Aristides Docoslis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/135921/publications.pdf

Version: 2024-02-01

		471509	552781
36	746	17	26
papers	citations	h-index	g-index
36	36	36	971
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Recent Advances in the Use of Surface-Enhanced Raman Scattering for Illicit Drug Detection. Sensors, 2022, 22, 3877.	3.8	25
2	New insights into the structure and chemical reduction of graphene oxide membranes for use in isotopic water separations. Journal of Membrane Science, 2022, 659, 120785.	8.2	6
3	Screen-printed anion-exchange solid-phase extraction: A new strategy for point-of-care determination of angiotensin receptor blockers. Talanta, 2021, 222, 121518.	5.5	9
4	Developing an integrated microfluidic and miniaturized electrochemical biosensor for point of care determination of glucose in human plasma samples. Analytical and Bioanalytical Chemistry, 2021, 413, 1441-1452.	3.7	24
5	Portable identification of fentanyl analogues in drugs using surface-enhanced Raman scattering. Sensors and Actuators B: Chemical, 2021, 330, 129303.	7.8	29
6	Cicada Wing Inspired Template-Stripped SERS Active 3D Metallic Nanostructures for the Detection of Toxic Substances. Sensors, 2021, 21, 1699.	3.8	11
7	Electrochemically deposited silver nanostructures for use as surfaceâ€enhanced Raman scattering (<scp>SERS</scp>) substrates in pointâ€ofâ€need diagnostic devices. Canadian Journal of Chemical Engineering, 2021, 99, 2428-2440.	1.7	O
8	Detection and quantification of toxicants in food and water using Ag–Au core-shell fractal SERS nanostructures and multivariate analysis. Talanta, 2021, 231, 122383.	5 . 5	17
9	Portable surface-enhanced Raman scattering analysis performed with microelectrode-templated silver nanodendrites. Analyst, The, 2020, 145, 4467-4476.	3.5	15
10	Graphene Oxide Membranes for Isotopic Water Mixture Filtration: Preparation, Physicochemical Characterization, and Performance Assessment. ACS Applied Materials & Diterfaces, 2020, 12, 34736-34745.	8.0	18
11	Tunable Fractal Nanostructures for Surface-Enhanced Raman Scattering via Templated Electrodeposition of Silver on Low-Energy Surfaces. ACS Applied Nano Materials, 2020, 3, 2665-2679.	5.0	17
12	Electrokinetically-Driven Assembly of Gold Colloids into Nanostructures for Surface-Enhanced Raman Scattering. Nanomaterials, 2020, 10, 661.	4.1	11
13	Achieving high yield of graphene nanoplatelets in poloxamer-assisted ultrasonication of graphite in water. Journal of Colloid and Interface Science, 2019, 539, 107-117.	9.4	11
14	Rapid identification and quantification of illicit drugs on nanodendritic surface-enhanced Raman scattering substrates. Sensors and Actuators B: Chemical, 2018, 257, 382-388.	7.8	77
15	Ultrasensitive Analyte Detection by Combining Nanoparticle-based Surface-Enhanced Raman Scattering (SERS) Substrates with Multivariate Analysis. Materials Today: Proceedings, 2018, 5, 27377-27386.	1.8	5
16	Improving the Surface-Enhanced Raman Scattering Performance of Silver Nanodendritic Substrates with Sprayed-On Graphene-Based Coatings. Sensors, 2018, 18, 3404.	3.8	19
17	Optimized inkjet-printed silver nanoparticle films: theoretical and experimental investigations. RSC Advances, 2018, 8, 19679-19689.	3.6	11
18	SERS-from-scratch: An electric field-guided nanoparticle assembly method for cleanroom-free and low-cost preparation of surface-enhanced Raman scattering substrates. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 553, 695-702.	4.7	23

#	Article	IF	CITATIONS
19	Direct Detection of Toxic Contaminants in Minimally Processed Food Products Using Dendritic Surface-Enhanced Raman Scattering Substrates. Sensors, 2018, 18, 2726.	3.8	35
20	Electric-field induced filler association dynamics and resulting improvements in the electrical conductivity of polyester/multiwall carbon nanotube composites. Polymer Composites, 2017, 38, 1571-1578.	4.6	4
21	In situ assembly of active surface-enhanced Raman scattering substrates via electric field-guided growth of dendritic nanoparticle structures. Nanoscale, 2017, 9, 7847-7857.	5.6	38
22	Contact-Free Templating of 3-D Colloidal Structures Using Spatially Nonuniform AC Electric Fields. Langmuir, 2016, 32, 9619-9632.	3 . 5	3
23	Noncovalent compatibilization of polypropylene/MWCNT composites using an amino-pyridine grafted polypropylene matrix. Polymer Composites, 2016, 37, 2794-2802.	4.6	9
24	Fast and sensitive detection of bacteria from a water droplet by means of electric field effects and micro-Raman spectroscopy. Sensing and Bio-Sensing Research, 2015, 6, 59-66.	4.2	22
25	Electrified Polyolefin/Multiwall Carbon Nanotube Composites Exhibit Dramatic Changes in Electrical Conductivity, Permittivity, and Filler Structure. Macromolecular Materials and Engineering, 2015, 300, 448-457.	3.6	3
26	Accelerated Detection of Viral Particles by Combining AC Electric Field Effects and Micro-Raman Spectroscopy. Sensors, 2015, 15, 1047-1059.	3.8	9
27	Electrically conducting polyolefin composites containing electric field-aligned multiwall carbon nanotube structures: The effects of process parameters and filler loading. Carbon, 2014, 72, 89-99.	10.3	14
28	The role of non-covalent interactions and matrix viscosity on theÂdispersion and properties of LLDPE/MWCNT nanocomposites. Polymer, 2013, 54, 5230-5240.	3.8	34
29	Characterization of non-covalently, non-specifically functionalized multi-wall carbon nanotubes and their melt compounded composites with an ethylene–octene copolymer. Composites Science and Technology, 2012, 73, 27-33.	7.8	27
30	The effect of electric field parameters on the resistivity and induced percolation time of carbon blackâ€filled polystyrene composites. Polymer Composites, 2011, 32, 1106-1114.	4.6	7
31	Non-covalent/non-specific functionalization of multi-walled carbon nanotubes with a hyperbranched polyethylene and characterization of their dispersion in a polyolefin matrix. Carbon, 2011, 49, 3378-3382.	10.3	34
32	Observations and analysis of electrokinetically driven particle trapping in planar microelectrode arrays. Canadian Journal of Chemical Engineering, 2008, 86, 609-621.	1.7	6
33	Characterization of the distribution, polymorphism, and stability of nimodipine in its solid dispersions in polyethylene glycol by micro-Raman spectroscopy and powder x-ray diffraction. AAPS Journal, 2007, 9, E361-E370.	4.4	76
34	Using Nonuniform Electric Fields To Accelerate the Transport of Viruses to Surfaces from Media of Physiological Ionic Strength. Langmuir, 2007, 23, 3840-3848.	3 . 5	37
35	Numerical investigation of AC electrokinetic virus trapping inside high ionic strength media. Microfluidics and Nanofluidics, 2007, 3, 547-560.	2.2	12
36	Hyperhydrophobicity of the Waterâ€Air Interface. Journal of Dispersion Science and Technology, 2005, 26, 585-590.	2.4	48

3