Jianmin Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1362509/publications.pdf

Version: 2024-02-01

29 2,105 17 27 g-index

29 29 29 29 3646

29 29 29 3646
all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Extracellular sialyltransferase st6gal1 in breast tumor cell growth and invasiveness. Cancer Gene Therapy, 2022, 29, 1662-1675.	4.6	21
2	Ultradeep sequencing differentiates patterns of skin clonal mutations associated with sun-exposure status and skin cancer burden. Science Advances, 2021, 7, .	10.3	29
3	Hippo signalling maintains ER expression and ER+ breast cancer growth. Nature, 2021, 591, E1-E10.	27.8	38
4	Identification of TAZ-Dependent Breast Cancer Vulnerabilities Using a Chemical Genomics Screening Approach. Frontiers in Cell and Developmental Biology, 2021, 9, 673374.	3.7	5
5	Wholeâ€exome sequencing of ovarian cancer families uncovers putative predisposition genes. International Journal of Cancer, 2020, 146, 2147-2155.	5.1	12
6	USP1 Regulates TAZ Protein Stability Through Ubiquitin Modifications in Breast Cancer. Cancers, 2020, 12, 3090.	3.7	30
7	Regulation of the Hippo signaling pathway by deubiquitinating enzymes in cancer. Genes and Diseases, 2019, 6, 335-341.	3.4	10
8	Fatty acid oxidation (FAO) metabolic switch: metastasis in lymph nodes driven by yes-associated protein (YAP) activation. Biotarget, 2019, 3, 13-13.	0.5	7
9	Identification of Celastrol as a Novel YAP-TEAD Inhibitor for Cancer Therapy by High Throughput Screening with Ultrasensitive YAP/TAZ–TEAD Biosensors. Cancers, 2019, 11, 1596.	3.7	52
10	NTRK1 is a positive regulator of YAP oncogenic function. Oncogene, 2019, 38, 2778-2787.	5.9	16
11	Targeting TAZ-Driven Human Breast Cancer by Inhibiting a SKP2-p27 Signaling Axis. Molecular Cancer Research, 2019, 17, 250-262.	3.4	10
12	The Hippo Signaling Transducer TAZ Regulates Mammary Gland Morphogenesis and Carcinogen-induced Mammary Tumorigenesis. Scientific Reports, 2018, 8, 6449.	3.3	7
13	CRB3 regulates contact inhibition by activating the Hippo pathway in mammary epithelial cells. Cell Death and Disease, 2018, 8, e2546-e2546.	6.3	34
14	Loss of KIBRA function activates EGFR signaling by inducing AREG. Oncotarget, 2018, 9, 29975-29984.	1.8	10
15	Loss of DLG5 promotes breast cancer malignancy by inhibiting the Hippo signaling pathway. Scientific Reports, 2017, 7, 42125.	3.3	42
16	Simvastatin and Atorvastatin inhibit DNA replication licensing factor MCM7 and effectively suppress RB-deficient tumors growth. Cell Death and Disease, 2017, 8, e2673-e2673.	6.3	30
17	VGLL4 Selectively Represses YAP-Dependent Gene Induction and Tumorigenic Phenotypes in Breast Cancer. Scientific Reports, 2017, 7, 6190.	3.3	46
18	The Regulatory Role of KIBRA and PTPN14 in Hippo Signaling and Beyond. Genes, 2016, 7, 23.	2.4	29

#	Article	IF	CITATIONS
19	Genetic variations in the Hippo signaling pathway and breast cancer risk in African American women in the AMBER Consortium. Carcinogenesis, 2016, 37, 951-956.	2.8	20
20	Phosphorylation of Tyr188 in the WW domain of YAP1 plays an essential role in YAP1-induced cellular transformation. Cell Cycle, 2016, 15, 2497-2505.	2.6	13
21	Characterization of TAZ domains important for the induction of breast cancer stem cell properties and tumorigenesis. Cell Cycle, 2015, 14, 146-156.	2.6	45
22	PTPN14 Forms a Complex with Kibra and LATS1 Proteins and Negatively Regulates the YAP Oncogenic Function. Journal of Biological Chemistry, 2014, 289, 23693-23700.	3.4	77
23	Molecular profiling and computational network analysis of TAZ-mediated mammary tumorigenesis identifies actionable therapeutic targets. Oncotarget, 2014, 5, 12166-12176.	1.8	24
24	TAZ induces growth factor-independent proliferation through activation of EGFR ligand amphiregulin. Cell Cycle, 2012, 11, 2922-2930.	2.6	91
25	YAP-dependent induction of amphiregulin identifies a non-cell-autonomous component of the Hippo pathway. Nature Cell Biology, 2009, 11 , $1444-1450$.	10.3	371
26	Negative Regulation of YAP by LATS1 Underscores Evolutionary Conservation of the <i>Drosophila Hippo</i> Pathway. Cancer Research, 2008, 68, 2789-2794.	0.9	225
27	Transforming properties of YAP, a candidate oncogene on the chromosome 11q22 amplicon. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 12405-12410.	7.1	810
28	Alveolar Macrophages. , 0, , 207-227.		1
29	Loss-of-function of the hippo transducer TAZ reduces mammary tumor growth through a myeloid-derived suppressor cell-dependent mechanism. Cancer Gene Therapy, 0, , .	4.6	0