
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1359862/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Megaphylogeny resolves global patterns of mushroom evolution. Nature Ecology and Evolution, 2019, 3, 668-678.	7.8	187

 $_{2}$ Ochratoxin production and taxonomy of the yellow aspergilli (<i>Aspergillus</i> section) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50,702 Td ($\frac{7.2}{1.2}$

3	Aspergillus brasiliensis sp. nov., a biseriate black Aspergillus species with world-wide distribution. International Journal of Systematic and Evolutionary Microbiology, 2007, 57, 1925-1932.	1.7	114
4	<i>Aspergillus</i> section <i>Nidulantes</i> (formerly <i>Emericella</i>): Polyphasic taxonomy, chemistry and biology. Studies in Mycology, 2016, 84, 1-118.	7.2	112
5	Re-Mind the Gap! Insertion – Deletion Data Reveal Neglected Phylogenetic Potential of the Nuclear Ribosomal Internal Transcribed Spacer (ITS) of Fungi. PLoS ONE, 2012, 7, e49794.	2.5	97
6	Chemical, Physical and Biological Approaches to Prevent Ochratoxin Induced Toxicoses in Humans and Animals. Toxins, 2010, 2, 1718-1750.	3.4	86
7	Aspergillus uvarum sp. nov., an uniseriate black Aspergillus species isolated from grapes in Europe. International Journal of Systematic and Evolutionary Microbiology, 2008, 58, 1032-1039.	1.7	82
8	Fumonisin contamination and fumonisin producing black Aspergilli in dried vine fruits of different origin. International Journal of Food Microbiology, 2010, 143, 143-149.	4.7	82
9	Comparative genomics reveals the origin of fungal hyphae and multicellularity. Nature Communications, 2019, 10, 4080.	12.8	80
10	In vitro synergistic interactions of the effects of various statins and azoles against some clinically important fungi. FEMS Microbiology Letters, 2010, 307, 175-184.	1.8	63
11	Occurrence of aflatoxin producing <i>Aspergillus flavus</i> isolates in maize kernel in Hungary. Acta Alimentaria, 2013, 42, 451-459.	0.7	60
12	Evolutionary Relationships Among Aspergillus terreus Isolates and their Relatives. Antonie Van Leeuwenhoek, 2005, 88, 141-150.	1.7	55
13	Characterization of the Plant Growth-Promoting Activities of Endophytic Fungi Isolated from Sophora flavescens. Microorganisms, 2020, 8, 683.	3.6	55
14	Species assignment and antifungal susceptibilities of black aspergilli recovered from otomycosis cases in Iran. Mycoses, 2012, 55, 333-338.	4.0	49
15	Molecular Identification and Antifungal Susceptibilities of Black Aspergillus Isolates from Otomycosis Cases in Hungary. Mycopathologia, 2012, 174, 143-147.	3.1	48
16	Occurrence and genetic variability of Candida parapsilosis sensu lato in Hungary. Journal of Medical Microbiology, 2007, 56, 190-195.	1.8	46
17	Epidemiology of <i>Aspergillus</i> keratitis at a tertiary care eye hospital in South India and antifungal susceptibilities of the causative agents. Mycoses, 2013, 56, 26-33.	4.0	44
18	Diversity of polyketide synthase gene sequences in Aspergillus species. Research in Microbiology, 2003, 154, 593-600.	2.1	43

#	Article	IF	CITATIONS
19	Molecular identification of <i>Trichoderma</i> species associated with <i>Pleurotus ostreatus</i> and natural substrates of the oyster mushroom. FEMS Microbiology Letters, 2009, 300, 58-67.	1.8	42
20	Infectious Keratitis Caused by Aspergillus tubingensis. Cornea, 2009, 28, 951-954.	1.7	36
21	Molecular Characterization of Black <i>Aspergillus</i> Species from Onion and Their Potential for Ochratoxin A and Fumonisin B2 Production. Foodborne Pathogens and Disease, 2015, 12, 414-423.	1.8	36
22	Case of Keratitis Caused by <i>Aspergillus tamarii</i> . Journal of Clinical Microbiology, 2007, 45, 3464-3467.	3.9	35
23	Aspergillus: Sex and Recombination. Mycopathologia, 2014, 178, 349-362.	3.1	35
24	Aflatoxins: Climate change and biodegradation. Current Opinion in Food Science, 2015, 5, 60-66.	8.0	35
25	Host metabolite producing endophytic fungi isolated from Hypericum perforatum. PLoS ONE, 2019, 14, e0217060.	2.5	32
26	Mycotic Keratitis Due to <i>Aspergillus nomius</i> . Journal of Clinical Microbiology, 2009, 47, 3382-3385.	3.9	31
27	The Evolution of Defense Mechanisms Correlate with the Explosive Diversification of Autodigesting Coprinellus Mushrooms (Agaricales, Fungi). Systematic Biology, 2012, 61, 595-607.	5.6	29
28	The Evolutionary Conserved Î ³ -Core Motif Influences the Anti-Candida Activity of the Penicillium chrysogenum Antifungal Protein PAF. Frontiers in Microbiology, 2018, 9, 1655.	3.5	29
29	Susceptibility of clinically important dermatophytes against statins and different statin-antifungal combinations. Medical Mycology, 2014, 52, 1-9.	0.7	28
30	Agricultural systems as potential sources of emerging human mycoses caused by <i>Trichoderma</i> : a successful, common phylotype of <i>Trichoderma longibrachiatum</i> in the frontline. FEMS Microbiology Letters, 2019, 366, .	1.8	28
31	In vitro interactions between primycin and different statins in their effects against some clinically important fungi. Journal of Medical Microbiology, 2010, 59, 200-205.	1.8	27
32	Species diversity and cytotoxic potency of airborne sterigmatocystin-producing Aspergilli from the section Versicolores. Science of the Total Environment, 2016, 562, 296-304.	8.0	25
33	A New Concept to Secure Food Safety Standards against Fusarium Species and Aspergillus Flavus and Their Toxins in Maize. Toxins, 2018, 10, 372.	3.4	23
34	Nonribosomal peptide synthetase genes in the genome ofFusarium graminearum, causative agent of wheat head blight. Acta Biologica Hungarica, 2005, 56, 375-388.	0.7	22
35	Black Aspergilli and fumonisin contamination in onions purchased in Hungary. Acta Alimentaria, 2012, 41, 414-423.	0.7	22
36	Keratitis caused by the recently described new species Aspergillus brasiliensis: two case reports. Journal of Medical Case Reports, 2010, 4, 68.	0.8	21

#	Article	IF	CITATIONS
37	The First Report on Mushroom Green Mould Disease in Croatia / Prvi IzvjeÅįtaj O Bolesti Zelene Plijesni U Hrvatskoj. Arhiv Za Higijenu Rada I Toksikologiju, 2012, 63, 481-487.	0.7	21
38	Characterization of Aspergillus tamarii Strains From Human Keratomycoses: Molecular Identification, Antifungal Susceptibility Patterns and Cyclopiazonic Acid Producing Abilities. Frontiers in Microbiology, 2019, 10, 2249.	3.5	21
39	Mycobiota and ochratoxin A in raisins purchased in Hungary. Acta Alimentaria, 2006, 35, 289-294.	0.7	18
40	Identification of <i>Aspergillus</i> species in Central Europe able to produce G-type aflatoxins. Acta Biologica Hungarica, 2015, 66, 339-347.	0.7	18
41	Genome analysis of a Bacillus subtilis strain reveals genetic mutations determining biocontrol properties. World Journal of Microbiology and Biotechnology, 2019, 35, 52.	3.6	17
42	New sterigmatocystin-producing species of Aspergillus section Versicolores from indoor air in Croatia. Mycological Progress, 2017, 16, 63-72.	1.4	16
43	Solution structure and novel insights into phylogeny and mode of action of the Neosartorya (Aspergillus) fischeri antifungal protein (NFAP). International Journal of Biological Macromolecules, 2019, 129, 511-522.	7.5	16
44	Strain-specific SCAR markers for the detection ofTrichoderma harzianumAS12-2, a biological control agent againstRhizocto nia solani, the causal agent of rice sheath blight. Acta Biologica Hungarica, 2011, 62, 73-84.	0.7	15
45	Fungi and their secondary metabolites in waterâ€damaged indoors after a major flood event in eastern Croatia. Indoor Air, 2021, 31, 730-744.	4.3	15
46	Characterization of Three Pleiotropic Drug Resistance Transporter Genes and Their Participation in the Azole Resistance of Mucor circinelloides. Frontiers in Cellular and Infection Microbiology, 2021, 11, 660347.	3.9	15
47	Mycobiota of grapes collected in Hungarian and Czech vineyards in 2004. Acta Alimentaria, 2007, 36, 329-341.	0.7	14
48	Keratitis caused by Aspergillus pseudotamarii. Medical Mycology Case Reports, 2013, 2, 91-94.	1.3	14
49	New Species of the Genus Curvularia: C. tamilnaduensis and C. coimbatorensis from Fungal Keratitis Cases in South India. Pathogens, 2020, 9, 9.	2.8	12
50	Members of the Trichoderma harzianum Species Complex with Mushroom Pathogenic Potential. Agronomy, 2021, 11, 2434.	3.0	12
51	Occurrence of black Aspergilli in indoor environments of six countries. Arhiv Za Higijenu Rada I Toksikologiju, 2014, 65, 219-223.	0.7	11
52	Cytotoxic and genotoxic potencies of single and combined spore extracts of airborne OTA-producing and OTA-non-producing Aspergilli in Human lung A549 cells. Ecotoxicology and Environmental Safety, 2015, 120, 206-214.	6.0	11
53	Cyberlindnera fabianii in the neonatal and paediatric intensive care unit: case reports. JMM Case Reports, 2015, 2, .	1.3	10
54	Response to Pitt & Taylor 2016: Conservation ofAspergilluswithA. nigeras the conserved type is unnecessary and potentially disruptive. Taxon, 2017, 66, 1439-1446.	0.7	9

#	Article	IF	CITATIONS
55	Detection and Molecular Characterization of Novel dsRNA Viruses Related to the Totiviridae Family in Umbelopsis ramanniana. Frontiers in Cellular and Infection Microbiology, 2019, 9, 249.	3.9	9
56	Post-Flood Impacts on Occurrence and Distribution of Mycotoxin-Producing Aspergilli from the Sections Circumdati, Flavi, and Nigri in Indoor Environment. Journal of Fungi (Basel, Switzerland), 2020, 6, 282.	3.5	9
57	Chaetomium and Chaetomium-like Species from European Indoor Environments Include Dichotomopilus finlandicus sp. nov Pathogens, 2021, 10, 1133.	2.8	9
58	Black aspergilli in tropical infections. Reviews in Medical Microbiology, 2008, 19, 65-78.	0.9	8
59	The genus Parasola: phylogeny and the description of three new species. Mycologia, 2017, 109, 1-10.	1.9	8
60	Validation of a simplex PCR assay enabling reliable identification of clinically relevant Candida species. BMC Infectious Diseases, 2018, 18, 393.	2.9	8
61	Molecular identification of potentialy mycotoxigenic black Aspergili contaminating pistachio nuts in Iran. Acta Alimentaria, 2011, 40, 65-70.	0.7	6
62	Antifungal activity of the primycin complex and its main components A1, A2 and C1 on a Candida albicans clinical isolate, and their effects on the dynamic plasma membrane changes. Journal of Antibiotics, 2013, 66, 67-72.	2.0	6
63	Impact of global megatrends on the spread of microscopic fungi in the Pannonian Biogeographical Region. Fungal Biology Reviews, 2021, 37, 71-88.	4.7	6
64	DNA Barcoding Coupled with High Resolution Melting Analysis Enables Rapid and Accurate Distinction of <i>Aspergillus</i> species. Medical Mycology, 2017, 55, myw127.	0.7	5
65	Fumonisin production and toxic capacity in airborne black Aspergilli. Toxicology in Vitro, 2018, 53, 160-171.	2.4	5
66	Genome organization and evolution of a eukaryotic nicotinate co-inducible pathway. Open Biology, 2021, 11, 210099.	3.6	5
67	Effect of essential oil vapours on aflatoxin production of Aspergillus parasiticus. World Mycotoxin Journal, 2018, 11, 579-588.	1.4	5
68	Aflatoxin production and in vitro toxicity of Aspergilli section Flavi isolated from air samples collected from different environments. Mycotoxin Research, 2019, 35, 217-230.	2.3	4
69	Characterization of Four Novel dsRNA Viruses Isolated from MucorÂhiemalis Strains. Viruses, 2021, 13, 2319.	3.3	4
70	Genetic variability of <i>Candida albicans</i> isolates in a university hospital in Hungary. Mycoses, 2009, 52, 318-325.	4.0	3
71	Response to letter to the editor on †Fumonisin contamination and fumonisin producing black Aspergilli in dried vine fruits of different origin published in International Journal of Food Microbiology, 143:143–149'. International Journal of Food Microbiology, 2012, 152, 46-48.	4.7	3
72	Biodiversity of species of Aspergillus section Fumigati in semi-desert soils in Argentina. Revista Argentina De Microbiologia, 2017, 49, 247-254.	0.7	2

#	Article	IF	CITATIONS
73	Targeting Conserved Genes in Aspergillus Species. Methods in Molecular Biology, 2017, 1542, 131-140.	0.9	2
74	Combined genotyping strategy reveals structural differences between <i>Aspergillus flavus</i> lineages from different habitats impacting human health. Journal of Basic Microbiology, 2017, 57, 899-909.	3.3	2
75	Survival and growth of microscopic fungi derived from tropical regions under future heat waves in the Pannonian Biogeographical Region. Fungal Biology, 2022, 126, 511-520.	2.5	2
76	Corneal ulcer/keratitis derived Aspergillus flavus & Aspergillus tamarii and their RAPD-PCR typing. Journal of King Saud University - Science, 2020, 32, 2103-2111.	3.5	1
77	Aspergillus. , 2017, , 455-495.		Ο
78	Preservation effect of cinnamon and clove essential oil vapors on shelled walnut. Acta Biologica Szegediensis, 2019, 62, 141-145.	0.3	0
79	Biodiversity and inflammatory properties of Aspergillus section Versicolores - what flood has to do with it?. , 2019, , .		Ο