Paolo Celli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1360198/publications.pdf

Version: 2024-02-01

759233 713466 24 608 12 21 citations h-index g-index papers 25 25 25 648 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	The detection matrix as a model-agnostic tool to estimate the number of degrees of freedom in mechanical systems and engineering structures. Chaos, 2022, 32, 033106.	2.5	2
2	Capacitive Temperature Sensing via Displacement Amplification. IEEE Sensors Journal, 2022, 22, 10388-10395.	4.7	0
3	Effective continuum models for the buckling of non-periodic architected sheets that display quasi-mechanism behaviors. Journal of the Mechanics and Physics of Solids, 2022, 166, 104934.	4.8	6
4	Continuum Field Theory for the Deformations of Planar Kirigami. Physical Review Letters, 2022, 128, .	7.8	11
5	Systematic two-scale image analysis of extreme deformations in soft architectured sheets. International Journal of Mechanical Sciences, 2021, 194, 106205.	6.7	4
6	Prestrain-induced bandgap tuning in 3D-printed tensegrity-inspired lattice structures. Extreme Mechanics Letters, 2021, 44, 101236.	4.1	11
7	Poroelastic microlattices for underwater wave focusing. Extreme Mechanics Letters, 2021, 49, 101499.	4.1	5
8	Temperature-induced shape morphing of bi-metallic structures. International Journal of Solids and Structures, 2020, 190, 22-32.	2.7	20
9	Surface wave non-reciprocity via time-modulated metamaterials. Journal of the Mechanics and Physics of Solids, 2020, 145, 104181.	4.8	33
10	Compliant morphing structures from twisted bulk metallic glass ribbons. Journal of the Mechanics and Physics of Solids, 2020, 145, 104129.	4.8	8
11	A Flexible Spiralingâ€Metasurface as a Versatile Haptic Interface. Advanced Materials Technologies, 2020, 5, 2000181.	5 . 8	19
12	Tuning of Surface-Acoustic-Wave Dispersion via Magnetically Modulated Contact Resonances. Physical Review Applied, 2019, 11, .	3.8	19
13	Bandgap widening by disorder in rainbow metamaterials. Applied Physics Letters, 2019, 114, .	3.3	94
14	Controlling surface acoustic waves via magnetically-modulated contact resonances. , 2019, , .		0
15	Pathway towards Programmable Wave Anisotropy in Cellular Metamaterials. Physical Review Applied, 2018, 9, .	3.8	10
16	Shape-morphing architected sheets with non-periodic cut patterns. Soft Matter, 2018, 14, 9744-9749.	2.7	72
17	Wave control through soft microstructural curling: bandgap shifting, reconfigurable anisotropy and switchable chirality. Smart Materials and Structures, 2017, 26, 035001.	3. 5	29
18	A disorder-based strategy for tunable, broadband wave attenuation. , 2017, , .		1

PAOLO CELLI

#	Article	IF	CITATION
19	Manipulating waves by distilling frequencies: a tunable shunt-enabled rainbow trap. Smart Materials and Structures, 2016, 25, 085017.	3.5	67
20	Manipulating waves with LEGO® bricks: A versatile experimental platform for metamaterial architectures. Applied Physics Letters, 2015, 107, .	3.3	57
21	Tunable directivity in metamaterials with reconfigurable cell symmetry. Applied Physics Letters, 2015, 106, .	3.3	81
22	Cellular phononic crystals with piezoelectric shunts for tunable directivity. Proceedings of SPIE, 2015, , .	0.8	0
23	Low-frequency spatial wave manipulation via phononic crystals with relaxed cell symmetry. Journal of Applied Physics, 2014, 115, .	2.5	30
24	Laser-enabled experimental wavefield reconstruction in two-dimensional phononic crystals. Journal of Sound and Vibration, 2014, 333, 114-123.	3.9	26