Heather L Norton

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1362644/publications.pdf

Version: 2024-02-01

516710 526287 2,915 29 16 27 citations h-index g-index papers 31 31 31 4412 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	SLC24A5, a Putative Cation Exchanger, Affects Pigmentation in Zebrafish and Humans. Science, 2005, 310, 1782-1786.	12.6	925
2	Skin pigmentation, biogeographical ancestry and admixture mapping. Human Genetics, 2003, 112, 387-399.	3.8	458
3	Excavating Neandertal and Denisovan DNA from the genomes of Melanesian individuals. Science, 2016, 352, 235-239.	12.6	391
4	Genetic Evidence for the Convergent Evolution of Light Skin in Europeans and East Asians. Molecular Biology and Evolution, 2006, 24, 710-722.	8.9	344
5	The 8818G allele of the agouti signaling protein (ASIP) gene is ancestral and is associated with darker skin color in African Americans. Human Genetics, 2005, 116, 402-406.	3.8	126
6	The effect of minimal shoes on arch structure and intrinsic foot muscle strength. Journal of Sport and Health Science, 2014, 3, 74-85.	6.5	99
7	Insights into the genetic architecture of the human face. Nature Genetics, 2021, 53, 45-53.	21.4	94
8	Worldwide polymorphism at the MC1R locus and normal pigmentation variation in humans. Peptides, 2005, 26, 1901-1908.	2.4	86
9	Comparing Quantitative Measures of Erythema, Pigmentation and Skin Response using Reflectometry. Pigment Cell & Melanoma Research, 2002, 15, 379-384.	3.6	78
10	Shades of complexity: New perspectives on the evolution and genetic architecture of human skin. American Journal of Physical Anthropology, 2019, 168, 4-26.	2.1	45
11	Association study confirms the role of two <i>OCA2</i> polymorphisms in normal skin pigmentation variation in <scp>E</scp> ast <scp>A</scp> sian populations. American Journal of Human Biology, 2015, 27, 520-525.	1.6	32
12	Meta-analysis of GWA studies provides new insights on the genetic architecture of skin pigmentation in recently admixed populations. BMC Genetics, 2019, 20, 59.	2.7	32
13	Skin and hair pigmentation variation in Island Melanesia. American Journal of Physical Anthropology, 2006, 130, 254-268.	2.1	31
14	Genome-wide association study of pigmentary traits (skin and iris color) in individuals of East Asian ancestry. Peerl, 2017, 5, e3951.	2.0	26
15	Quantitative assessment of skin, hair, and iris variation in a diverse sample of individuals and associated genetic variation. American Journal of Physical Anthropology, 2016, 160, 570-581.	2.1	23
16	A Genome-Wide Association Study of Skin and Iris Pigmentation among Individuals of South Asian Ancestry. Genome Biology and Evolution, 2019, 11, 1066-1076.	2.5	21
17	Association of genetic variants with skin pigmentation phenotype among populations of west Maharashtra, India. American Journal of Human Biology, 2016, 28, 610-618.	1.6	15
18	Insights on hair, skin and eye color of ancient and contemporary Native Americans. Forensic Science International: Genetics, 2020, 48, 102335.	3.1	12

#	Article	IF	CITATIONS
19	Distribution of two OCA2 polymorphisms associated with pigmentation in East-Asian populations. Human Genome Variation, 2015, 2, 15058.	0.7	11
20	Distribution of an allele associated with blond hair color across northern island melanesia. American Journal of Physical Anthropology, 2014, 153, 653-662.	2.1	10
21	MC1R diversity in Northern Island Melanesia has not been constrained by strong purifying selection and cannot explain pigmentation phenotype variation in the region. BMC Genetics, 2015, 16, 122.	2.7	9
22	Identifying signatures of positive selection in pigmentation genes in two South Asian populations. American Journal of Human Biology, 2017, 29, e23012.	1.6	9
23	Novel insights on demographic history of tribal and caste groups from West Maharashtra (India) using genome-wide data. Scientific Reports, 2020, 10, 10075.	3.3	9
24	The color of normal: How a Eurocentric focus erases pigmentation complexity. American Journal of Human Biology, 2021, 33, e23554.	1.6	9
25	Applicability of the SNPforID 52-plex panel for human identification and ancestry evaluation in a Brazilian population sample by next-generation sequencing. Forensic Science International: Genetics, 2019, 40, 201-209.	3.1	8
26	Variation in pulse oximetry readings: melanin, not ethnicity, is the appropriate variable to use when investigating bias. Anaesthesia, 2022, 77, 354-355.	3.8	5
27	Pigmentation and Candidate Gene Variation in Northern Island Melanesia. , 2007, , 96-112.		3
28	Understanding influences of culture and history on mtDNA variation and population structure in three populations from <scp>A</scp> ssam, Northeast <scp>I</scp> ndia. American Journal of Human Biology, 2017, 29, e22955.	1.6	1
29	The rs387907171 SNP in <i>TYRP1</i> is not associated with blond hair color on the Island of <scp>B</scp> ougainville. American Journal of Human Biology, 2016, 28, 431-435.	1.6	0