Shoshana Levy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1359197/publications.pdf

Version: 2024-02-01

92 papers 8,858 citations

45 h-index 82 g-index

92 all docs 92 docs citations 92 times ranked 7537 citing authors

#	Article	IF	CITATIONS
1	The tetraspanin superfamily: molecular facilitators. FASEB Journal, 1997, 11, 428-442.	0.5	864
2	The tetraspanin web modulates immune-signalling complexes. Nature Reviews Immunology, 2005, 5, 136-148.	22.7	537
3	CD81 (TAPA-1): A MOLECULE INVOLVED IN SIGNAL TRANSDUCTION AND CELL ADHESION IN THE IMMUNE SYSTEM. Annual Review of Immunology, 1998, 16, 89-109.	21.8	472
4	Characterization of Hepatitis C Virus E2 Glycoprotein Interaction with a Putative Cellular Receptor, CD81. Journal of Virology, 1999, 73, 6235-6244.	3.4	428
5	CD81 gene defect in humans disrupts CD19 complex formation and leads to antibody deficiency. Journal of Clinical Investigation, 2010, 120, 1265-1274.	8.2	345
6	Hepatocyte CD81 is required for Plasmodium falciparum and Plasmodium yoelii sporozoite infectivity. Nature Medicine, 2003, 9, 93-96.	30.7	327
7	Impaired dendritic cell maturation in patients with chronic, but not resolved, hepatitis C virus infection. Blood, 2001, 97, 3171-3176.	1.4	291
8	Clustering of extensive somatic mutations in the variable region of an immunoglobulin heavy chain gene from a human B cell lymphoma. Cell, 1986, 44, 97-106.	28.9	274
9	IL-18 Gene Transfer by Adenovirus Prevents the Development of and Reverses Established Allergen-Induced Airway Hyperreactivity. Journal of Immunology, 2001, 166, 6392-6398.	0.8	242
10	Normal Lymphocyte Development but Delayed Humoral Immune Response in CD81-null Mice. Journal of Experimental Medicine, 1997, 185, 1505-1510.	8.5	222
11	Identification of Amino Acid Residues in CD81 Critical for Interaction with Hepatitis C Virus Envelope Glycoprotein E2. Journal of Virology, 2000, 74, 3642-3649.	3.4	202
12	The B-cell receptor of a hepatitis C virus (HCV)–associated non-Hodgkin lymphoma binds the viral E2 envelope protein, implicating HCV in lymphomagenesis. Blood, 2001, 98, 3745-3749.	1.4	198
13	Protein-Protein Interactions in the Tetraspanin Web. Physiology, 2005, 20, 218-224.	3.1	196
14	V H 1-69 gene is preferentially used by hepatitis C virus–associated B cell lymphomas and by normal B cells responding to the E2 viral antigen. Blood, 2001, 97, 1023-1026.	1.4	195
15	Human Monoclonal Antibodies That Inhibit Binding of Hepatitis C Virus E2 Protein to CD81 and Recognize Conserved Conformational Epitopes. Journal of Virology, 2000, 74, 10407-10416.	3.4	192
16	Reduced fertility of female mice lacking CD81. Developmental Biology, 2006, 290, 351-358.	2.0	182
17	Use of family specific leader region primers for PCR amplification of the human heavy chain variable region gene repertoire. Molecular Immunology, 1992, 29, 193-203.	2.2	181
18	Biosynthesis and stability of globin mRNA in cultured erythroleukemic friend cells. Cell, 1976, 8, 495-503.	28.9	166

#	Article	IF	CITATIONS
19	Functional Analysis of Cell Surface-Expressed Hepatitis C Virus E2 Glycoprotein. Journal of Virology, 1999, 73, 6782-6790.	3.4	158
20	The Tetraspanin CD81 Is Necessary for Partitioning of Coligated CD19/CD21-B Cell Antigen Receptor Complexes into Signaling-Active Lipid Rafts. Journal of Immunology, 2004, 172, 370-380.	0.8	134
21	Somatic Mutation in Human B-Cell Tumors. Immunological Reviews, 1987, 96, 43-58.	6.0	121
22	Hybridoma fusion cell lines contain an aberrant kappa transcript. Molecular Immunology, 1988, 25, 991-995.	2.2	121
23	The Tetraspanin CD81 Regulates the Expression of CD19 During B Cell Development in a Postendoplasmic Reticulum Compartment. Journal of Immunology, 2003, 171, 4062-4072.	0.8	117
24	Cell-free production of scFv fusion proteins: an efficient approach for personalized lymphoma vaccines. Blood, 2007, 109, 3393-3399.	1.4	116
25	Expression of the human germinal center-associated lymphoma (HGAL) protein, a new marker of germinal center B-cell derivation. Blood, 2005, 105, 3979-3986.	1.4	111
26	The CD81 Partner EWI-2wint Inhibits Hepatitis C Virus Entry. PLoS ONE, 2008, 3, e1866.	2. 5	100
27	Vaccination with Allergen-IL-18 Fusion DNA Protects Against, and Reverses Established, Airway Hyperreactivity in a Murine Asthma Model. Journal of Immunology, 2001, 166, 959-965.	0.8	99
28	Binding of Hepatitis C Virus E2 Glycoprotein to CD81 Does Not Correlate with Species Permissiveness to Infection. Journal of Virology, 2000, 74, 5933-5938.	3.4	94
29	Expression of human CD81 differently affects host cell susceptibility to malaria sporozoites depending on the Plasmodium species. Cellular Microbiology, 2006, 8, 1134-1146.	2.1	94
30	CD81 and Hepatitis C Virus (HCV) Infection. Viruses, 2014, 6, 535-572.	3.3	93
31	Hepatitis C Virus (HCV) and Lymphomagenesis. Leukemia and Lymphoma, 2003, 44, 1113-1120.	1.3	92
32	The CD81 Tetraspanin Facilitates Instantaneous Leukocyte VLA-4 Adhesion Strengthening to Vascular Cell Adhesion Molecule 1 (VCAM-1) under Shear Flow. Journal of Biological Chemistry, 2003, 278, 51203-51212.	3.4	92
33	Building of the Tetraspanin Web: Distinct Structural Domains of CD81 Function in Different Cellular Compartments. Molecular and Cellular Biology, 2006, 26, 1373-1385.	2.3	91
34	Increased brain size and glial cell number in CD81-null mice. Journal of Comparative Neurology, 2002, 453, 22-32.	1.6	87
35	CD81-Dependent Binding of Hepatitis C Virus E1E2 Heterodimers. Journal of Virology, 2003, 77, 10677-10683.	3.4	86
36	Function of the tetraspanin molecule CD81 in B and T cells. Immunologic Research, 2014, 58, 179-185.	2.9	79

#	Article	IF	CITATIONS
37	Critical role of CD81 in cognate Tâ \in B cell interactions leading to Th2 responses. International Immunology, 2002, 14, 513-523.	4.0	68
38	Tetraspanins regulate the protrusive activities of cell membrane. Biochemical and Biophysical Research Communications, 2011, 415, 619-626.	2.1	66
39	Tetraspanin CD81 Promotes Tumor Growth and Metastasis by Modulating the Functions of T Regulatory and Myeloid-Derived Suppressor Cells. Cancer Research, 2015, 75, 4517-4526.	0.9	63
40	Idiotype Vaccines for Non-Hodgkin's Lymphoma Induce Polyclonal Immune Responses That Cover Mutated Tumor Idiotypes: Comparison of Different Vaccine Formulations. Blood, 1997, 90, 3699-3706.	1.4	61
41	CD81 Regulates Neuron-Induced Astrocyte Cell-Cycle Exit. Molecular and Cellular Neurosciences, 2001, 17, 551-560.	2.2	55
42	Engagement of CD81 induces ezrin tyrosine phosphorylation and its cellular redistribution with filamentous actin. Journal of Cell Science, 2009, 122, 3137-3144.	2.0	55
43	Primary hepatocytes of Tupaia belangeri as a potential model for hepatitis C virus infection. Journal of Clinical Investigation, 2002, 109, 221-232.	8.2	52
44	Allergen-Induced Airway Hyperreactivity Is Diminished in CD81-Deficient Mice. Journal of Immunology, 2000, 165, 5054-5061.	0.8	51
45	Expression of Human CD81 in Transgenic Mice Does Not Confer Susceptibility to Hepatitis C Virus Infection. Virology, 2002, 304, 187-196.	2.4	47
46	A vaccine directed to B cells and produced by cell-free protein synthesis generates potent antilymphoma immunity. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 14526-14531.	7.1	47
47	Immune Targeting of Tetraspanins Involved in Cell Invasion and Metastasis. Frontiers in Immunology, 2018, 9, 1277.	4.8	43
48	Recognition of Native Hepatitis C Virus E1E2 Heterodimers by a Human Monoclonal Antibody. Journal of Virology, 2003, 77, 1604-1609.	3.4	42
49	Anti-CD81 activates LFA-1 on T cells and promotes T cell-B cell collaboration. European Journal of Immunology, 2001, 31, 823-831.	2.9	41
50	A rapid method for cloning and sequencing variable-region genes of expressed immunoglobulins. Gene, 1987, 54, 167-173.	2.2	40
51	A CpG-loaded tumor cell vaccine induces antitumor CD4+ T cells that are effective in adoptive therapy for large and established tumors. Blood, 2011, 117, 118-127.	1.4	40
52	CD81 as a tumor target. Biochemical Society Transactions, 2017, 45, 531-535.	3.4	40
53	IN SEARCH OF HEPATITIS C VIRUS RECEPTOR(S). Clinics in Liver Disease, 2001, 5, 873-893.	2.1	39
54	B-cell receptors expressed by lymphomas of hepatitis C virus (HCV)–infected patients rarely react with the viral proteins. Blood, 2014, 123, 1512-1515.	1.4	37

#	Article	IF	Citations
55	Sea urchin nuclei use rna polymerase ii to transcribe discrete histone RNAs larger than messengers. Cell, 1978, 15, 151-162.	28.9	35
56	Individual histone messenger RNAs: Identification by template activity. Cell, 1975, 4, 239-248.	28.9	34
57	Sequence of the 5′-end of Strongylocentrotus purpuratus H2b histone mRNA and its location within histone DNA. Nature, 1979, 279, 737-739.	27.8	34
58	CD81 association with SAMHD1 enhances HIV-1 reverse transcription by increasing dNTP levels. Nature Microbiology, 2017, 2, 1513-1522.	13.3	34
59	The CD9 Tetraspanin Is Not Required for the Development of Peripheral B Cells or for Humoral Immunity. Journal of Immunology, 2005, 175, 2925-2930.	0.8	33
60	Differential Expression of Murine CD81 Highlighted by New Anti-Mouse CD81 Monoclonal Antibodies. Hybridoma, 2000, 19, 15-22.	0.6	32
61	CD81 protein is expressed at high levels in normal germinal center B cells and in subtypes of human lymphomas. Human Pathology, 2010, 41, 271-280.	2.0	31
62	CD81 is a novel immunotherapeutic target for B cell lymphoma. Journal of Experimental Medicine, 2019, 216, 1497-1508.	8.5	31
63	Complementary costimulation of human T-cell subpopulations by cluster of differentiation 28 (CD28) and CD81. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 1613-1618.	7.1	29
64	Targeting the tetraspanin CD81 reduces cancer invasion and metastasis. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	29
65	Follicular lymphoma: A model of lymphoid tumor progression in man. Annals of Oncology, 1991, 2, 115-122.	1.2	24
66	Ligation of TAPA-1 (CD81) or major histocompatibility complex class II in co-cultures of human B and T lymphocytes enhances interleukin-4 synthesis by antigen-specific CD4+ T cells. European Journal of Immunology, 1996, 26, 1435-1442.	2.9	24
67	Kinetics of HCV envelope proteins' interaction with CD81 large extracellular loop. Biochemical and Biophysical Research Communications, 2005, 328, 1091-1100.	2.1	22
68	Cell-free production of Gaussia princeps luciferase – antibody fragment bioconjugates for ex vivo detection of tumor cells. Biochemical and Biophysical Research Communications, 2009, 390, 971-976.	2.1	22
69	Enhanced B cell activation in the absence of CD81. International Immunology, 2009, 21, 1225-1237.	4.0	19
70	A mutation in the human tetraspanin CD81 gene is expressed as a truncated protein but does not enable CD19 maturation and cell surface expression. Journal of Clinical Immunology, 2015, 35, 254-263.	3.8	19
71	Identification of a Novel Drug Lead That Inhibits HCV Infection and Cell-to-Cell Transmission by Targeting the HCV E2 Glycoprotein. PLoS ONE, 2014, 9, e111333.	2.5	18
72	Tetraspanin CD81, a modulator of immune suppression in cancer and metastasis. Oncolmmunology, 2016, 5, e1120399.	4.6	16

#	Article	IF	Citations
73	Increased density of retinal pigment epithelium incd $81\hat{a}$ ° mice. Journal of Cellular Biochemistry, 2004, 92, 1160-1170.	2.6	14
74	CD81 Controls Immunity to Listeria Infection through Rac-Dependent Inhibition of Proinflammatory Mediator Release and Activation of Cytotoxic T Cells. Journal of Immunology, 2015, 194, 6090-6101.	0.8	14
75	Expression of TAPA-1 in preimplantation mouse embryos. Biochemical and Biophysical Research Communications, 1992, 186, 1201-1206.	2.1	13
76	Escherichia coli-based production of a tumor idiotype antibody fragment – tetanus toxin fragment C fusion protein vaccine for B cell lymphoma. Protein Expression and Purification, 2011, 75, 15-20.	1.3	12
77	The CD19/CD81 complex physically interacts with CD38 but is not required to induce proliferation in mouse B lymphocytes. Immunology, 2012, 137, 48-55.	4.4	12
78	EspH Suppresses Erk by Spatial Segregation from CD81 Tetraspanin Microdomains. Infection and Immunity, 2018, 86, .	2.2	9
79	CD81 costimulation skews CAR transduction toward naive T cells. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	6
80	Tetraspanins in cell stemness and cancer initiation: markers or active players?. Trends in Cell Biology, 2022, 32, 377-379.	7.9	4
81	Somatic Mutations in the Ig V _H Genes of Human B Cell Lymphoma. Pediatrics International, 1987, 29, 561-565.	0.5	1
82	CD81-Dependent Trafficking of CD19: Restoration of CD19 Surface Expression in Human B Cells Harboring A CD81 Mutation. Blood, 2012, 120, 1049-1049.	1.4	1
83	Role of an arginine–lysine rich motif in maturation and trafficking of CD19. Biochemical and Biophysical Research Communications, 2015, 465, 319-323.	2.1	0
84	Absence of CD81 Paradoxically Results in a Hyper-IgM and IgG Response to T-Independent Antigens Blood, 2006, 108, 1719-1719.	1.4	0
85	Critical Role for CD81 in B Cell Activation Blood, 2007, 110, 1342-1342.	1.4	0
86	Wiskott-Aldrich Syndrome Protein (WASP) Is An Effector of Kit Signaling Blood, 2008, 112, 1410-1410.	1.4	0
87	Enhanced B Cell Activation in the Absence of CD81. Blood, 2008, 112, 2578-2578.	1.4	0
88	Adoptive Cell Therapy for Lymphoma: Use of CpG-Loaded Tumor Cells to Generate Potent Anti-Tumor CD4 T Cell Immunity Blood, 2009, 114, 929-929.	1.4	0
89	Self-Antigen Recognition by the B Cell Receptors of Follicular Lymphoma. Blood, 2010, 116, 4124-4124.	1.4	0
90	The Tetraspanin CD81 Facilitates Tumor Metastasis By Modulating Immune Suppression. Blood, 2014, 124, 4136-4136.	1.4	0

SHOSHANA LEVY

#	Article	IF	CITATIONS
91	Generating Chimeric Antigen Receptors Utilizing Novel Anti-CD3 Nanobeads. Blood, 2014, 124, 5949-5949.	1.4	o
92	Treating B Cell Lymphomas with Anti CD81 Antibodies. Blood, 2016, 128, 4180-4180.	1.4	0