## Maha Zaki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1360329/publications.pdf Version: 2024-02-01



Μληλ Ζλκι

| #  | Article                                                                                                                                                                                                                                                                 | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Assessment of interferon-related biomarkers in Aicardi-Goutières syndrome associated with<br>mutations in TREX1, RNASEH2A, RNASEH2B, RNASEH2C, SAMHD1, and ADAR: a case-control study. Lancet<br>Neurology, The, 2013, 12, 1159-1169.                                   | 4.9  | 473       |
| 2  | Exome Sequencing Links Corticospinal Motor Neuron Disease to Common Neurodegenerative Disorders. Science, 2014, 343, 506-511.                                                                                                                                           | 6.0  | 466       |
| 3  | Characterization of human disease phenotypes associated with mutations in <i>TREX1</i> ,<br><i>RNASEH2A</i> , <i>RNASEH2B</i> , <i>RNASEH2C</i> , <i>SAMHD1</i> , <i>ADAR</i> , and <i>IFIH1</i> .<br>American Journal of Medical Genetics, Part A, 2015, 167, 296-312. | 0.7  | 447       |
| 4  | Mutations in INPP5E, encoding inositol polyphosphate-5-phosphatase E, link phosphatidyl inositol signaling to the ciliopathies. Nature Genetics, 2009, 41, 1032-1036.                                                                                                   | 9.4  | 383       |
| 5  | Syndrome of Hepatic Cirrhosis, Dystonia, Polycythemia, and Hypermanganesemia Caused by Mutations<br>in SLC30A10 , a Manganese Transporter in Man. American Journal of Human Genetics, 2012, 90, 457-466.                                                                | 2.6  | 321       |
| 6  | Exome Sequencing Can Improve Diagnosis and Alter Patient Management. Science Translational Medicine, 2012, 4, 138ra78.                                                                                                                                                  | 5.8  | 226       |
| 7  | Inactivating mutations in MFSD2A, required for omega-3 fatty acid transport in brain, cause a lethal microcephaly syndrome. Nature Genetics, 2015, 47, 809-813.                                                                                                         | 9.4  | 180       |
| 8  | Alteration of Fatty-Acid-Metabolizing Enzymes Affects Mitochondrial Form and Function in Hereditary<br>Spastic Paraplegia. American Journal of Human Genetics, 2012, 91, 1051-1064.                                                                                     | 2.6  | 179       |
| 9  | CEP41 is mutated in Joubert syndrome and is required for tubulin glutamylation at the cilium. Nature Genetics, 2012, 44, 193-199.                                                                                                                                       | 9.4  | 157       |
| 10 | Defective Wnt-dependent cerebellar midline fusion in a mouse model of Joubert syndrome. Nature<br>Medicine, 2011, 17, 726-731.                                                                                                                                          | 15.2 | 138       |
| 11 | AHI1gene mutations cause specific forms of Joubert syndrome-related disorders. Annals of Neurology, 2006, 59, 527-534.                                                                                                                                                  | 2.8  | 125       |
| 12 | Recessive Mutations in the Gene Encoding the Tight Junction Protein Occludin Cause Band-like<br>Calcification with Simplified Gyration and Polymicrogyria. American Journal of Human Genetics, 2010,<br>87, 354-364.                                                    | 2.6  | 123       |
| 13 | Mutations in EOGT Confirm the Genetic Heterogeneity of Autosomal-Recessive Adams-Oliver<br>Syndrome. American Journal of Human Genetics, 2013, 92, 598-604.                                                                                                             | 2.6  | 114       |
| 14 | Mutation Spectrum in <i>RAB3GAP1</i> , <i>RAB3GAP2</i> ,<br>and <i>RAB18</i> and Genotype-Phenotype Correlations in Warburg Micro Syndrome and<br>Martsolf Syndrome. Human Mutation, 2013, 34, 686-696.                                                                 | 1.1  | 114       |
| 15 | Biallelic mutations in SNX14 cause a syndromic form of cerebellar atrophy and lysosome-autophagosome dysfunction. Nature Genetics, 2015, 47, 528-534.                                                                                                                   | 9.4  | 111       |
| 16 | Mutations in LAMB1 Cause Cobblestone Brain Malformation without Muscular or Ocular<br>Abnormalities. American Journal of Human Genetics, 2013, 92, 468-474.                                                                                                             | 2.6  | 96        |
| 17 | Mutations in KATNB1 Cause Complex Cerebral Malformations by Disrupting Asymmetrically Dividing Neural Progenitors. Neuron, 2014, 84, 1226-1239.                                                                                                                         | 3.8  | 95        |
| 18 | AMPD2 Regulates GTP Synthesis and Is Mutated in a Potentially Treatable Neurodegenerative Brainstem<br>Disorder. Cell, 2013, 154, 505-517.                                                                                                                              | 13.5 | 94        |

| #  | Article                                                                                                                                                                                                                | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Analysis of 17 genes detects mutations in 81% of 811 patients with lissencephaly. Genetics in Medicine, 2018, 20, 1354-1364.                                                                                           | 1.1 | 92        |
| 20 | Loss of tubulin deglutamylase <scp>CCP</scp> 1 causes infantileâ€onset neurodegeneration. EMBO<br>Journal, 2018, 37, .                                                                                                 | 3.5 | 86        |
| 21 | Genomic and phenotypic delineation of congenital microcephaly. Genetics in Medicine, 2019, 21, 545-552.                                                                                                                | 1.1 | 85        |
| 22 | Evolutionarily Assembled cis-Regulatory Module at a Human Ciliopathy Locus. Science, 2012, 335, 966-969.                                                                                                               | 6.0 | 84        |
| 23 | Mutations in CSPP1 Lead to Classical Joubert Syndrome. American Journal of Human Genetics, 2014, 94, 80-86.                                                                                                            | 2.6 | 75        |
| 24 | Diagnostic Exome Sequencing to Elucidate the Genetic Basis of Likely Recessive Disorders in Consanguineous Families. Human Mutation, 2014, 35, 1203-1210.                                                              | 1.1 | 75        |
| 25 | Mutations in ANTXR1 Cause GAPO Syndrome. American Journal of Human Genetics, 2013, 92, 792-799.                                                                                                                        | 2.6 | 73        |
| 26 | Mutations in ADAR1, IFIH1, and RNASEH2B Presenting As Spastic Paraplegia. Neuropediatrics, 2014, 45, 386-391.                                                                                                          | 0.3 | 72        |
| 27 | Pathogenic Variants in PIGG Cause Intellectual Disability with Seizures and Hypotonia. American<br>Journal of Human Genetics, 2016, 98, 615-626.                                                                       | 2.6 | 71        |
| 28 | Biallelic Mutations in Citron Kinase Link Mitotic Cytokinesis to Human Primary Microcephaly.<br>American Journal of Human Genetics, 2016, 99, 501-510.                                                                 | 2.6 | 70        |
| 29 | Biallelic loss of human CTNNA2, encoding αN-catenin, leads to ARP2/3 complex overactivity and disordered cortical neuronal migration. Nature Genetics, 2018, 50, 1093-1101.                                            | 9.4 | 70        |
| 30 | Mutations in MBOAT7 , Encoding Lysophosphatidylinositol Acyltransferase I, Lead to Intellectual<br>Disability Accompanied by Epilepsy and Autistic Features. American Journal of Human Genetics, 2016, 99,<br>912-916. | 2.6 | 69        |
| 31 | Loss of the sphingolipid desaturase DEGS1 causes hypomyelinating leukodystrophy. Journal of Clinical<br>Investigation, 2019, 129, 1240-1256.                                                                           | 3.9 | 68        |
| 32 | Biallelic mutations in the 3′ exonuclease TOE1 cause pontocerebellar hypoplasia and uncover a role in snRNA processing. Nature Genetics, 2017, 49, 457-464.                                                            | 9.4 | 66        |
| 33 | Identification of a novel recessiveRELN mutation using a homozygous balanced reciprocal translocation. American Journal of Medical Genetics, Part A, 2007, 143A, 939-944.                                              | 0.7 | 65        |
| 34 | Phenotypic spectrum and prevalence of INPP5E mutations in Joubert Syndrome and related disorders.<br>European Journal of Human Genetics, 2013, 21, 1074-1078.                                                          | 1.4 | 64        |
| 35 | Functional genome-wide siRNA screen identifies KIAA0586 as mutated in Joubert syndrome. ELife, 2015, 4, e06602.                                                                                                        | 2.8 | 64        |
| 36 | Biallelic Truncating Mutations in FMN2, Encoding the Actin-Regulatory Protein Formin 2, Cause<br>Nonsyndromic Autosomal-Recessive Intellectual Disability. American Journal of Human Genetics, 2014,<br>95, 721-728.   | 2.6 | 62        |

| #  | Article                                                                                                                                                                                                                 | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Biallelic Variants in OTUD6B Cause an Intellectual Disability Syndrome Associated with Seizures and<br>Dysmorphic Features. American Journal of Human Genetics, 2017, 100, 676-688.                                     | 2.6 | 54        |
| 38 | International consensus recommendations on the diagnostic work-up for malformations of cortical development. Nature Reviews Neurology, 2020, 16, 618-635.                                                               | 4.9 | 53        |
| 39 | Biallelic variants in KIF14 cause intellectual disability with microcephaly. European Journal of Human<br>Genetics, 2018, 26, 330-339.                                                                                  | 1.4 | 52        |
| 40 | Mutations in GPAA1 , Encoding a GPI Transamidase Complex Protein, Cause Developmental Delay,<br>Epilepsy, Cerebellar Atrophy, and Osteopenia. American Journal of Human Genetics, 2017, 101, 856-865.                   | 2.6 | 49        |
| 41 | Loss of SMPD4 Causes a Developmental Disorder Characterized by Microcephaly and Congenital<br>Arthrogryposis. American Journal of Human Genetics, 2019, 105, 689-705.                                                   | 2.6 | 48        |
| 42 | Fetal MRI in the evaluation of fetuses referred for sonographically suspected neural tube defects (NTDs): impact on diagnosis and management decision. Neuroradiology, 2009, 51, 761-772.                               | 1.1 | 46        |
| 43 | Expanding the phenome and variome of skeletal dysplasia. Genetics in Medicine, 2018, 20, 1609-1616.                                                                                                                     | 1.1 | 46        |
| 44 | Bi-allelic GOT2 Mutations Cause a Treatable Malate-Aspartate Shuttle-Related Encephalopathy.<br>American Journal of Human Genetics, 2019, 105, 534-548.                                                                 | 2.6 | 46        |
| 45 | Novel congenital disorder of <i>O</i> -linked glycosylation caused by GALNT2 loss of function. Brain, 2020, 143, 1114-1126.                                                                                             | 3.7 | 46        |
| 46 | Hypomorphic Recessive Variants in SUFU Impair the Sonic Hedgehog Pathway and Cause Joubert<br>Syndrome with Cranio-facial and Skeletal Defects. American Journal of Human Genetics, 2017, 101,<br>552-563.              | 2.6 | 45        |
| 47 | Homozygous Mutations in TBC1D23 Lead to a Non-degenerative Form of Pontocerebellar Hypoplasia.<br>American Journal of Human Genetics, 2017, 101, 441-450.                                                               | 2.6 | 43        |
| 48 | A homozygous <i>IER3IP1</i> mutation causes microcephaly with simplified gyral pattern, epilepsy, and permanent neonatal diabetes syndrome (MEDS). American Journal of Medical Genetics, Part A, 2012, 158A, 2788-2796. | 0.7 | 42        |
| 49 | Coâ€occurrence of distinct ciliopathy diseases in single families suggests genetic modifiers. American<br>Journal of Medical Genetics, Part A, 2011, 155, 3042-3049.                                                    | 0.7 | 38        |
| 50 | Genetic variants in components of the NALCN–UNC80–UNC79 ion channel complex cause a broad clinical phenotype (NALCN channelopathies). Human Genetics, 2018, 137, 753-768.                                               | 1.8 | 38        |
| 51 | Autosomal dominant SCA5 and autosomal recessive infantile SCA are allelic conditions resulting from SPTBN2 mutations. European Journal of Human Genetics, 2014, 22, 286-288.                                            | 1.4 | 37        |
| 52 | Mutations in UNC80, Encoding Part of the UNC79-UNC80-NALCN Channel Complex, Cause<br>Autosomal-Recessive Severe Infantile Encephalopathy. American Journal of Human Genetics, 2016, 98,<br>210-215.                     | 2.6 | 37        |
| 53 | A homozygous founder mutation in <i>TRAPPC6B</i> associates with a neurodevelopmental disorder characterised by microcephaly, epilepsy and autistic features. Journal of Medical Genetics, 2018, 55, 48-54.             | 1.5 | 37        |
| 54 | PEX6 is Expressed in Photoreceptor Cilia and Mutated in Deafblindness with Enamel Dysplasia and Microcephaly. Human Mutation, 2016, 37, 170-174.                                                                        | 1.1 | 36        |

| #  | Article                                                                                                                                                                                                                          | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Extracellular miR-145, miR-223 and miR-326 expression signature allow for differential diagnosis of immune-mediated neuroinflammatory diseases. Journal of the Neurological Sciences, 2017, 383, 188-198.                        | 0.3 | 36        |
| 56 | <i>PYCR2</i> Mutations cause a lethal syndrome of microcephaly and failure to thrive. Annals of Neurology, 2016, 80, 59-70.                                                                                                      | 2.8 | 35        |
| 57 | Recurrent and Prolonged Infections in a Child with a Homozygous IFIH1 Nonsense Mutation. Frontiers in Genetics, 2017, 8, 130.                                                                                                    | 1.1 | 35        |
| 58 | Diencephalic-mesencephalic junction dysplasia: a novel recessive brain malformation. Brain, 2012, 135, 2416-2427.                                                                                                                | 3.7 | 34        |
| 59 | Overexpression of <i>KLC2</i> due to a homozygous deletion in the non-coding region causes SPOAN syndrome. Human Molecular Genetics, 2015, 24, ddv388.                                                                           | 1.4 | 34        |
| 60 | Loss of the neural-specific BAF subunit ACTL6B relieves repression of early response genes and causes recessive autism. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 10055-10066. | 3.3 | 34        |
| 61 | Molybdenum cofactor and isolated sulphite oxidase deficiencies: Clinical and molecular spectrum among Egyptian patients. European Journal of Paediatric Neurology, 2016, 20, 714-722.                                            | 0.7 | 33        |
| 62 | Adams–Oliver syndrome: further evidence of an autosomal recessive variant. Clinical Dysmorphology,<br>2007, 16, 141-149.                                                                                                         | 0.1 | 32        |
| 63 | Non-manifesting AHI1 truncations indicate localized loss-of-function tolerance in a severe Mendelian disease gene. Human Molecular Genetics, 2015, 24, 2594-2603.                                                                | 1.4 | 32        |
| 64 | Mutations in Spliceosomal Genes PPIL1 and PRP17 Cause Neurodegenerative Pontocerebellar Hypoplasia with Microcephaly. Neuron, 2021, 109, 241-256.e9.                                                                             | 3.8 | 31        |
| 65 | Molecular and phenotypic spectrum of <i>ASPM</i> â€related primary microcephaly: Identification of eight novel mutations. American Journal of Medical Genetics, Part A, 2016, 170, 2133-2140.                                    | 0.7 | 30        |
| 66 | Biallelic Mutations in TMTC3, Encoding a Transmembrane and TPR-Containing Protein, Lead to Cobblestone Lissencephaly. American Journal of Human Genetics, 2016, 99, 1181-1189.                                                   | 2.6 | 30        |
| 67 | Hypermanganesemia with dystonia, polycythemia and cirrhosis in 10 patients: Six novel <i>SLC30A10</i> mutations and further phenotype delineation. Clinical Genetics, 2018, 93, 905-912.                                         | 1.0 | 30        |
| 68 | Clinical, neuropathological, and genetic characterization of STUB1 variants in cerebellar ataxias: a<br>frequent cause of predominant cognitive impairment. Genetics in Medicine, 2020, 22, 1851-1862.                           | 1.1 | 30        |
| 69 | Loss of PYCR2 Causes Neurodegeneration by Increasing Cerebral Glycine Levels via SHMT2. Neuron, 2020, 107, 82-94.e6.                                                                                                             | 3.8 | 30        |
| 70 | Combining exome/genome sequencing with data repository analysis reveals novel gene–disease<br>associations for a wide range of genetic disorders. Genetics in Medicine, 2021, 23, 1551-1568.                                     | 1.1 | 30        |
| 71 | Spinocerebellar ataxia type 2 (SCA2) in an Egyptian family presenting with polyphagia and marked CAG expansion in infancy. Journal of Neurology, 2008, 255, 413-419.                                                             | 1.8 | 29        |
| 72 | Defining the clinical, molecular and imaging spectrum of adaptor protein complex 4-associated hereditary spastic paraplegia. Brain, 2020, 143, 2929-2944.                                                                        | 3.7 | 29        |

Μαήα Ζακι

| #  | Article                                                                                                                                                                                                                      | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Whole-Exome Sequencing Identifies Mutated C12orf57 in Recessive Corpus Callosum Hypoplasia.<br>American Journal of Human Genetics, 2013, 92, 392-400.                                                                        | 2.6 | 28        |
| 74 | Biallelic mutations in valyl-tRNA synthetase gene VARS are associated with a progressive neurodevelopmental epileptic encephalopathy. Nature Communications, 2019, 10, 707.                                                  | 5.8 | 28        |
| 75 | MINPP1 prevents intracellular accumulation of the chelator inositol hexakisphosphate and is mutated in Pontocerebellar Hypoplasia. Nature Communications, 2020, 11, 6087.                                                    | 5.8 | 28        |
| 76 | Loss of function mutations in GEMIN5 cause a neurodevelopmental disorder. Nature Communications, 2021, 12, 2558.                                                                                                             | 5.8 | 28        |
| 77 | Extending the mutation spectrum for Galloway–Mowat syndrome to include homozygous missense<br>mutations in the WDR73 gene. American Journal of Medical Genetics, Part A, 2016, 170, 992-998.                                 | 0.7 | 26        |
| 78 | Microcephaly, malformation of brain development and intracranial calcification in sibs: Pseudoâ€₹ORCH<br>or a new syndrome. American Journal of Medical Genetics, Part A, 2008, 146A, 2929-2936.                             | 0.7 | 25        |
| 79 | Mutations in LNPK, Encoding the Endoplasmic Reticulum Junction Stabilizer Lunapark, Cause a<br>Recessive Neurodevelopmental Syndrome. American Journal of Human Genetics, 2018, 103, 296-304.                                | 2.6 | 24        |
| 80 | Recessive mutations in muscle-specific isoforms of FXR1 cause congenital multi-minicore myopathy.<br>Nature Communications, 2019, 10, 797.                                                                                   | 5.8 | 24        |
| 81 | Bi-allelic Variants in the GPI Transamidase Subunit PIGK Cause a Neurodevelopmental Syndrome with<br>Hypotonia, Cerebellar Atrophy, and Epilepsy. American Journal of Human Genetics, 2020, 106, 484-495.                    | 2.6 | 22        |
| 82 | Further delineation of the clinical spectrum in <i>RNU4ATAC</i> related microcephalic<br>osteodysplastic primordial dwarfism type I. American Journal of Medical Genetics, Part A, 2013, 161,<br>1875-1881.                  | 0.7 | 20        |
| 83 | <i><scp>PGAP3</scp></i> â€related hyperphosphatasia with mental retardation syndrome: Report of 10 new patients and a homozygous founder mutation. Clinical Genetics, 2018, 93, 84-91.                                       | 1.0 | 20        |
| 84 | Biallelic loss of function variants in <scp> <i>SYT2 </i> </scp> cause a treatable congenital onset<br>presynaptic myasthenic syndrome. American Journal of Medical Genetics, Part A, 2020, 182, 2272-2283.                  | 0.7 | 20        |
| 85 | Loss of <i>Protocadherinâ€12</i> <scp>L</scp> eads to<br><scp>D</scp> iencephalicâ€ <scp>M</scp> esencephalic <scp>J</scp> unction <scp>D</scp> ysplasia<br><scp>S</scp> yndrome. Annals of Neurology, 2018, 84, 638-647.    | 2.8 | 19        |
| 86 | Band-like calcification with simplified gyration and polymicrogyria: report of 10 new families and identification of five novel OCLN mutations. Journal of Human Genetics, 2017, 62, 553-559.                                | 1.1 | 18        |
| 87 | Bi-allelic Loss of Human APC2, Encoding Adenomatous Polyposis Coli Protein 2, Leads to Lissencephaly,<br>Subcortical Heterotopia, and Global Developmental Delay. American Journal of Human Genetics, 2019,<br>105, 844-853. | 2.6 | 17        |
| 88 | Biallelic variants in HPDL, encoding 4-hydroxyphenylpyruvate dioxygenase-like protein, lead to an infantile neurodegenerative condition. Genetics in Medicine, 2021, 23, 524-533.                                            | 1.1 | 17        |
| 89 | Alternative genomic diagnoses for individuals with a clinical diagnosis of Dubowitz syndrome.<br>American Journal of Medical Genetics, Part A, 2021, 185, 119-133.                                                           | 0.7 | 17        |
| 90 | Biallelic variants in <i>SLC38A3</i> encoding a glutamine transporter cause epileptic encephalopathy.<br>Brain, 2022, 145, 909-924.                                                                                          | 3.7 | 17        |

| #   | Article                                                                                                                                                                                                                                | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | The potential impact of COMT gene variants on dopamine regulation and phenotypic traits of ASD patients. Behavioural Brain Research, 2020, 378, 112272.                                                                                | 1.2 | 15        |
| 92  | UBR7 functions with UBR5 in the Notch signaling pathway and is involved in a neurodevelopmental<br>syndrome with epilepsy, ptosis, and hypothyroidism. American Journal of Human Genetics, 2021, 108,<br>134-147.                      | 2.6 | 15        |
| 93  | Biallelic variants in <i>ADARB1</i> , encoding a dsRNA-specific adenosine deaminase, cause a severe developmental and epileptic encephalopathy. Journal of Medical Genetics, 2021, 58, 495-504.                                        | 1.5 | 14        |
| 94  | Exome sequencing discloses KALRN homozygous variant as likely cause of intellectual disability and short stature in a consanguineous pedigree. Human Genomics, 2016, 10, 26.                                                           | 1.4 | 13        |
| 95  | Regulation of human cerebral cortical development by EXOC7 and EXOC8, components of the exocyst complex, and roles in neural progenitor cell proliferation and survival. Genetics in Medicine, 2020, 22, 1040-1050.                    | 1.1 | 13        |
| 96  | Neurodevelopmental disorder in an Egyptian family with a biallelic <scp><i>ALKBH8</i></scp> variant.<br>American Journal of Medical Genetics, Part A, 2021, 185, 1288-1293.                                                            | 0.7 | 13        |
| 97  | Implication of folate deficiency in CYP2U1 loss of function. Journal of Experimental Medicine, 2021, 218, .                                                                                                                            | 4.2 | 13        |
| 98  | Study of C677T variant of methylene tetrahydrofolate reductase gene in autistic spectrum disorder<br>Egyptian children. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2019, 180,<br>305-309.                 | 1.1 | 12        |
| 99  | Micro and Martsolf syndromes in 34 new patients: Refining the phenotypic spectrum and further molecular insights. Clinical Genetics, 2020, 98, 445-456.                                                                                | 1.0 | 12        |
| 100 | Novel <i>NDUFA12</i> variants are associated with isolated complex I defect and variable clinical manifestation. Human Mutation, 2021, 42, 699-710.                                                                                    | 1.1 | 12        |
| 101 | Bandâ€like intracranial calcification (BIC), microcephaly and malformation of brain development: A<br>distinctive form of congenital infection like syndromes. American Journal of Medical Genetics, Part A,<br>2009, 149A, 1565-1568. | 0.7 | 11        |
| 102 | Microcephalic osteodysplastic primordial dwarfism type II: Additional nine patients with implications<br>on phenotype and genotype correlation. American Journal of Medical Genetics, Part A, 2020, 182,<br>1407-1420.                 | 0.7 | 11        |
| 103 | Expanding the phenotype of <i>PIGS</i> â€associated early onset epileptic developmental encephalopathy.<br>Epilepsia, 2021, 62, e35-e41.                                                                                               | 2.6 | 11        |
| 104 | Biallelic variants in KARS1 are associated with neurodevelopmental disorders and hearing loss recapitulated by the knockout zebrafish. Genetics in Medicine, 2021, 23, 1933-1943.                                                      | 1.1 | 11        |
| 105 | Loss of C2orf69 defines a fatal autoinflammatory syndrome in humans and zebrafish that evokes a glycogen-storage-associated mitochondriopathy. American Journal of Human Genetics, 2021, 108, 1301-1317.                               | 2.6 | 11        |
| 106 | Aicardi-Goutières syndrome: unusual neuro-radiological manifestations. Metabolic Brain Disease,<br>2017, 32, 679-683.                                                                                                                  | 1.4 | 10        |
| 107 | Prenatal delineation of a distinct lethal fetal syndrome caused by a homozygous truncating<br><scp><i>KIDINS220</i></scp> variant. American Journal of Medical Genetics, Part A, 2020, 182, 2867-2876.                                 | 0.7 | 10        |
| 108 | Homozygous missense <i>WIPI2</i> variants cause a congenital disorder of autophagy with neurodevelopmental impairments of variable clinical severity and disease course. Brain Communications, 2021, 3, fcab183.                       | 1.5 | 10        |

| #   | Article                                                                                                                                                                                                                                              | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Genetic pattern of SMN1, SMN2, and NAIP genes in prognosis of SMA patients. Egyptian Journal of<br>Medical Human Genetics, 2020, 21, .                                                                                                               | 0.5 | 10        |
| 110 | Expanding the clinical spectrum of SPG11 gene mutations in recessive hereditary spastic paraplegia with thin corpus callosum. European Journal of Medical Genetics, 2011, 54, 82-85.                                                                 | 0.7 | 9         |
| 111 | Biallelic loss-of-function variants in the splicing regulator NSRP1 cause a severe neurodevelopmental disorder with spastic cerebral palsy and epilepsy. Genetics in Medicine, 2021, 23, 2455-2460.                                                  | 1.1 | 9         |
| 112 | Undiagnosed Phenylketonuria Can Exist Everywhere: Results From an International Survey. Journal of<br>Pediatrics, 2021, 239, 231-234.e2.                                                                                                             | 0.9 | 9         |
| 113 | ABHD16A deficiency causes a complicated form of hereditary spastic paraplegia associated with intellectual disability and cerebral anomalies. American Journal of Human Genetics, 2021, 108, 2017-2023.                                              | 2.6 | 9         |
| 114 | Biallelic <i>FRA10AC1</i> variants cause a neurodevelopmental disorder with growth retardation.<br>Brain, 2022, 145, 1551-1563.                                                                                                                      | 3.7 | 9         |
| 115 | Clinicoâ€radiological features, molecular spectrum, and identification of prognostic factors in<br>developmental and epileptic encephalopathy due to inosine triphosphate pyrophosphatase (ITPase)<br>deficiency. Human Mutation, 2022, 43, 403-419. | 1.1 | 9         |
| 116 | Phenotypic and mutational spectrum of thirty-five patients with Sjögren–Larsson syndrome:<br>identification of eleven novel ALDH3A2 mutations and founder effects. Journal of Human Genetics,<br>2019, 64, 859-865.                                  | 1.1 | 8         |
| 117 | GAPO syndrome in seven new patients: Identification of five novel <i>ANTXR1</i> mutations including the first large intragenic deletion. American Journal of Medical Genetics, Part A, 2019, 179, 237-242.                                           | 0.7 | 8         |
| 118 | Biallelic in-frame deletion in <i>TRAPPC4</i> in a family with developmental delay and cerebellar atrophy. Brain, 2020, 143, e83-e83.                                                                                                                | 3.7 | 8         |
| 119 | A relatively common homozygous TRAPPC4 splicing variant is associated with an early-infantile neurodegenerative syndrome. European Journal of Human Genetics, 2021, 29, 271-279.                                                                     | 1.4 | 8         |
| 120 | Pathogenic variants in PIDD1 lead to an autosomal recessive neurodevelopmental disorder with pachygyria and psychiatric features. European Journal of Human Genetics, 2021, 29, 1226-1234.                                                           | 1.4 | 8         |
| 121 | <i>ASAH1</i> pathogenic variants associated with acid ceramidase deficiency: Farber disease and spinal muscular atrophy with progressive myoclonic epilepsy. Human Mutation, 2020, 41, 1469-1487.                                                    | 1.1 | 8         |
| 122 | Isolated Dandy–Walker malformation associated with brain stem dysgenesis in male sibs. Brain and<br>Development, 2006, 28, 529-533.                                                                                                                  | 0.6 | 7         |
| 123 | Megalencephalic leukoencephalopathy with cysts in twelve Egyptian patients: novel mutations in MLC1 and HEPACAM and a founder effect. Metabolic Brain Disease, 2016, 31, 1171-1179.                                                                  | 1.4 | 7         |
| 124 | Identification of a novel homozygous ALX4 mutation in two unrelated patients with frontonasal dysplasia typeâ€2. American Journal of Medical Genetics, Part A, 2018, 176, 1190-1194.                                                                 | 0.7 | 7         |
| 125 | Biallelic hypomorphic mutations in HEATR5B, encoding HEAT repeat-containing protein 5B, in a neurological syndrome with pontocerebellar hypoplasia. European Journal of Human Genetics, 2021, 29, 957-964.                                           | 1.4 | 7         |
| 126 | <scp>Elâ€Hattabâ€Alkuraya</scp> syndrome caused by biallelic <scp><i>WDR45B</i></scp> pathogenic<br>variants: Further delineation of the phenotype and genotype. Clinical Genetics, 2022, 101, 530-540.                                              | 1.0 | 7         |

| #   | Article                                                                                                                                                                                                                                | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Profound microcephaly, primordial dwarfism with developmental brain malformations: A new syndrome. American Journal of Medical Genetics, Part A, 2012, 158A, 1823-1831.                                                                | 0.7 | 6         |
| 128 | Dandy–Walker malformation, genitourinary abnormalities, and intellectual disability in two families.<br>American Journal of Medical Genetics, Part A, 2015, 167, 2503-2507.                                                            | 0.7 | 6         |
| 129 | Genotype/phenotype correlation in a female patient with 21q22.3 and 12p13.33 duplications. American<br>Journal of Medical Genetics, Part A, 2016, 170, 1050-1058.                                                                      | 0.7 | 6         |
| 130 | Recurrent homozygous damaging mutation in <i>TMX2</i> , encoding a protein disulfide isomerase, in four families with microlissencephaly. Journal of Medical Genetics, 2020, 57, 274-282.                                              | 1.5 | 6         |
| 131 | RSRC1 loss-of-function variants cause mild to moderate autosomal recessive intellectual disability.<br>Brain, 2020, 143, e31-e31.                                                                                                      | 3.7 | 6         |
| 132 | Clinical and genetic characterization of ten Egyptian patients with Wolf–Hirschhorn syndrome and review of literature. Molecular Genetics & Genomic Medicine, 2021, 9, e1546.                                                          | 0.6 | 6         |
| 133 | Monoallelic and biallelic mutations in <i>RELN</i> underlie a graded series of neurodevelopmental disorders. Brain, 2022, 145, 3274-3287.                                                                                              | 3.7 | 6         |
| 134 | Biallelic variants in <scp><i>ZNF142</i></scp> lead to a syndromic neurodevelopmental disorder.<br>Clinical Genetics, 2022, 102, 98-109.                                                                                               | 1.0 | 6         |
| 135 | Novel mutation in the fukutin gene in an Egyptian family with Fukuyama congenital muscular dystrophy and microcephaly. Gene, 2014, 539, 279-282.                                                                                       | 1.0 | 5         |
| 136 | New recessive syndrome of microcephaly, cerebellar hypoplasia, and congenital heart conduction defect. American Journal of Medical Genetics, Part A, 2011, 155, 3035-3041.                                                             | 0.7 | 4         |
| 137 | Clinical, biomarker and genetic spectrum of Niemannâ€Pick type C in Egypt: The detection of nine novel <i>NPC1</i> mutations. Clinical Genetics, 2019, 95, 537-539.                                                                    | 1.0 | 4         |
| 138 | Blepharophimosisâ€ptosisâ€intellectual disability syndrome: A report of nine Egyptian patients with<br>further expansion of phenotypic and mutational spectrum. American Journal of Medical Genetics, Part<br>A, 2020, 182, 2857-2866. | 0.7 | 4         |
| 139 | Molecular diagnosis in recessive pediatric neurogenetic disease can help reduce disease recurrence in families. BMC Medical Genomics, 2020, 13, 68.                                                                                    | 0.7 | 4         |
| 140 | Bi-allelic TTC5 variants cause delayed developmental milestones and intellectual disability. Journal of Medical Genetics, 2021, 58, 237-246.                                                                                           | 1.5 | 4         |
| 141 | Chromosome 9p terminal deletion in nine Egyptian patients and narrowing of the critical region for trigonocephaly. Molecular Genetics & Genomic Medicine, 2021, 9, e1829.                                                              | 0.6 | 4         |
| 142 | A novel frameshift mutation in the sterol 27-hydroxylase gene in an Egyptian family with cerebrotendinous xanthomatosis without cataract. Metabolic Brain Disease, 2017, 32, 311-315.                                                  | 1.4 | 3         |
| 143 | Bilateral Calcification of Basal Ganglia in a Patient with Duplication of Both 11q13.1q22.1 and 4q35.2 with New Phenotypic Features. Cytogenetic and Genome Research, 2019, 159, 130-136.                                              | 0.6 | 3         |
| 144 | Inhibition of G-protein signalling in cardiac dysfunction of intellectual developmental disorder with cardiac arrhythmia (IDDCA) syndrome. Journal of Medical Genetics, 2021, 58, 815-831.                                             | 1.5 | 3         |

Μαήα Ζακι

| #   | Article                                                                                                                                                                                                                                                  | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | <scp><i>ASAH1</i></scp> â€related disorders: Description of 15 novel pediatric patients and expansion of the clinical phenotype. Clinical Genetics, 2020, 98, 598-605.                                                                                   | 1.0 | 3         |
| 146 | Bi-allelic variants in <i>CHKA</i> cause a neurodevelopmental disorder with epilepsy and microcephaly.<br>Brain, 2022, 145, 1916-1923.                                                                                                                   | 3.7 | 3         |
| 147 | Unusual association of simplified gyral pattern and sparse hair in an Egyptian patient with<br>microcephaly–lymphoedema. Clinical Dysmorphology, 2006, 15, 245-247.                                                                                      | 0.1 | 2         |
| 148 | Clinical and molecular findings in eight Egyptian patients with suspected mitochondrial disorders and optic atrophy. Egyptian Journal of Medical Human Genetics, 2013, 14, 37-47.                                                                        | 0.5 | 2         |
| 149 | Biallelic Variants in the Ectonucleotidase <scp><i>ENTPD1</i></scp> Cause a Complex<br>Neurodevelopmental Disorder with Intellectual Disability, Distinct White Matter Abnormalities, and<br>Spastic Paraplegia. Annals of Neurology, 2022, 92, 304-321. | 2.8 | 2         |
| 150 | Congenital isolated leukonychia totalis in three Egyptian sibs. , 2011, 155, 811-814.                                                                                                                                                                    |     | 1         |
| 151 | Molecular analysis of MECP2 gene in Egyptian patients with Rett syndrome. Egyptian Journal of<br>Medical Human Genetics, 2012, 13, 19-27.                                                                                                                | 0.5 | 1         |
| 152 | Unbalanced 14;X Translocation and Pattern of X Inactivation in a Female Patient with Multiple<br>Congenital Anomalies. Cytogenetic and Genome Research, 2018, 156, 71-79.                                                                                | 0.6 | 1         |
| 153 | Mutation spectrum in the gene encoding methyl-CpG-binding protein 2 in Egyptian patients with Rett<br>syndrome. Meta Gene, 2020, 24, 100620.                                                                                                             | 0.3 | 1         |
| 154 | A founder mutation in PEX12 among Egyptian patients in peroxisomal biogenesis disorder.<br>Neurological Sciences, 2020, 42, 2737-2745.                                                                                                                   | 0.9 | 1         |
| 155 | Clinical, Biochemical, and Molecular Characterization of Metachromatic Leukodystrophy Among<br>Egyptian Pediatric Patients: Expansion of the ARSA Mutational Spectrum. Journal of Molecular<br>Neuroscience, 2021, 71, 1112-1130.                        | 1.1 | 1         |
| 156 | Biallelic loss of <scp> <i>EMC10</i> </scp> leads to mild to severe intellectual disability. Annals of Clinical and Translational Neurology, 0, , .                                                                                                      | 1.7 | 1         |
| 157 | Familial congenital unilateral cerebral ventriculomegaly: Delineation of a distinct genetic disorder.<br>American Journal of Medical Genetics, Part A, 2009, 149A, 1789-1794.                                                                            | 0.7 | 0         |
| 158 | Samia Temtamy. American Journal of Medical Genetics, Part A, 2021, 185, 3613-3614.                                                                                                                                                                       | 0.7 | 0         |
| 159 | Variants in the NPC1 Gene in Egyptian Patients with Niemann-Pick Type C. Open Access Macedonian<br>Journal of Medical Sciences, 2020, 8, 134-145.                                                                                                        | 0.1 | 0         |
| 160 | Variable predicted pathogenic mechanisms for novel MECP2 variants in RTT patients. Journal of<br>Genetic Engineering and Biotechnology, 2022, 20, 44.                                                                                                    | 1.5 | 0         |