List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1357980/publications.pdf Version: 2024-02-01

		6613	4548
246	31,736	79	171
papers	citations	h-index	g-index
253	253	253	36922
all docs	docs citations	times ranked	citing authors

FIENA AIKANAA

#	Article	IF	CITATIONS
1	Methods for the identification and characterization of extracellular vesicles in cardiovascular studies: from exosomes to microvesicles. Cardiovascular Research, 2023, 119, 45-63.	3.8	44
2	Calcific aortic valve disease: from molecular and cellular mechanisms to medical therapy. European Heart Journal, 2022, 43, 683-697.	2.2	76
3	Lipoprotein(a) Induces Vesicular Cardiovascular Calcification Revealed With Single-Extracellular Vesicle Analysis. Frontiers in Cardiovascular Medicine, 2022, 9, 778919.	2.4	12
4	Role of Extracellular Vesicles in the Pathogenesis of Vascular Damage. Hypertension, 2022, 79, 863-873.	2.7	27
5	Prothymosin Alpha: A Novel Contributor to Estradiol Receptor Alpha–Mediated CD8 ⁺ T-Cell Pathogenic Responses and Recognition of Type 1 Collagen in Rheumatic Heart Valve Disease. Circulation, 2022, 145, 531-548.	1.6	12
6	Shobha Ghosh (1958–2021). Arteriosclerosis, Thrombosis, and Vascular Biology, 2022, 42, 239-240.	2.4	0
7	In silico Drug Screening Approach Using L1000-Based Connectivity Map and Its Application to COVID-19. Frontiers in Cardiovascular Medicine, 2022, 9, 842641.	2.4	5
8	Progression of Mitral Regurgitation in Rheumatic Valve Disease: Role of Left Atrial Remodeling. Frontiers in Cardiovascular Medicine, 2022, 9, 862382.	2.4	3
9	Wnt Site Signaling Inhibitor Secreted Frizzledâ€Related Protein 3 Protects Mitral Valve Endothelium From Myocardial Infarction–Induced Endothelialâ€ŧoâ€Mesenchymal Transition. Journal of the American Heart Association, 2022, 11, e023695.	3.7	6
10	The Developmental Origin of Calcific Aortic Stenosis. New England Journal of Medicine, 2022, 386, 1372-1374.	27.0	7
11	Mechanisms of calcification in the aortic wall and aortic valve. , 2022, , 327-340.		0
12	Embracing Diversity, Equity, and Inclusion in the Scientific Community—Viewpoints of the Diversity, Equity, and Inclusion Committee of the North American Vascular Biology Organization. Frontiers in Cardiovascular Medicine, 2022, 9, 863256.	2.4	1
13	A disease-driver population within interstitial cells of human calcific aortic valves identified via single-cell and proteomic profiling. Cell Reports, 2022, 39, 110685.	6.4	16
14	Connections for Matters of the Heart: Network Medicine in Cardiovascular Diseases. Frontiers in Cardiovascular Medicine, 2022, 9, .	2.4	6
15	Progression of aortic stenosis after an acute myocardial infarction. Open Heart, 2022, 9, e002046.	2.3	2
16	Elevated lipoprotein(a) as a predictor for coronary events in older men. Journal of Lipid Research, 2022, 63, 100242.	4.2	4
17	Inhibition of novel lipoprotein(a) receptor major facilitator superfamily domain containing 5 (MFSD5) reduces development of aortic valve calcification. Cardiovascular Research, 2022, 118, .	3.8	0
18	2020 Jeffrey M. Hoeg Award Lecture. Arteriosclerosis, Thrombosis, and Vascular Biology, 2021, 41, 117-127.	2.4	9

#	Article	IF	CITATIONS
19	Harnessing Single-Cell RNA Sequencing to Better Understand How Diseased Cells Behave the Way They Do in Cardiovascular Disease. Arteriosclerosis, Thrombosis, and Vascular Biology, 2021, 41, 585-600.	2.4	26
20	ApoC-III is a novel inducer of calcification in human aortic valves. Journal of Biological Chemistry, 2021, 296, 100193.	3.4	28
21	CROT (Carnitine O-Octanoyltransferase) Is a Novel Contributing Factor in Vascular Calcification via Promoting Fatty Acid Metabolism and Mitochondrial Dysfunction. Arteriosclerosis, Thrombosis, and Vascular Biology, 2021, 41, 755-768.	2.4	17
22	Nitric oxide prevents aortic valve calcification by S-nitrosylation of USP9X to activate NOTCH signaling. Science Advances, 2021, 7, .	10.3	43
23	Dynamin-related protein 1 inhibition reduces hepatic PCSK9 secretion. Cardiovascular Research, 2021, 117, 2340-2353.	3.8	16
24	Circulating Extracellular Vesicles As Biomarkers and Drug Delivery Vehicles in Cardiovascular Diseases. Biomolecules, 2021, 11, 388.	4.0	30
25	Multi-Omics Approaches to Define Calcific Aortic Valve Disease Pathogenesis. Circulation Research, 2021, 128, 1371-1397.	4.5	39
26	Nanoanalytical analysis of bisphosphonate-driven alterations of microcalcifications using a 3D hydrogel system and in vivo mouse model. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	9
27	Old Drugs for an Old Pathology? Drug Repurposing for Calcific Aortic Valve Disease. Circulation Research, 2021, 128, 1317-1319.	4.5	2
28	ApoA-I mimetics improve aortic stenosis-associated left-ventricular diastolic dysfunction but fail to benefit rabbit models with normal aortic valves. International Journal of Cardiology, 2021, 332, 159-161.	1.7	1
29	Systems Approach to Discovery of Therapeutic Targets for Vein Graft Disease: PPARα Pivotally Regulates Metabolism, Activation, and Heterogeneity of Macrophages and Lesion Development. Circulation, 2021, 143, 2454-2470.	1.6	21
30	Unbiased omics identifies mechanistic regulators of calcific aortic valve disease. European Heart Journal, 2021, 42, 2948-2950.	2.2	2
31	Elastogenesis Correlates With Pigment Production in Murine Aortic Valve Leaflets. Frontiers in Cardiovascular Medicine, 2021, 8, 678401.	2.4	4
32	Radiation Induces Valvular Interstitial Cell Calcific Response in an in vitro Model of Calcific Aortic Valve Disease. Frontiers in Cardiovascular Medicine, 2021, 8, 687885.	2.4	6
33	Innate and adaptive immunity: the understudied driving force of heart valve disease. Cardiovascular Research, 2021, 117, 2506-2524.	3.8	30
34	Recapitulating the Complex Pathology of Atherosclerosis: Which Model to Use?. Circulation Research, 2021, 129, 491-493.	4.5	5
35	What Makes a Great Mentor: Interviews With Recipients of the ATVB Mentor of Women Award. Arteriosclerosis, Thrombosis, and Vascular Biology, 2021, 41, 2641-2647.	2.4	3
36	Highly Selective PPARα (Peroxisome Proliferatorâ€Activated Receptor α) Agonist Pemafibrate Inhibits Stent Inflammation and Restenosis Assessed by Multimodality Molecularâ€Microstructural Imaging. Journal of the American Heart Association, 2021, 10, e020834.	3.7	7

#	Article	IF	CITATIONS
37	Integration of Functional Imaging, Cytometry, and Unbiased Proteomics Reveals New Features of Endothelial-to-Mesenchymal Transition in Ischemic Mitral Valve Regurgitation in Human Patients. Frontiers in Cardiovascular Medicine, 2021, 8, 688396.	2.4	0
38	Abstract MP235: PROX1 Contributes To Cardiac Valve Disease. Circulation Research, 2021, 129, .	4.5	0
39	Controlled delivery of gold nanoparticle-coupled miRNA therapeutics <i>via</i> an injectable self-healing hydrogel. Nanoscale, 2021, 13, 20451-20461.	5.6	15
40	Residual Bioprosthetic Valve Immunogenicity: Forgotten, Not Lost. Frontiers in Cardiovascular Medicine, 2021, 8, 760635.	2.4	10
41	Computational Screening Strategy for Drug Repurposing Identified Niclosamide as Inhibitor of Vascular Calcification. Frontiers in Cardiovascular Medicine, 2021, 8, 826529.	2.4	5
42	Proinflammatory Matrix Metalloproteinase-1 Associates With Mitral Valve Leaflet Disruption Following Percutaneous Mitral Valvuloplasty. Frontiers in Cardiovascular Medicine, 2021, 8, 804111.	2.4	3
43	Abstract 11373: Computational Approach in Target Discovery and Its Validation: In Search for Inhibitors of Vascular Calcification. Circulation, 2021, 144, .	1.6	0
44	Abstract 10612: Immune Cells in Calcific Aortic Valve Disease. Circulation, 2021, 144, .	1.6	0
45	Abstract 11752: Pitavastatin Treatment Ameliorates HIV-Nef Containing Extracellular Vesicle-Mediated Cardiomyocyte Dysfunction. Circulation, 2021, 144, .	1.6	0
46	Abstract 10223: Tissue-Entrapped Extracellular Vesicles Modulate Divergent Mechanisms of Cardiovascular Calcification. Circulation, 2021, 144, .	1.6	0
47	Abstract 112: Examining The Heterogeneity Of Primary Human Macrophages And Pharmacogenomic Networks To Identify Novel Targets For Precision Medicine For Vascular Inflammation. Arteriosclerosis, Thrombosis, and Vascular Biology, 2021, 41, .	2.4	0
48	Abstract 12316: Carnitine O-octanoyltransferase Inhibition Attenuates Human Aortic Valve Interstitial Cell Calcification by Correcting Energetic Mitochondrial State. Circulation, 2021, 144, .	1.6	0
49	Retinoids Repress Human Cardiovascular Cell Calcification With Evidence for Distinct Selective Retinoid Modulator Effects. Arteriosclerosis, Thrombosis, and Vascular Biology, 2020, 40, 656-669.	2.4	17
50	Mitral Regurgitation After Percutaneous Mitral Valvuloplasty. JACC: Cardiovascular Imaging, 2020, 13, 2513-2526.	5.3	9
51	Heart Valve Disease: Challenges and New Opportunities. Frontiers in Cardiovascular Medicine, 2020, 7, 602271.	2.4	8
52	An (Auto)Taxing Effort to Mechanistically Link Obesity and Calcific Aortic Valve Disease. JACC Basic To Translational Science, 2020, 5, 898-900.	4.1	1
53	Annexin A1–dependent tethering promotes extracellular vesicle aggregation revealed with single–extracellular vesicle analysis. Science Advances, 2020, 6, .	10.3	65
54	InÂSitu Remodeling Overrules Bioinspired Scaffold Architecture of Supramolecular Elastomeric Tissue-Engineered Heart Valves. JACC Basic To Translational Science, 2020, 5, 1187-1206.	4.1	38

#	Article	IF	CITATIONS
55	S100A9-RAGE Axis Accelerates Formation of Macrophage-Mediated Extracellular Vesicle Microcalcification in Diabetes Mellitus. Arteriosclerosis, Thrombosis, and Vascular Biology, 2020, 40, 1838-1853.	2.4	52
56	Innate and adaptive immunity in cardiovascular calcification. Atherosclerosis, 2020, 306, 59-67.	0.8	41
57	Aortic valve calcification predicts all-cause mortality independent of coronary calcification and severe stenosis. Atherosclerosis, 2020, 307, 16-20.	0.8	18
58	Double-edged sword of ALDH2 mutations: one polymorphism can both benefit and harm the cardiovascular system. European Heart Journal, 2020, 41, 2453-2455.	2.2	6
59	Complex association of lipoprotein(a) with aortic stenosis. Heart, 2020, 106, 711-712.	2.9	3
60	Attenuated Mitral Leaflet Enlargement Contributes to Functional Mitral Regurgitation After Myocardial Infarction. Journal of the American College of Cardiology, 2020, 75, 395-405.	2.8	33
61	Rheumatic Heart Valve Disease Pathophysiology and Underlying Mechanisms. Frontiers in Cardiovascular Medicine, 2020, 7, 612716.	2.4	30
62	Decreased Cytokine Plasma Levels and Changes in T-Cell Activation Are Associated With Hemodynamic Improvement and Clinical Outcomes After Percutaneous Mitral Commissurotomy in Patients With Rheumatic Mitral Stenosis. Frontiers in Cardiovascular Medicine, 2020, 7, 604826.	2.4	1
63	Target Discovery in Calcification Through Omics and Systems Approaches. Contemporary Cardiology, 2020, , 525-551.	0.1	1
64	Calcific Aortic Valve Disease "Omics―ls Timely, But Are We Looking Too Late?. JACC Basic To Translational Science, 2020, 5, 1178-1180.	4.1	5
65	The History of Cardiovascular Calcification. Contemporary Cardiology, 2020, , 3-11.	0.1	1
66	Tissue Engineering to Study and Treat Cardiovascular Calcification. , 2020, , 1-41.		0
67	Raising awareness for rheumatic mitral valve disease. Global Cardiology Science & Practice, 2020, 2020, e202026.	0.4	4
68	Differential Mechanisms of Arterial and Valvular Calcification. Contemporary Cardiology, 2020, , 73-95.	0.1	0
69	Osteoclasts in Cardiovascular Calcification. Contemporary Cardiology, 2020, , 391-419.	0.1	0
70	Tissue Engineering to Study and Treat Cardiovascular Calcification. , 2020, , 429-468.		0
71	Abstract 13401: Prothymosin Alpha (Protα) Associates With Pathogenesis and Sex Predisposition in Rheumatic Heart Valve Disease. Circulation, 2020, 142, .	1.6	0
72	Editorial: Exploring the Frontiers of Regenerative Cardiovascular Medicine. Frontiers in Cardiovascular Medicine, 2019, 6, 13.	2.4	0

#	Article	lF	CITATIONS
73	Standardization of Human Calcific Aortic Valve Disease in vitro Modeling Reveals Passage-Dependent Calcification. Frontiers in Cardiovascular Medicine, 2019, 6, 49.	2.4	49
74	Lipoprotein(a) and Oxidized Phospholipids Promote Valve Calcification in Patients With AorticÂStenosis. Journal of the American College of Cardiology, 2019, 73, 2150-2162.	2.8	187
75	After 50 Years of Heart Transplants: What Does the Next 50 Years Hold for Cardiovascular Medicine? A Perspective From the International Society for Applied Cardiovascular Biology. Frontiers in Cardiovascular Medicine, 2019, 6, 8.	2.4	1
76	Differential miRNA Loading Underpins Dual Harmful and Protective Roles for Extracellular Vesicles in Atherogenesis. Circulation Research, 2019, 124, 467-469.	4.5	14
77	Valve under the microscope: shining a light on emerging technologies elucidating disease mechanisms. Heart, 2019, 105, 1610-1611.	2.9	6
78	MicroRNA Extracellular Vesicle Stowaways in Cell-Cell Communication and Organ Crosstalk. Arteriosclerosis, Thrombosis, and Vascular Biology, 2019, 39, 2448-2450.	2.4	5
79	Uremic Toxin Indoxyl Sulfate Promotes Proinflammatory Macrophage Activation Via the Interplay of OATP2B1 and Dll4-Notch Signaling. Circulation, 2019, 139, 78-96.	1.6	126
80	Endothelial to Mesenchymal Transition inÂCardiovascular Disease. Journal of the American College of Cardiology, 2019, 73, 190-209.	2.8	357
81	¹⁸ F-Fluoride Signal Amplification Identifies Microcalcifications Associated With Atherosclerotic Plaque Instability in Positron Emission Tomography/Computed Tomography Images. Circulation: Cardiovascular Imaging, 2019, 12, e007835.	2.6	92
82	Cardiovascular calcification: artificial intelligence and big data accelerate mechanistic discovery. Nature Reviews Cardiology, 2019, 16, 261-274.	13.7	121
83	Mitral Valve Adaptation to IsolatedÂAnnular Dilation. JACC: Cardiovascular Imaging, 2019, 12, 665-677.	5.3	102
84	Extracellular vesicles in cardiovascular homeostasis and disease. Current Opinion in Cardiology, 2018, 33, 290-297.	1.8	39
85	Mitral Valve Adaptation. Circulation: Cardiovascular Imaging, 2018, 11, e007642.	2.6	3
86	Dimerization of sortilin regulates its trafficking to extracellular vesicles. Journal of Biological Chemistry, 2018, 293, 4532-4544.	3.4	41
87	Calcific aortic valve stenosis: hard disease in the heart. European Heart Journal, 2018, 39, 2618-2624.	2.2	127
88	Flow Preservation of Umbilical Vein for Autologous Shunt and Cardiovascular Reconstruction. Annals of Thoracic Surgery, 2018, 105, 1809-1818.	1.3	3
89	Spatiotemporal Multi-Omics Mapping Generates a Molecular Atlas of the Aortic Valve and Reveals Networks Driving Disease. Circulation, 2018, 138, 377-393.	1.6	180
90	New insights into mitral valve dystrophy: a Filamin-A genotype–phenotype and outcome study. European Heart Journal, 2018, 39, 1269-1277.	2.2	44

#	Article	IF	CITATIONS
91	Sortilin and Its Multiple Roles in Cardiovascular and Metabolic Diseases. Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38, 19-25.	2.4	76
92	Calcific Aortic Valve Disease: Pathobiology, Basic Mechanisms, and Clinical Strategies. , 2018, , 153-179.		1
93	Editorial: Extracellular Vesicle-Mediated Processes in Cardiovascular Diseases. Frontiers in Cardiovascular Medicine, 2018, 5, 133.	2.4	6
94	Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. Journal of Extracellular Vesicles, 2018, 7, 1535750.	12.2	6,961
95	Roles and Regulation of Extracellular Vesicles in Cardiovascular Mineral Metabolism. Frontiers in Cardiovascular Medicine, 2018, 5, 187.	2.4	78
96	The Transcriptional Signature of Growth in Human Fetal Aortic Valve Development. Annals of Thoracic Surgery, 2018, 106, 1834-1840.	1.3	5
97	Sheep-Specific Immunohistochemical Panel for the Evaluation of Regenerative and Inflammatory Processes in Tissue-Engineered Heart Valves. Frontiers in Cardiovascular Medicine, 2018, 5, 105.	2.4	20
98	Engineering a 3D-Bioprinted Model of Human Heart Valve Disease Using Nanoindentation-Based Biomechanics. Nanomaterials, 2018, 8, 296.	4.1	81
99	Detection of Aggregation-Competent Tau in Neuron-Derived Extracellular Vesicles. International Journal of Molecular Sciences, 2018, 19, 663.	4.1	140
100	Transcriptional control of intestinal cholesterol absorption, adipose energy expenditure and lipid handling by Sortilin. Scientific Reports, 2018, 8, 9006.	3.3	17
101	<i>In vitro</i> 3D model and miRNA drug delivery to target calcific aortic valve disease. Clinical Science, 2017, 131, 181-195.	4.3	24
102	Serum Sortilin Associates With Aortic Calcification and Cardiovascular Risk in Men. Arteriosclerosis, Thrombosis, and Vascular Biology, 2017, 37, 1005-1011.	2.4	44
103	Interferon-Î ³ Released by Activated CD8+ T Lymphocytes Impairs the Calcium Resorption Potential of Osteoclasts in Calcified Human Aortic Valves. American Journal of Pathology, 2017, 187, 1413-1425.	3.8	44
104	Flow Perturbation Mediates Neutrophil Recruitment and Potentiates Endothelial Injury via TLR2 in Mice. Circulation Research, 2017, 121, 31-42.	4.5	141
105	A Rock and a Hard Place. Circulation, 2017, 135, 1951-1955.	1.6	50
106	Dynamin-Related Protein 1 Inhibition Attenuates Cardiovascular Calcification in the Presence of Oxidative Stress. Circulation Research, 2017, 121, 220-233.	4.5	88
107	Mitral Leaflet Changes Following Myocardial Infarction. Circulation: Cardiovascular Imaging, 2017, 10, .	2.6	50
108	Macrophage Heterogeneity Complicates Reversal of Calcification in Cardiovascular Tissues. Circulation Research, 2017, 121, 5-7.	4.5	22

#	Article	IF	CITATIONS
109	Effect of Losartan on Mitral Valve Changes After Myocardial Infarction. Journal of the American College of Cardiology, 2017, 70, 1232-1244.	2.8	97
110	Extracellular Vesicles As Mediators of Cardiovascular Calcification. Frontiers in Cardiovascular Medicine, 2017, 4, 78.	2.4	103
111	3.18 Immunohistochemistry â~†. , 2017, , 387-405.		3
112	Cathepsin S As an Inhibitor of Cardiovascular Inflammation and Calcification in Chronic Kidney Disease. Frontiers in Cardiovascular Medicine, 2017, 4, 88.	2.4	30
113	Elastomeric Fibrous Hybrid Scaffold Supports In Vitro and In Vivo Tissue Formation. Advanced Functional Materials, 2017, 27, 1606614.	14.9	25
114	Giving Calcification Its Due: Recognition of a Diverse Disease. Circulation Research, 2017, 120, 270-273.	4.5	52
115	Histopathological assessment of calcification and inflammation of calcific aortic valves from patients with and without diabetes mellitus. Histology and Histopathology, 2017, 32, 293-306.	0.7	27
116	Quantification of Calcified Particles in Human Valve Tissue Reveals Asymmetry of Calcific Aortic Valve Disease Development. Frontiers in Cardiovascular Medicine, 2016, 3, 44.	2.4	11
117	Extracellular vesicles in cardiovascular disease: focus on vascular calcification. Journal of Physiology, 2016, 594, 2877-2880.	2.9	31
118	Noninvasive Molecular Imaging of Disease Activity in Atherosclerosis. Circulation Research, 2016, 119, 330-340.	4.5	114
119	Zooming in on the genesis of atherosclerotic plaque microcalcifications. Journal of Physiology, 2016, 594, 2915-2927.	2.9	36
120	Adventitial MSC-like Cells Are Progenitors of Vascular Smooth Muscle Cells and Drive Vascular Calcification in Chronic Kidney Disease. Cell Stem Cell, 2016, 19, 628-642.	11.1	254
121	A single injection of gain-of-function mutant PCSK9 adeno-associated virus vector induces cardiovascular calcification in mice with no genetic modification. Atherosclerosis, 2016, 251, 109-118.	0.8	92
122	CD45 Expression in Mitral Valve Endothelial Cells After Myocardial Infarction. Circulation Research, 2016, 119, 1215-1225.	4.5	69
123	Current Trends and Future Perspectives of State-of-the-Art Proteomics Technologies Applied to Cardiovascular Disease Research. Circulation Journal, 2016, 80, 1674-1683.	1.6	11
124	PARP9 and PARP14 cross-regulate macrophage activation via STAT1 ADP-ribosylation. Nature Communications, 2016, 7, 12849.	12.8	214
125	Comparative Histopathological Analysis of Mitral Valves in Barlow Disease and Fibroelastic Deficiency. Seminars in Thoracic and Cardiovascular Surgery, 2016, 28, 757-767.	0.6	25
126	Calcification of Vascular Smooth Muscle Cells and Imaging of Aortic Calcification and Inflammation. Journal of Visualized Experiments, 2016, , .	0.3	19

#	Article	IF	CITATIONS
127	Extracellular vesicles in cardiovascular calcification: expanding current paradigms. Journal of Physiology, 2016, 594, 2895-2903.	2.9	88
128	Genesis and growth of extracellular-vesicle-derived microcalcification inÂatherosclerotic plaques. Nature Materials, 2016, 15, 335-343.	27.5	298
129	Myocardial Infarction Alters Adaptation ofÂthe Tethered Mitral Valve. Journal of the American College of Cardiology, 2016, 67, 275-287.	2.8	93
130	Simulation of early calcific aortic valve disease in a 3D platform: A role for myofibroblast differentiation. Journal of Molecular and Cellular Cardiology, 2016, 94, 13-20.	1.9	70
131	3D Ultrasound: seeing is understanding—from imaging to pathophysiology to developing therapies in secondary MR. European Heart Journal Cardiovascular Imaging, 2016, 17, 510-511.	1.2	0
132	Discoidin Domain Receptor-1 Regulates Calcific Extracellular Vesicle Release in Vascular Smooth Muscle Cell Fibrocalcific Response via Transforming Growth Factor-β Signaling. Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36, 525-533.	2.4	58
133	Mouse Models of Atherosclerosis. , 2016, , 159-193.		0
134	Sortilin mediates vascular calcification via its recruitment into extracellular vesicles. Journal of Clinical Investigation, 2016, 126, 1323-1336.	8.2	196
135	N-acetylglucosamine-1-Phosphate Transferase Suppresses Lysosomal Hydrolases in Dysfunctional Osteoclasts: A Potential Mechanism for Vascular Calcification. Journal of Cardiovascular Development and Disease, 2015, 2, 31-47.	1.6	6
136	Pitavastatin Reduces Inflammation in Atherosclerotic Plaques in Apolipoprotein E-Deficient Mice with Late Stage Renal Disease. PLoS ONE, 2015, 10, e0138047.	2.5	13
137	Pathobiology and Optical Molecular Imaging of Calcific Aortic Valve Disease. , 2015, , 187-199.		0
138	Selective Cathepsin S Inhibition Attenuates Atherosclerosis in Apolipoprotein E–Deficient Mice with Chronic Renal Disease. American Journal of Pathology, 2015, 185, 1156-1166.	3.8	63
139	EVpedia: a community web portal for extracellular vesicles research. Bioinformatics, 2015, 31, 933-939.	4.1	317
140	Valvular interstitial cells suppress calcification of valvular endothelial cells. Atherosclerosis, 2015, 242, 251-260.	0.8	135
141	Cardiovascular calcification: current controversies and novel concepts. Cardiovascular Pathology, 2015, 24, 207-212.	1.6	69
142	Mitral valve disease—morphology and mechanisms. Nature Reviews Cardiology, 2015, 12, 689-710.	13.7	281
143	A Not-So-Little Role for Lipoprotein(a) in the Development of Calcific Aortic Valve Disease. Circulation, 2015, 132, 621-623.	1.6	17
144	Revisiting cardiovascular calcification: A multifaceted disease requiring a multidisciplinary approach. Seminars in Cell and Developmental Biology, 2015, 46, 68-77.	5.0	37

#	Article	IF	CITATIONS
145	Directing Valvular Interstitial Cell Myofibroblastâ€Like Differentiation in a Hybrid Hydrogel Platform. Advanced Healthcare Materials, 2015, 4, 121-130.	7.6	66
146	Innovations in Microscopic Imaging of Atherosclerosis and Valvular Disease. , 2015, , 251-265.		2
147	Optical Molecular Imaging of Inflammation and Calcification in Atherosclerosis. , 2015, , 107-120.		0
148	Heart Valve Disease. , 2014, , 1014-1032.		0
149	Modifying Vascular Calcification in Diabetes Mellitus. Circulation Research, 2014, 114, 1074-1076.	4.5	13
150	Small entities with large impact. Current Opinion in Lipidology, 2014, 25, 327-332.	2.7	117
151	Calcific and Degenerative Heart Valve Disease. , 2014, , 161-180.		12
152	Cystathionine γ-lyase Accelerates Osteoclast Differentiation. Arteriosclerosis, Thrombosis, and Vascular Biology, 2014, 34, 626-634.	2.4	37
153	Parathyroid Hormone. Arteriosclerosis, Thrombosis, and Vascular Biology, 2014, 34, 1333-1335.	2.4	32
154	Calcific Aortic Valve Disease. Arteriosclerosis, Thrombosis, and Vascular Biology, 2014, 34, 2387-2393.	2.4	261
155	Potential drug targets for calcific aortic valve disease. Nature Reviews Cardiology, 2014, 11, 218-231.	13.7	123
156	Enrichment of calcifying extracellular vesicles using densityâ€based ultracentrifugation protocol. Journal of Extracellular Vesicles, 2014, 3, 25129.	12.2	39
157	A Novel Quantitative Approach for Eliminating Sample-To-Sample Variation Using a Hue Saturation Value Analysis Program. PLoS ONE, 2014, 9, e89627.	2.5	15
158	Identification of Early Pathological Events in Calcific Aortic Valve Disease by Molecular Imaging. , 2014, , 107-116.		0
159	MicroRNA in Cardiovascular Calcification. Circulation Research, 2013, 112, 1073-1084.	4.5	86
160	Role of Extracellular Vesicles in De Novo Mineralization. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, 1753-1758.	2.4	125
161	Visualizing novel concepts of cardiovascular calcification. Trends in Cardiovascular Medicine, 2013, 23, 71-79.	4.9	37
162	Elastogenesis at the onset of human cardiac valve development. Development (Cambridge), 2013, 140, 2345-2353.	2.5	51

#	Article	IF	CITATIONS
163	Leukocyte-Derived Microparticles as Proinflammatory Mediators in Atherosclerosis. Journal of the American College of Cardiology, 2013, 62, 1442-1445.	2.8	12
164	Statins suppress apolipoprotein CIII-induced vascular endothelial cell activation and monocyte adhesion. European Heart Journal, 2013, 34, 615-624.	2.2	74
165	Cardiovascular Inflammation 2012: Reactive Oxygen Species, SUMOylation, and Biomarkers in Cardiovascular Inflammation. International Journal of Inflammation, 2013, 2013, 1-2.	1.5	7
166	Macrophage-Derived Matrix Vesicles. Circulation Research, 2013, 113, 72-77.	4.5	471
167	Revised microcalcification hypothesis for fibrous cap rupture in human coronary arteries. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 10741-10746.	7.1	289
168	Medial and Intimal Calcification in Chronic Kidney Disease: Stressing the Contributions. Journal of the American Heart Association, 2013, 2, e000481.	3.7	26
169	Simulating early calcific aortic valve disease within novel in vitro 3D tissue platform. European Heart Journal, 2013, 34, P3908-P3908.	2.2	1
170	International Society for Extracellular Vesicles: Second Annual Meeting, 17–20 April 2013, Boston, MA (ISEV 2013). Journal of Extracellular Vesicles, 2013, 2, 23070.	12.2	2
171	Biology of Mitral Valve Disease. , 2013, , 173-185.		1
172	Vesiclepedia: A Compendium for Extracellular Vesicles with Continuous Community Annotation. PLoS Biology, 2012, 10, e1001450.	5.6	1,064
173	Cardiovascular Inflammation. International Journal of Inflammation, 2012, 2012, 1-2.	1.5	7
174	Inhibition of Bone Morphogenetic Protein Signaling Reduces Vascular Calcification and Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2012, 32, 613-622.	2.4	188
175	Look More Closely at the Valve. Circulation, 2012, 125, 9-11.	1.6	44
176	Notch ligand Delta-like 4 blockade attenuates atherosclerosis and metabolic disorders. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E1868-77.	7.1	144
177	Vasculitis: Molecular Imaging by Targeting the Inflammatory Enzyme Myeloperoxidase. Radiology, 2012, 262, 181-190.	7.3	23
178	Molecular Imaging of Macrophages in Atherosclerosis. Current Cardiovascular Imaging Reports, 2012, 5, 45-52.	0.6	1
179	In vivo detection of Staphylococcus aureus endocarditis by targeting pathogen-specific prothrombin activation. Nature Medicine, 2011, 17, 1142-1146.	30.7	144
180	Cyclic strain induces dual-mode endothelial-mesenchymal transformation of the cardiac valve. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 19943-19948.	7.1	145

#	Article	IF	CITATIONS
181	Immunohistochemistry. , 2011, , 277-290.		6
182	Mitral Valve Endothelial Cells With Osteogenic Differentiation Potential. Arteriosclerosis, Thrombosis, and Vascular Biology, 2011, 31, 598-607.	2.4	117
183	Calcific Aortic Valve Disease: Not Simply a Degenerative Process. Circulation, 2011, 124, 1783-1791.	1.6	699
184	Cardiovascular Calcification - An Inflammatory Disease Circulation Journal, 2011, 75, 1305-1313.	1.6	120
185	The Osteoclast-Associated Receptor (OSCAR) Is a Novel Receptor Regulated by Oxidized Low-Density Lipoprotein in Human Endothelial Cells. Endocrinology, 2011, 152, 4915-4926.	2.8	36
186	Progenitor Cells Confer Plasticity to Cardiac Valve Endothelium. Journal of Cardiovascular Translational Research, 2011, 4, 710-719.	2.4	67
187	Fibroblast activation protein is induced by inflammation and degrades type I collagen in thin-cap fibroatheromata. European Heart Journal, 2011, 32, 2713-2722.	2.2	112
188	Indocyanine Green Enables Near-Infrared Fluorescence Imaging of Lipid-Rich, Inflamed Atherosclerotic Plaques. Science Translational Medicine, 2011, 3, 84ra45.	12.4	174
189	Molecular Imaging Insights Into Early Inflammatory Stages of Arterial and Aortic Valve Calcification. Circulation Research, 2011, 108, 1381-1391.	4.5	276
190	Selective Inhibition of Matrix Metalloproteinase-13 Increases Collagen Content of Established Mouse Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2011, 31, 2464-2472.	2.4	111
191	Optical Molecular Imaging of Inflammation and Calcification in Atherosclerosis. Current Cardiovascular Imaging Reports, 2010, 3, 12-17.	0.6	2
192	In vivo monitoring of function of autologous engineered pulmonary valve. Journal of Thoracic and Cardiovascular Surgery, 2010, 139, 723-731.	0.8	126
193	Expression of the familial cardiac valvular dystrophy gene, filaminâ€A, during heart morphogenesis. Developmental Dynamics, 2010, 239, 2118-2127.	1.8	46
194	The role of organ level conditioning on the promotion of engineered heart valve tissue development in-vitro using mesenchymal stem cells. Biomaterials, 2010, 31, 1114-1125.	11.4	84
195	Pioglitazone Suppresses Inflammation In Vivo in Murine Carotid Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2010, 30, 1933-1939.	2.4	51
196	Intravital Molecular Imaging of Small-Diameter Tissue-Engineered Vascular Grafts in Mice: A Feasibility Study. Tissue Engineering - Part C: Methods, 2010, 16, 597-607.	2.1	35
197	Endothelial Progenitor Cells as a Sole Source for <i>Ex Vivo</i> Seeding of Tissue-Engineered Heart Valves. Tissue Engineering - Part A, 2010, 16, 257-267.	3.1	72
198	Arterial and aortic valve calcification inversely correlates with osteoporotic bone remodelling: a role for inflammation. European Heart Journal, 2010, 31, 1975-1984.	2.2	180

#	Article	IF	CITATIONS
199	Impaired Infarct Healing in Atherosclerotic Mice With Ly-6ChiMonocytosis. Journal of the American College of Cardiology, 2010, 55, 1629-1638.	2.8	281
200	Arterial and Aortic Valve Calcification Abolished by Elastolytic Cathepsin S Deficiency in Chronic Renal Disease. Circulation, 2009, 119, 1785-1794.	1.6	272
201	Chronic Hypoxia Activates the Akt and β-Catenin Pathways in Human Macrophages. Arteriosclerosis, Thrombosis, and Vascular Biology, 2009, 29, 1664-1670.	2.4	39
202	Diffusion Spectrum MRI Tractography Reveals the Presence of a Complex Network of Residual Myofibers in Infarcted Myocardium. Circulation: Cardiovascular Imaging, 2009, 2, 206-212.	2.6	103
203	The antiproliferative cytostatic effects of a self-activating viridin prodrug. Molecular Cancer Therapeutics, 2009, 8, 1666-1675.	4.1	19
204	Molecular MRI Detects Low Levels of Cardiomyocyte Apoptosis in a Transgenic Model of Chronic Heart Failure. Circulation: Cardiovascular Imaging, 2009, 2, 468-475.	2.6	50
205	Molecular Imaging of Innate Immune Cell Function in Transplant Rejection. Circulation, 2009, 119, 1925-1932.	1.6	81
206	Hybrid In Vivo FMT-CT Imaging of Protease Activity in Atherosclerosis With Customized Nanosensors. Arteriosclerosis, Thrombosis, and Vascular Biology, 2009, 29, 1444-1451.	2.4	161
207	Molecular MRI of Cardiomyocyte Apoptosis With Simultaneous Delayed-Enhancement MRI Distinguishes Apoptotic and Necrotic Myocytes In Vivo. Circulation: Cardiovascular Imaging, 2009, 2, 460-467.	2.6	92
208	Active Adaptation of the Tethered Mitral Valve. Circulation, 2009, 120, 334-342.	1.6	273
209	Genetically engineered resistance for MMP collagenases promotes abdominal aortic aneurysm formation in mice infused with angiotensin II. Laboratory Investigation, 2009, 89, 315-326.	3.7	55
210	18F-4V for PET–CT Imaging of VCAM-1 Expression in Atherosclerosis. JACC: Cardiovascular Imaging, 2009, 2, 1213-1222.	5.3	197
211	Oxazine Conjugated Nanoparticle Detects in Vivo Hypochlorous Acid and Peroxynitrite Generation. Journal of the American Chemical Society, 2009, 131, 15739-15744.	13.7	165
212	Identification of Splenic Reservoir Monocytes and Their Deployment to Inflammatory Sites. Science, 2009, 325, 612-616.	12.6	1,806
213	Unbiased discovery of in vivo imaging probes through in vitro profiling of nanoparticle libraries. Integrative Biology (United Kingdom), 2009, 1, 311.	1.3	20
214	Combined magnetic resonance and fluorescence imaging of the living mouse brain reveals glioma response to chemotherapy. Neurolmage, 2009, 45, 360-369.	4.2	71
215	Nanoparticle PET-CT Imaging of Macrophages in Inflammatory Atherosclerosis. Circulation, 2008, 117, 379-387.	1.6	524
216	Simplified syntheses of complex multifunctional nanomaterials. Chemical Communications, 2008, , 4792.	4.1	38

#	Article	IF	CITATIONS
217	Transglutaminase activity in acute infarcts predicts healing outcome and left ventricular remodelling: implications for FXIII therapy and antithrombin use in myocardial infarction. European Heart Journal, 2008, 29, 445-454.	2.2	69
218	Early photon tomography allows fluorescence detection of lung carcinomas and disease progression in mice in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 19126-19131.	7.1	150
219	Real-Time Catheter Molecular Sensing of Inflammation in Proteolytically Active Atherosclerosis. Circulation, 2008, 118, 1802-1809.	1.6	188
220	Tracking the inflammatory response in stroke in vivo by sensing the enzyme myeloperoxidase. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 18584-18589.	7.1	275
221	Activatable Magnetic Resonance Imaging Agent Reports Myeloperoxidase Activity in Healing Infarcts and Noninvasively Detects the Antiinflammatory Effects of Atorvastatin on Ischemia-Reperfusion Injury. Circulation, 2008, 117, 1153-1160.	1.6	178
222	Myeloperoxidase-targeted imaging of active inflammatory lesions in murine experimental autoimmune encephalomyelitis. Brain, 2008, 131, 1123-1133.	7.6	106
223	Biology of Cholesterol Lowering in Atherosclerotic Plaques. Immunology, Endocrine and Metabolic Agents in Medicinal Chemistry, 2008, 8, 105-115.	0.5	1
224	Notch Signaling in Cardiovascular Disease and Calcification. Current Cardiology Reviews, 2008, 4, 148-156.	1.5	57
225	Osteogenesis Associates With Inflammation in Early-Stage Atherosclerosis Evaluated by Molecular Imaging In Vivo. Circulation, 2007, 116, 2841-2850.	1.6	606
226	Multimodality Molecular Imaging Identifies Proteolytic and Osteogenic Activities in Early Aortic Valve Disease. Circulation, 2007, 115, 377-386.	1.6	375
227	Dual Channel Optical Tomographic Imaging of Leukocyte Recruitment and Protease Activity in the Healing Myocardial Infarct. Circulation Research, 2007, 100, 1218-1225.	4.5	151
228	Optical Visualization of Cathepsin K Activity in Atherosclerosis With a Novel, Protease-Activatable Fluorescence Sensor. Circulation, 2007, 115, 2292-2298.	1.6	241
229	Ly-6Chi monocytes dominate hypercholesterolemia-associated monocytosis and give rise to macrophages in atheromata. Journal of Clinical Investigation, 2007, 117, 195-205.	8.2	1,064
230	Healing and remodeling of bioengineered pulmonary artery patches implanted in sheep. Cardiovascular Pathology, 2007, 16, 277-282.	1.6	37
231	The healing myocardium sequentially mobilizes two monocyte subsets with divergent and complementary functions. Journal of Experimental Medicine, 2007, 204, 3037-3047.	8.5	1,926
232	Fluorescence Tomography and Magnetic Resonance Imaging of Myocardial Macrophage Infiltration in Infarcted Myocardium In Vivo. Circulation, 2007, 115, 1384-1391.	1.6	185
233	The healing myocardium sequentially mobilizes two monocyte subsets with divergent and complementary functions. Journal of Cell Biology, 2007, 179, i13-i13.	5.2	1
234	Inflammation in Atherosclerosis. Circulation, 2006, 114, 55-62.	1.6	398

#	Article	IF	CITATIONS
235	Human Semilunar Cardiac Valve Remodeling by Activated Cells From Fetus to Adult. Circulation, 2006, 113, 1344-1352.	1.6	359
236	Cellular Imaging of Inflammation in Atherosclerosis Using Magnetofluorescent Nanomaterials. Molecular Imaging, 2006, 5, 7290.2006.00009.	1.4	124
237	Noninvasive Vascular Cell Adhesion Molecule-1 Imaging Identifies Inflammatory Activation of Cells in Atherosclerosis. Circulation, 2006, 114, 1504-1511.	1.6	579
238	Chemokine CXCL10 Promotes Atherogenesis by Modulating the Local Balance of Effector and Regulatory T Cells. Circulation, 2006, 113, 2301-2312.	1.6	237
239	Detection of macrophage activity in atherosclerosis in vivo using multichannel, high-resolution laser scanning fluorescence microscopy. Journal of Biomedical Optics, 2006, 11, 021009.	2.6	41
240	Human Pulmonary Valve Progenitor Cells Exhibit Endothelial/Mesenchymal Plasticity in Response to Vascular Endothelial Growth Factor-A and Transforming Growth Factor-β 2. Circulation Research, 2006, 99, 861-869.	4.5	134
241	Monocyte accumulation in mouse atherogenesis is progressive and proportional to extent of disease. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 10340-10345.	7.1	316
242	Cellular imaging of inflammation in atherosclerosis using magnetofluorescent nanomaterials. Molecular Imaging, 2006, 5, 85-92.	1.4	70
243	Characterization of Human Atherosclerotic Plaques by Intravascular Magnetic Resonance Imaging. Circulation, 2005, 112, 2324-2331.	1.6	125
244	Inhibition of Atherogenesis in BLT1-Deficient Mice Reveals a Role for LTB4 and BLT1 in Smooth Muscle Cell Recruitment. Circulation, 2005, 112, 578-586.	1.6	130
245	Matrix Metalloproteinase-13/Collagenase-3 Deletion Promotes Collagen Accumulation and Organization in Mouse Atherosclerotic Plaques. Circulation, 2005, 112, 2708-2715.	1.6	199
246	Editorial: Frontiers in Cardiovascular Medicine: Rising Stars 2021. Frontiers in Cardiovascular Medicine, 0, 9, .	2.4	0