Sarfaraz Kamangar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1359439/publications.pdf

Version: 2024-02-01

100 1,547 19 36
papers citations h-index g-index

100 100 748
all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	An investigation on the influence of aluminium oxide nano-additive and honge oil methyl ester on engine performance, combustion and emission characteristics. Renewable Energy, 2020, 146, 2291-2307.	8.9	140
2	Investigation of heat transfer in square porous-annulus. International Journal of Heat and Mass Transfer, 2012, 55, 2184-2192.	4.8	116
3	Natural convection in a square porous annulus. International Journal of Heat and Mass Transfer, 2012, 55, 7175-7187.	4.8	113
4	Analysis of Heat and Mass Transfer in a Vertical Annular Porous Cylinder Using FEM. Transport in Porous Media, 2012, 91, 697-715.	2.6	104
5	Conjugate Heat Transfer in an Annulus with Porous Medium Fixed Between Solids. Transport in Porous Media, 2015, 109, 589-608.	2.6	100
6	CONJUGATE HEAT TRANSFER IN POROUS ANNULUS. Journal of Porous Media, 2014, 17, 1109-1119.	1.9	69
7	Effect of variable heating on double diffusive flow in a square porous cavity. AIP Conference Proceedings, 2016, , .	0.4	66
8	Human thermal comfort in passenger vehicles using an organic phase change material– an experimental investigation, neural network modelling, and optimization. Building and Environment, 2020, 180, 107012.	6.9	49
9	Conjugate Heat and Mass Transfer in a Vertical Porous Cylinder. Journal of Thermophysics and Heat Transfer, 2019, 33, 548-558.	1.6	44
10	Heat transfer analysis in an annular cone subjected to power law variations. IOP Conference Series: Materials Science and Engineering, 2016, 149, 012212.	0.6	41
11	Heat transfer in a porous cavity in presence of square solid block. International Journal of Numerical Methods for Heat and Fluid Flow, 2019, 29, 640-656.	2.8	39
12	Fem Formulation of Coupled Partial Differential Equations for Heat Transfer. IOP Conference Series: Materials Science and Engineering, 2017, 225, 012023.	0.6	35
13	Effects of engine variables and heat transfer on the performance of biodiesel fueled IC engines. Renewable and Sustainable Energy Reviews, 2015, 44, 682-691.	16.4	28
14	Mechanical Properties of PC-ABS-Based Graphene-Reinforced Polymer Nanocomposites Fabricated by FDM Process. Polymers, 2021, 13, 2951.	4.5	28
15	Effect of porous media of the stenosed artery wall to the coronary physiological diagnostic parameter: A computational fluid dynamic analysis. Atherosclerosis, 2014, 233, 630-635.	0.8	26
16	Evaluation of Municipal Solid Wastes Based Energy Potential in Urban Pakistan. Processes, 2019, 7, 848.	2.8	24
17	Numerical Investigation of the Effect of Stenosis Geometry on the Coronary Diagnostic Parameters. Scientific World Journal, The, 2014, 2014, 1-7.	2.1	22
18	Patient-specific 3D hemodynamics modelling of left coronary artery under hyperemic conditions. Medical and Biological Engineering and Computing, 2017, 55, 1451-1461.	2.8	22

#	Article	IF	CITATIONS
19	Extraction of Cellulose Nano-Whiskers Using Ionic Liquid-Assisted Ultra-Sonication: Optimization and Mathematical Modelling Using Box–Behnken Design. Symmetry, 2019, 11, 1148.	2.2	22
20	Green and ecofriendly synthesis of cobalt oxide nanoparticles using Phoenix dactylifera L: antimicrobial and photocatalytic activity. Applied Nanoscience (Switzerland), 2023, 13, 1367-1375.	3.1	22
21	Influence of stenosis on hemodynamic parameters in the realistic left coronary artery under hyperemic conditions. Computer Methods in Biomechanics and Biomedical Engineering, 2017, 20, 365-372.	1.6	18
22	Finite element solution strategy for viscous dissipation in porous medium. AIP Conference Proceedings, 2019, , .	0.4	18
23	Drug Leaching Properties of Vancomycin Loaded Mesoporous Hydroxyapatite as Bone Substitutes. Processes, 2019, 7, 826.	2.8	18
24	Partial heating at lower section of annulus subjected to conjugate heat transfer in porous annulus. AIP Conference Proceedings, 2019 , , .	0.4	17
25	Conjugate heat transfer due to partial isothermal heating at center of annuls with two solids in porous annulus: Part I. AIP Conference Proceedings, 2019, , .	0.4	16
26	Partial heating at upper section of annulus subjected to conjugate heat transfer in porous annulus. AIP Conference Proceedings, 2019 , , .	0.4	16
27	Exploring E-Waste Resources Recovery in Household Solid Waste Recycling. Processes, 2020, 8, 1047.	2.8	15
28	The Influence of Geometrical Shapes of Stenosis on the Blood Flow in Stenosed Artery. Sains Malaysiana, 2017, 46, 1923-1933.	0.5	14
29	The influence of artery wall curvature on the anatomical assessment of stenosis severity derived from fractional flow reserve: a computational fluid dynamics study. Computer Methods in Biomechanics and Biomedical Engineering, 2016, 19, 1541-1549.	1.6	13
30	An experimental investigation of eco-friendly treated GNP heat transfer growth: circular and square conduit comparison. Journal of Thermal Analysis and Calorimetry, 2021, 145, 139-151.	3.6	12
31	Analysis of the Effect of Parameters on Fracture Toughness of Hemp Fiber Reinforced Hybrid Composites Using the ANOVA Method. Polymers, 2021, 13, 3013.	4.5	12
32	Green synthesis of titanium dioxide nanoparticles using Laurus nobilis (bay leaf): antioxidant and antimicrobial activities. Applied Nanoscience (Switzerland), 2023, 13, 1477-1484.	3.1	12
33	Patient specific 3-d modeling of blood flow in a multi-stenosed left coronary artery. Bio-Medical Materials and Engineering, 2017, 28, 257-266.	0.6	11
34	Novel Approach to Manufacture an AUV Propeller by Additive Manufacturing and Error Analysis. Applied Sciences (Switzerland), 2019, 9, 4413.	2.5	11
35	Multi-Scale Study on Mechanical Property and Strength of New Green Sand (Poly Lactic Acid) as Replacement of Fine Aggregate in Concrete Mix. Symmetry, 2020, 12, 1823.	2.2	11
36	Finite element formulation of conjugate double diffusion in porous annulus. AIP Conference Proceedings, 2020, , .	0.4	11

#	Article	IF	Citations
37	Two-Phase Non-Newtonian Pulsatile Blood Flow Simulations in a Rigid and Flexible Patient-Specific Left Coronary Artery (LCA) Exhibiting Multi-Stenosis. Applied Sciences (Switzerland), 2021, 11, 11361.	2.5	10
38	Fabrication and Physicochemical Study of B2SA-Grafted Poly(vinyl Alcohol)–Graphene Hybrid Membranes for Dehydration of Bioethanol by Pervaporation. Membranes, 2021, 11, 110.	3.0	9
39	Electromagnetic Characterization of a Multiwalled Carbon Nanotubes–Silver Nanoparticles-Reinforced Polyvinyl Alcohol Hybrid Nanocomposite in X-Band Frequency. ACS Omega, 2021, 6, 4184-4191.	3.5	9
40	Effect of Injection Timing and Injection Duration of Manifold Injected Fuels in Reactivity Controlled Compression Ignition Engine Operated with Renewable Fuels. Energies, 2021, 14, 4621.	3.1	9
41	Development and Characterization of Biocompatible Membranes from Natural Chitosan and Gelatin for Pervaporative Separation of Water–Isopropanol Mixture. Polymers, 2021, 13, 2868.	4.5	9
42	Effect of stenosis on hemodynamics in left coronary artery based on patient-specific CT scan. Bio-Medical Materials and Engineering, 2019, 30, 463-473.	0.6	8
43	Surface Functionalization of Magnetite Nanoparticles with Multipotent Antioxidant as Potential Magnetic Nanoantioxidants and Antimicrobial Agents. Molecules, 2022, 27, 789.	3.8	8
44	Nanoceramic Composites for Nuclear Radiation Attenuation. Materials, 2022, 15, 262.	2.9	8
45	Finite element formulation of conjugate heat transfer in porous annulus. AIP Conference Proceedings, 2020, , .	0.4	7
46	Computational examination of Jeffrey nanofluid through a stretchable surface employing Tiwari and Das model. Open Physics, 2021, 19, 897-911.	1.7	7
47	The influence of curvature wall onÂtheÂbloodÂflow in stenosed artery: AÂcomputationalÂstudy. Bio-Medical Materials and Engineering, 2018, 29, 319-332.	0.6	6
48	Lattice Strain Analysis of a Mn-Doped CdSe QD System Using Crystallography Techniques. Processes, 2019, 7, 639.	2.8	6
49	Double diffusion in arbitrary porous cavity: Part II. AIP Conference Proceedings, 2017, , .	0.4	5
50	Investigation on Surface Properties of Mn-Doped CdSe Quantum Dots Studied by X-ray Photoelectron Spectroscopy. Symmetry, 2019, 11, 1250.	2.2	5
51	Discrete heating at bottom of annulus in case of mixed convection: Aiding flow. AIP Conference Proceedings, 2019, , .	0.4	5
52	Influence of bifurcation angle in left coronary artery with stenosis: A CFD analysis. Bio-Medical Materials and Engineering, 2020, 31, 339-349.	0.6	5
53	Adsorption Studies of Volatile Organic Compound (Naphthalene) from Aqueous Effluents: Chemical Activation Process Using Weak Lewis Acid, Equilibrium Kinetics and Isotherm Modelling. International Journal of Molecular Sciences, 2021, 22, 2090.	4.1	5
54	Evaluation on Enhanced Heat Transfer Using Sonochemically Synthesized Stable Zno-Eg@Dw Nanofluids in Horizontal Calibrated Circular Flow Passage. Energies, 2021, 14, 2400.	3.1	5

#	Article	IF	Citations
55	Investigation of two-way fluid-structure interaction of blood flow in a patient-specific left coronary artery. Bio-Medical Materials and Engineering, 2021, , 1-18.	0.6	5
56	Influence of Variable Bifurcation Angulation and Outflow Boundary Conditions in 3D Finite Element Modelling of Left Coronary Artery on Coronary Diagnostic Parameter. Current Science, 2016, 111, 368.	0.8	5
57	A Parametric Study of the Effect of Arterial Wall Curvature on Non-Invasive Assessment of Stenosis Severity:Computational Fluid Dynamics Study. Current Science, 2016, 111, 483.	0.8	5
58	Pressure-Driven Electro-Osmotic Flow and Mass Transport in Constricted Mixing Micro-Channels. Journal of Applied Fluid Mechanics, 2020, 13, 429-441.	0.2	5
59	Numerical analysis of heat transfer in human head. Journal of Mechanical Science and Technology, 2019, 33, 3597-3605.	1.5	4
60	Numerical investigation on pressure-driven electro osmatic flow and mixing in a constricted micro channel by triangular obstacle. International Journal of Numerical Methods for Heat and Fluid Flow, 2021, 31, 982-1013.	2.8	4
61	Fouling and fouling mitigation of mineral salt using bio-based functionalized graphene nano-plates. Journal of Thermal Analysis and Calorimetry, 2021, 146, 265-275.	3.6	4
62	The influence of multi-stenosis in the left coronary artery subjected to the variable blood flow rate. Frontiers in Engineering and Built Environment, 2021, 1, 97-106.	1.5	4
63	Wound dressings coated with silver nanoparticles and essential oil of Labdanum. Applied Nanoscience (Switzerland), 2023, 13, 1345-1354.	3.1	4
64	Heat Transfer and Entropy in a Vertical Porous Plate Subjected to Suction Velocity and MHD. Entropy, 2021, 23, 1069.	2.2	4
65	Double diffusion in square porous cavity subjected to conjugate heat transfer. FME Transactions, 2020, 48, 841-848.	1.4	4
66	Augmented Turbulence for Progressive and Efficient Combustion in Biodiesel–Diesel Engine. Arabian Journal for Science and Engineering, 2019, 44, 7957-7966.	3.0	3
67	Attenuation and dispersion phenomena of torsional waves in self-weighted, inhomogeneous, pre-stressed poro-elastic and poro-viscoelastic stratified structure. Waves in Random and Complex Media, 2020, , 1-22.	2.7	3
68	Numerical Analysis of Film Cooling Due to Simple/Compound Angle Hole Combination. Arabian Journal for Science and Engineering, 2020, 45, 8931-8944.	3.0	3
69	Dispersion and attenuation of SHâ€waves in a temperatureâ€dependent Voigtâ€type viscoelastic strip over an inhomogeneous halfâ€space. ZAMM Zeitschrift Fur Angewandte Mathematik Und Mechanik, 0, , e202000223.	1.6	3
70	Improvement in joint efficiency with high productivity and narrow weld formation in friction stir welding. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 0, , 095440892110424.	2.5	3
71	Numerical simulation of pulsatile blood flow characteristics in a multi stenosed coronary artery. Bio-Medical Materials and Engineering, 2021, 32, 309-321.	0.6	3
72	Characteristics of Conventional and Microwave Sintered Iron Ore Preform. Materials, 2022, 15, 2655.	2.9	3

#	Article	IF	CITATIONS
73	Flow control in microfluidics devices: electro-osmotic Couette flow with joule heating effect. Frontiers in Engineering and Built Environment, 2021, 1, 146-160.	1.5	2
74	Corrosion Characterization at Surface and Subsurface of Iron-Based Buried Water Pipelines. Materials, 2021, 14, 5877.	2.9	2
75	Comparison of 3D Printed Underwater Propeller Using Polymers and Conventionally Developed AA6061. Journal of Materials Engineering and Performance, 2022, 31, 5149-5158.	2.5	2
76	Peristaltic Transport of Carreau Nanofluid in Presence of Triple Diffusion in an Asymmetric Channel by Multi-Step Differential Transformation Method. Mathematics, 2022, 10, 807.	2.2	2
77	Design and Synthesis of Multipotent Antioxidants for Functionalization of Iron Oxide Nanoparticles. Coatings, 2022, 12, 517.	2.6	2
78	Effect of Thermal Radiation and Double-Diffusion Convective Peristaltic Flow of a Magneto-Jeffrey Nanofluid through a Flexible Channel. Mathematics, 2022, 10, 1701.	2.2	2
79	Mixed convection aiding flow in a vertical porous annulus-two temperature model. IOP Conference Series: Materials Science and Engineering, 2016, 149, 012213.	0.6	1
80	Natural convection in annular cone: Influence of radius ratio. AIP Conference Proceedings, 2018, , .	0.4	1
81	Influence on opposing flow due to viscous dissipation in porous cavity. AIP Conference Proceedings, 2019, , .	0.4	1
82	Development of Preform for Simulation of Cold Forging Process of A V8 Engine Camshaft Free from Flash & Engi	2.2	1
83	Heat Transfer in Square Porous Cavity Due to Radiation and Heat Generating Strip - Part II. IOP Conference Series: Materials Science and Engineering, 2020, 764, 012030.	0.6	1
84	Thermal non-equilibrium analysis of porous annulus subjected to segmental isothermal heater - Part B. AIP Conference Proceedings, $2016, , .$	0.4	0
85	Effect of viscous dissipation and radiation in an annular cone. AIP Conference Proceedings, 2016, , .	0.4	0
86	Thermal non-equilibrium analysis of porous annulus subjected to segmental isothermal heater - Part A. AIP Conference Proceedings, $2016, , .$	0.4	0
87	Effect of segmental heating on mixed convection aiding flow in a vertical porous annulus. AIP Conference Proceedings, $2016, , .$	0.4	0
88	Mixed convection opposing flow in porous annulus. AIP Conference Proceedings, 2016, , .	0.4	0
89	THE MECHANICAL FACTORS INFLUENCING THE ASSESSMENT OF INTERMEDIATE STENOSIS SEVERITY EXPLAINED THROUGH FRACTIONAL FLOW RESERVE. Journal of Mechanics in Medicine and Biology, 2017, 17, 1730001.	0.7	0
90	Double diffusion in arbitrary porous cavity: Part III. AIP Conference Proceedings, 2017, , .	0.4	0

#	Article	IF	CITATIONS
91	Heat and mass transfer in vertical porous medium due to partial heating. AIP Conference Proceedings, 2018, , .	0.4	O
92	Thermal non-equilibrium in porous medium adjacent to vertical plate: ANN approach. AIP Conference Proceedings, 2018 , , .	0.4	0
93	Effect of viscous dissipation on aiding flow heat and mass transfer in porous cavity. AIP Conference Proceedings, 2019, , .	0.4	0
94	Heat Transfer in Porous Annulus: Heating on Vertical Walls. Materials Today: Proceedings, 2020, 24, 1312-1317.	1.8	0
95	Heat Transfer in Square Porous Cavity Due to Radiation and Heat Generating Strip - Part I. IOP Conference Series: Materials Science and Engineering, 2020, 764, 012028.	0.6	0
96	Conjugate Double Diffusion: Effect of Buoyancy Ratio. Materials Today: Proceedings, 2020, 24, 1410-1415.	1.8	0
97	Effects of hydrogen flow rate, injection pressure and EGR on performance of common rail direct injection (CRDi) engine in dual fuel mode. Frontiers in Engineering and Built Environment, 2021, 1, $81-96$.	1.5	0
98	Biodiesel Production Using Modified Direct Transesterification by Sequential Use of Acid-Base Catalysis and Performance Evaluation of Diesel Engine Using Various Blends. Sustainability, 2021, 13, 9731.	3.2	0
99	Influence of Reaction pH towards the Physicochemical Characteristics of Phosphorylated Polyvinyl Alcohol-Aluminum Phosphate Nanocomposite. Coatings, 2021, 11, 1105.	2.6	0
100	CONJUGATE DOUBLE DIFFUSION IN A SQUARE CAVITY DIVIDED INTO TWO SECTIONS. Frontiers in Heat and Mass Transfer, 0, 9, .	0.2	O