold Spring Harbor Perspectives in Biology, 2015, 7, a019224.	5.5	100
22	Warts Opens Up for Activation. Developmental Cell, 2015, 35, 666-668.	7.0	5
23	The Hippo pathway effector YAP is a critical regulator of skeletal muscle fibre size. Nature Communications, 2015, 6, 6048.	12.8	128
24	Growth Control: Re-examining Zyxin's Role in the Hippo Pathway. Current Biology, 2015, 25, R230-R231.	3.9	3
25	The GTPase Regulatory Proteins Pix and Git Control Tissue Growth via the Hippo Pathway. Current Biology, 2015, 25, 124-130.	3.9	24
26	The Hippo Pathway Regulates Hematopoiesis in Drosophila melanogaster. Current Biology, 2014, 24, 2673-2680.	3.9	45
27	Yap Controls Stem/Progenitor Cell Proliferation in the Mouse Postnatal Epidermis. Journal of Investigative Dermatology, 2013, 133, 1497-1505.	0.7	61
28	The Hippo pathway and human cancer. Nature Reviews Cancer, 2013, 13, 246-257.	28.4	1,479
29	The Hippo Size Control Pathway—Ever Expanding. Science Signaling, 2013, 6, pe4.	3.6	28
30	Riquiqui and Minibrain are regulators of the Hippo pathway downstream of Dachsous. Nature Cell Biology, 2013, 15, 1176-1185.	10.3	60
31	The Hippo Pathway. Cold Spring Harbor Perspectives in Biology, 2012, 4, a011288-a011288.	5.5	78
32	Willin/FRMD6 expression activates the Hippo signaling pathway kinases in mammals and antagonizes oncogenic YAP. Oncogene, 2012, 31, 238-250.	5.9	93
33	Homeodomain-Interacting Protein Kinase Regulates Hippo Pathway-Dependent Tissue Growth. Current Biology, 2012, 22, 1587-1594.	3.9	64
34	The Hippo pathwayâ€"From top to bottom and everything in between. Seminars in Cell and Developmental Biology, 2012, 23, 768-769.	5.0	16
35	Control of Tissue Growth and Cell Transformation by the Salvador/Warts/Hippo Pathway. PLoS ONE, 2012, 7, e31994.	2.5	14
36	The Sterile 20-like Kinase Tao-1 Controls Tissue Growth by Regulating the Salvador-Warts-Hippo Pathway. Developmental Cell, 2011, 21, 896-906.	7.0	187

3

#	Article	IF	Citations
37	The Salvador/Warts/Hippo pathway controls regenerative tissue growth in Drosophila melanogaster. Developmental Biology, 2011, 350, 255-266.	2.0	125
38	WW domain-mediated interaction with Wbp2 is important for the oncogenic property of TAZ. Oncogene, 2011, 30, 600-610.	5.9	97
39	The Hippo pathway transcriptional co-activator, YAP, is an ovarian cancer oncogene. Oncogene, 2011, 30, 2810-2822.	5.9	256
40	Wbp2 cooperates with Yorkie to drive tissue growth downstream of the Salvador–Warts–Hippo pathway. Cell Death and Differentiation, 2011, 18, 1346-1355.	11.2	63
41	Modularity in the Hippo signaling pathway. Trends in Biochemical Sciences, 2010, 35, 627-633.	7.5	141
42	Lgl, aPKC, and Crumbs Regulate the Salvador/Warts/Hippo Pathway through Two Distinct Mechanisms. Current Biology, 2010, 20, 573-581.	3.9	318
43	Upstream Regulation of the Hippo Size Control Pathway. Current Biology, 2010, 20, R574-R582.	3.9	181
44	Bunched and Madm: a novel growth-regulatory complex?. Journal of Biology, 2010, 9, 8.	2.7	1
45	Differential requirement of Salvador-Warts-Hippo pathway members for organ size control in <i>Drosophila melanogaster</i>	2.5	34
46	Transcriptional Output of the Salvador/Warts/Hippo Pathway Is Controlled in Distinct Fashions in <i>Drosophila melanogaster</i> and Mammalian Cell Lines. Cancer Research, 2009, 69, 6033-6041.	0.9	77
47	Making brundlefly, one gene at a time. Cell Research, 2009, 19, 5-7.	12.0	2
48	A tumor suppressor activity of Drosophila Polycomb genes mediated by JAK-STAT signaling. Nature Genetics, 2009, 41, 1150-1155.	21.4	127
49	FOXO-regulated transcription restricts overgrowth of <i>Tsc</i> mutant organs. Journal of Cell Biology, 2008, 180, 691-696.	5.2	44
50	Mutation of the Gene Encoding the Ubiquitin Activating Enzyme Ubal Causes Tissue Overgrowth in Drosophila. Fly, 2007, 1, 95-105.	1.7	30
51	The Salvador–Warts–Hippo pathway — an emerging tumour-suppressor network. Nature Reviews Cancer, 2007, 7, 182-191.	28.4	576
52	Fat Cadherin Modulates Organ Size in Drosophila via the Salvador/Warts/Hippo Signaling Pathway. Current Biology, 2006, 16, 2101-2110.	3.9	277
53	The Drosophila melanogaster Apaf-1 homologue ARK is required for most, but not all, programmed cell death. Journal of Cell Biology, 2006, 172, 809-815.	5.2	60
54	The Drosophila Mst Ortholog, hippo, Restricts Growth and Cell Proliferation and Promotes Apoptosis. Cell, 2003, 114, 457-467.	28.9	845

#	Article	IF	Citations
55	N4WBP5, a Potential Target for Ubiquitination by the Nedd4 Family of Proteins, Is a Novel Golgi-associated Protein. Journal of Biological Chemistry, 2002, 277, 9307-9317.	3.4	106
56	salvador Promotes Both Cell Cycle Exit and Apoptosis in Drosophila and Is Mutated in Human Cancer Cell Lines. Cell, 2002, 110, 467-478.	28.9	755
57	The Nedd4-like Protein KIAA0439 Is a Potential Regulator of the Epithelial Sodium Channel. Journal of Biological Chemistry, 2001, 276, 8597-8601.	3.4	135
58	Roles of the C Termini of \hat{l}_{\pm} -, \hat{l}^2 -, and \hat{l}^3 -Subunits of Epithelial Na+ Channels (ENaC) in Regulating ENaC and Mediating Its Inhibition by Cytosolic Na+. Journal of Biological Chemistry, 2001, 276, 13744-13749.	3.4	24
59	Identification of multiple proteins expressed in murine embryos as binding partners for the WW domains of the ubiquitin-protein ligase Nedd4. Biochemical Journal, 2000, 351, 557.	3.7	34
60	Identification of multiple proteins expressed in murine embryos as binding partners for the WW domains of the ubiquitin-protein ligase Nedd4. Biochemical Journal, 2000, 351, 557-565.	3.7	99
61	All three WW domains of murine Nedd4 are involved in the regulation of the Epithelial Sodium Channel. Biochemical Society Transactions, 2000, 28, A453-A453.	3.4	0
62	Identification of multiple proteins expressed in murine embryos as binding partners for the WW domains of the ubiquitin-protein ligase Nedd4. Biochemical Journal, 2000, 351 Pt 3, 557-65.	3.7	42
63	Na+-H+ exchange in salivary secretory cells is controlled by an intracellular Na+ receptor. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 9949-9953.	7.1	27
64	All Three WW Domains of Murine Nedd4 Are Involved in the Regulation of Epithelial Sodium Channels by Intracellular Na+. Journal of Biological Chemistry, 1999, 274, 12525-12530.	3.4	114
65	Nedd4-like proteins: an emerging family of ubiquitin-protein ligases implicated in diverse cellular functions. Trends in Cell Biology, 1999, 9, 166-169.	7.9	189
66	Caspase-mediated Cleavage of the Ubiquitin-protein Ligase Nedd4 during Apoptosis. Journal of Biological Chemistry, 1998, 273, 13524-13530.	3.4	65
67	Nedd4 mediates control of an epithelial Na+ channel in salivary duct cells by cytosolic Na+. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 7169-7173.	7.1	135
68	cDNA Cloning, Expression Analysis, and Mapping of the MouseNedd4Gene. Genomics, 1997, 40, 435-443.	2.9	142