
Jose Luis Revuelta

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1359613/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Diversity of mechanisms to control bacterial <scp>GTP</scp> homeostasis by the mutually exclusive binding of adenine and guanine nucleotides to <scp>IMP</scp> dehydrogenase. Protein Science, 2022, 31, e4314.	7.6	9
2	Metabolic engineering of Ashbya gossypii for limonene production from xylose. , 2022, 15, .		3
3	New Promoters for Metabolic Engineering of Ashbya gossypii. Journal of Fungi (Basel, Switzerland), 2021, 7, 906.	3.5	4
4	Sugar transport for enhanced xylose utilization in <i>Ashbya gossypii</i> . Journal of Industrial Microbiology and Biotechnology, 2020, 47, 1173-1179.	3.0	4
5	Multiplex genome editing in Ashbya gossypii using CRISPR-Cpf1. New Biotechnology, 2020, 57, 29-33.	4.4	19
6	Genomic Edition of Ashbya gossypii Using One-vector CRISPR/Cas9. Bio-protocol, 2020, 10, e3660.	0.4	2
7	The Bateman domain of IMP dehydrogenase is a binding target for dinucleoside polyphosphates. Journal of Biological Chemistry, 2019, 294, 14768-14775.	3.4	16
8	Microbial lipids from industrial wastes using xylose-utilizing Ashbya gossypii strains. Bioresource Technology, 2019, 293, 122054.	9.6	20
9	A Nucleotide-Dependent Conformational Switch Controls the Polymerization of Human IMP Dehydrogenases to Modulate their Catalytic Activity. Journal of Molecular Biology, 2019, 431, 956-969.	4.2	36
10	Oneâ€vector CRISPR/Cas9 genome engineering of the industrial fungus <i>Ashbya gossypii</i> . Microbial Biotechnology, 2019, 12, 1293-1301.	4.2	20
11	Metabolic engineering of Ashbya gossypii for deciphering the de novo biosynthesis of Î ³ -lactones. Microbial Cell Factories, 2019, 18, 62.	4.0	17
12	Ferredoxin-linked flavoenzyme defines a family of pyridine nucleotide-independent thioredoxin reductases. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 12967-12972.	7.1	11
13	Pathway Grafting for Polyunsaturated Fatty Acids Production in <i>Ashbya gossypii</i> through Golden Gate Rapid Assembly. ACS Synthetic Biology, 2018, 7, 2340-2347.	3.8	18
14	Formation of folates by microorganisms: towards the biotechnological production of this vitamin. Applied Microbiology and Biotechnology, 2018, 102, 8613-8620.	3.6	44
15	Utilization of xylose by engineered strains of Ashbya gossypii for the production of microbial oils. Biotechnology for Biofuels, 2017, 10, 3.	6.2	22
16	Engineering <i><scp>A</scp>shbya gossypii</i> strains for <i>de novo</i> lipid production using industrial byâ€products. Microbial Biotechnology, 2017, 10, 425-433.	4.2	15
17	A nucleotide-controlled conformational switch modulates the activity of eukaryotic IMP dehydrogenases. Scientific Reports, 2017, 7, 2648.	3.3	36
18	Unprecedented pathway of reducing equivalents in a diflavin-linked disulfide oxidoreductase. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 12725-12730.	7.1	12

JOSE LUIS REVUELTA

#	Article	IF	CITATIONS
19	Bioproduction of riboflavin: a bright yellow history. Journal of Industrial Microbiology and Biotechnology, 2017, 44, 659-665.	3.0	90
20	A New Member of the Thioredoxin Reductase Family from Early Oxygenic Photosynthetic Organisms. Molecular Plant, 2017, 10, 212-215.	8.3	15
21	Mitochondria and lipid raft-located FOF1-ATP synthase as major therapeutic targets in the antileishmanial and anticancer activities of ether lipid edelfosine. PLoS Neglected Tropical Diseases, 2017, 11, e0005805.	3.0	44
22	Molecular Studies of the Flavinogenic Fungus Ashbya gossypii and the Flavinogenic Yeast Candida famata. , 2017, , 281-296.		1
23	The filamentous fungus <i>Ashbya gossypii</i> as a competitive industrial inosine producer. Biotechnology and Bioengineering, 2016, 113, 2060-2063.	3.3	7
24	Microbial biotechnology for the synthesis of (pro)vitamins, biopigments and antioxidants: challenges and opportunities. Microbial Biotechnology, 2016, 9, 564-567.	4.2	39
25	Folic Acid Production by Engineered Ashbya gossypii. Metabolic Engineering, 2016, 38, 473-482.	7.0	35
26	Biotechnology of riboflavin. Applied Microbiology and Biotechnology, 2016, 100, 2107-2119.	3.6	123
27	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	9.1	4,701
28	Guanine nucleotide binding to the Bateman domain mediates the allosteric inhibition of eukaryotic IMP dehydrogenases. Nature Communications, 2015, 6, 8923.	12.8	63
29	Genomic profiling of fungal cell wall-interfering compounds: identification of a common gene signature. BMC Genomics, 2015, 16, 683.	2.8	54
30	Increased production of inosine and guanosine by means of metabolic engineering of the purine pathway in Ashbya gossypii. Microbial Cell Factories, 2015, 14, 58.	4.0	34
31	Metabolic engineering of riboflavin production in Ashbya gossypii through pathway optimization. Microbial Cell Factories, 2015, 14, 163.	4.0	42
32	Engineering <i>Ashbya gossypii</i> for efficient biolipid production. Bioengineered, 2015, 6, 119-123.	3.2	22
33	Increased riboflavin production by manipulation of inosine 5′-monophosphate dehydrogenase in Ashbya gossypii. Applied Microbiology and Biotechnology, 2015, 99, 9577-9589.	3.6	31
34	Tuning singleâ€cell oil production in <i>Ashbya gossypii</i> by engineering the elongation and desaturation systems. Biotechnology and Bioengineering, 2014, 111, 1782-1791.	3.3	21
35	Strain Design of Ashbya gossypii for Single-Cell Oil Production. Applied and Environmental Microbiology, 2014, 80, 1237-1244.	3.1	29
36	Genome scale metabolic modeling of the riboflavin overproducer <i>Ashbya gossypii</i> . Biotechnology and Bioengineering, 2014, 111, 1191-1199.	3.3	35

JOSE LUIS REVUELTA

#	Article	IF	CITATIONS
37	Programmed cell death activated by Rose Bengal in Arabidopsis thaliana cell suspension cultures requires functional chloroplasts. Journal of Experimental Botany, 2014, 65, 3081-3095.	4.8	41
38	Biotechnological production of feed nucleotides by microbial strain improvement. Process Biochemistry, 2013, 48, 1263-1270.	3.7	31
39	Drug Uptake, Lipid Rafts, and Vesicle Trafficking Modulate Resistance to an Anticancer Lysophosphatidylcholine Analogue in Yeast. Journal of Biological Chemistry, 2013, 288, 8405-8418.	3.4	41
40	Uncovering Arabidopsis Membrane Protein Interactome Enriched in Transporters Using Mating-Based Split Ubiquitin Assays and Classification Models. Frontiers in Plant Science, 2012, 3, 124.	3.6	42
41	The Protein Factor-arrest 11 (Far11) Is Essential for the Toxicity of Human Caspase-10 in Yeast and Participates in the Regulation of Autophagy and the DNA Damage Signaling. Journal of Biological Chemistry, 2012, 287, 29636-29647.	3.4	13
42	Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8, 445-544.	9.1	3,122
43	Raman Spectroscopy Adds Complementary Detail to the High-Resolution X-Ray Crystal Structure of Photosynthetic PsbP from Spinacia oleracea. PLoS ONE, 2012, 7, e46694.	2.5	20
44	Early Transcriptional Defense Responses in Arabidopsis Cell Suspension Culture under High-Light Conditions Â. Plant Physiology, 2011, 156, 1439-1456.	4.8	81
45	The biological activity of the wine anthocyanins delphinidin and petunidin is mediated through Msn2 and Msn4 in Saccharomyces cerevisiae. FEMS Yeast Research, 2010, 10, 858-869.	2.3	11
46	Genome-Wide Analysis of Factors Affecting Transcription Elongation and DNA Repair: A New Role for PAF and Ccr4-Not in Transcription-Coupled Repair. PLoS Genetics, 2009, 5, e1000364.	3.5	81
47	Human initiator caspases trigger apoptotic and autophagic phenotypes in Saccharomyces cerevisiae. Biochimica Et Biophysica Acta - Molecular Cell Research, 2009, 1793, 561-571.	4.1	15
48	Crystallization and preliminary crystallographic characterization of the extrinsic PsbP protein of photosystem II from <i>Spinacia oleracea</i> . Acta Crystallographica Section F: Structural Biology Communications, 2009, 65, 111-115.	0.7	12
49	Phosphoribosyl pyrophosphate synthetase activity affects growth and riboflavin production in Ashbya gossypii. BMC Biotechnology, 2008, 8, 67.	3.3	72
50	A Chemical Genomic Screen in <i>Saccharomyces cerevisiae</i> Reveals a Role for Diphthamidation of Translation Elongation Factor 2 in Inhibition of Protein Synthesis by Sordarin. Antimicrobial Agents and Chemotherapy, 2008, 52, 1623-1629.	3.2	28
51	A Chemogenomic Screening of Sulfanilamide-Hypersensitive <i>Saccharomyces cerevisiae</i> Mutants Uncovers <i>ABZ2</i> , the Gene Encoding a Fungal Aminodeoxychorismate Lyase. Eukaryotic Cell, 2007, 6, 2102-2111.	3.4	28
52	Thetxl1+gene fromSchizosaccharomyces pombeencodes a new thioredoxin-like 1 protein that participates in the antioxidant defence againsttert-butyl hydroperoxide. Yeast, 2007, 24, 481-490.	1.7	16
53	Purine Biosynthesis, Riboflavin Production, and Trophic-Phase Span Are Controlled by a Myb-Related Transcription Factor in the Fungus Ashbya gossypii. Applied and Environmental Microbiology, 2006, 72, 5052-5060.	3.1	60
54	The 1.49Ã Resolution Crystal Structure of PsbQ from Photosystem II of Spinacia oleracea Reveals a PPII Structure in the N-terminal Region. Journal of Molecular Biology, 2005, 350, 1051-1060.	4.2	60

JOSE LUIS REVUELTA

#	Article	IF	CITATIONS
55	Metabolic Engineering of the Purine Pathway for Riboflavin Production in Ashbya gossypii. Applied and Environmental Microbiology, 2005, 71, 5743-5751.	3.1	106
56	K+ channel interactions detected by a genetic system optimized for systematic studies of membrane protein interactions. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 12242-12247.	7.1	293
57	A new endemic species of Epipactis (Orchidaceae) from north-east Portugal. Botanical Journal of the Linnean Society, 2004, 145, 239-249.	1.6	10
58	A genome-wide transcription analysis of a fungal riboflavin overproducer. Journal of Biotechnology, 2004, 113, 69-76.	3.8	29
59	Structural Analysis of the PsbQ Protein of Photosystem II by Fourier Transform Infrared and Circular Dichroic Spectroscopy and by Bioinformatic Methodsâ€. Biochemistry, 2003, 42, 1000-1007.	2.5	22
60	Disruption of the SHM2 gene, encoding one of two serine hydroxymethyltransferase isoenzymes, reduces the flux from glycine to serine in Ashbya gossypii. Biochemical Journal, 2003, 369, 263-273.	3.7	41
61	Functional profiling of the Saccharomyces cerevisiae genome. Nature, 2002, 418, 387-391.	27.8	3,938
62	The genome sequence of Schizosaccharomyces pombe. Nature, 2002, 415, 871-880.	27.8	1,508
63	Carrier-mediated transport of riboflavin in Ashbya gossypii. Applied Microbiology and Biotechnology, 2001, 55, 85-89.	3.6	25
64	Riboflavin, overproduced during sporulation of Ashbya gossypii, protects its hyaline spores against ultraviolet light. Environmental Microbiology, 2001, 3, 545-550.	3.8	52
65	Analysis of 41 kb of the DNA sequence from the right arm of chromosome II ofSchizosaccharomyces pombe. Yeast, 2001, 18, 1111-1116.	1.7	4
66	Molecular Characterization of FMN1, the Structural Gene for the Monofunctional Flavokinase of Saccharomyces cerevisiae. Journal of Biological Chemistry, 2000, 275, 28618-28624.	3.4	61
67	Physiological Consequence of Disruption of the VMA1Gene in the Riboflavin Overproducer Ashbya gossypii. Journal of Biological Chemistry, 1999, 274, 9442-9448.	3.4	58
68	Functional Characterization of the S. cerevisiae Genome by Gene Deletion and Parallel Analysis. Science, 1999, 285, 901-906.	12.6	3,761
69	DNA Sequencing and analysis of a 40 kb region from the right arm of chromosome II fromSchizosaccharomyces pombe. Yeast, 1999, 15, 419-426.	1.7	6
70	lsocitrate lyase ofAshbya gossypii- transcriptional regulation and peroxisomal localization. FEBS Letters, 1999, 444, 15-21.	2.8	43
71	The sequence of a 21·3kb DNA fragment from the left arm of yeast chromosome XIV revealsLEU4, MET4, POL1, RAS2, and six new open reading frames. Yeast, 1996, 12, 403-409.	1.7	3
72	The Sequence of a 20·3 kb DNA Fragment from the Left Arm of Saccharomyces cerevisiae Chromosome IV Contains the KIN28, MSS2, PHO2, POL3 and DUN1 Genes, and Six New Open Reading Frames. Yeast, 1996, 12, 1077-1084.	1.7	1

Jose Luis Revuelta

#	Article	IF	CITATIONS
73	The Saccharomyces cerevisiae RIB4 Gene Codes for 6,7-Dimethyl- 8-ribityllumazine Synthase Involved in Riboflavin Biosynthesis. Journal of Biological Chemistry, 1995, 270, 23801-23807.	3.4	44
74	Riboflavin Biosynthesis in Saccharomyces cerevisiae. Journal of Biological Chemistry, 1995, 270, 437-444.	3.4	40
75	XI. Yeast sequencing reports. The complete sequence of an 18,002 bp segment ofSaccharomyces cerevisiae chromosome XI contains theHBS1,MRP-L20 andPRP16 genes, and six new open reading frames. Yeast, 1994, 10, 231-245.	1.7	16
76	Complete DNA sequence of yeast chromosome XI. Nature, 1994, 369, 371-378.	27.8	382
77	Mapping of theRIB1 andRIB7 genes involved in the biosynthesis of riboflavin inSaccharomyces cerevisiae. Yeast, 1993, 9, 1099-1102.	1.7	9
78	The complete sequence of a 15 820 bp segment ofSaccharomyces cerevisiae chromosome XI contains theUBI2 andMPL1 genes and three new open reading frames. Yeast, 1993, 9, 1349-1354.	1.7	8
79	Structural organization of the TRP1 gene of Phycomyces blakesleeanus: implications for evolutionary gene fusion in fungi. Gene, 1988, 71, 85-95.	2.2	28
80	Transformation of Phycomyces blakesleeanus to G-418 resistance by an autonomously replicating plasmid Proceedings of the National Academy of Sciences of the United States of America, 1986, 83, 7344-7347.	7.1	68
81	Photoregulation of carotenogenesis in Phycomyces. Current Genetics, 1984, 8, 261-264.	1.7	5
82	A new gene (carC) involved in the regulation of carotenogenesis in Phycomyces. Molecular Genetics and Genomics, 1983, 192, 225-229.	2.4	22