
John Stagg

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1357141/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Prognostic implications of adaptive immune features in MMR-proficient colorectal liver metastases classified by histopathological growth patterns. British Journal of Cancer, 2022, 126, 1329-1338.	6.4	10
2	Spatially mapping the immune landscape of melanoma using imaging mass cytometry. Science Immunology, 2022, 7, eabi5072.	11.9	60
3	CD73 Promotes Chronic Lymphocytic Leukemia. Cancers, 2022, 14, 3130.	3.7	3
4	IL27 Signaling Serves as an Immunologic Checkpoint for Innate Cytotoxic Cells to Promote Hepatocellular Carcinoma. Cancer Discovery, 2022, 12, 1960-1983.	9.4	14
5	High-dimensional analysis of the adenosine pathway in high-grade serous ovarian cancer. , 2021, 9, e001965.		16
6	1-Methylnicotinamide is an immune regulatory metabolite in human ovarian cancer. Science Advances, 2021, 7, .	10.3	46
7	Unraveling Triple-Negative Breast Cancer Tumor Microenvironment Heterogeneity: Towards an Optimized Treatment Approach. Journal of the National Cancer Institute, 2020, 112, 708-719.	6.3	111
8	The effect of ultrasound pulse length on microbubble cavitation induced antibody accumulation and distribution in a mouse model of breast cancer. Nanotheranostics, 2020, 4, 256-269.	5.2	12
9	Microbiome-derived inosine modulates response to checkpoint inhibitor immunotherapy. Science, 2020, 369, 1481-1489.	12.6	635
10	Prognostic value of CD73 expression in resected colorectal cancer liver metastasis. Oncolmmunology, 2020, 9, 1746138.	4.6	22
11	The adenosine pathway in immuno-oncology. Nature Reviews Clinical Oncology, 2020, 17, 611-629.	27.6	275
12	Targeting an adenosine-mediated "don't eat me signal―augments anti-lymphoma immunity by anti-CD20 monoclonal antibody. Leukemia, 2020, 34, 2708-2721.	0 7.2	27
13	On the mechanism of anti-CD39 immune checkpoint therapy. , 2020, 8, e000186.		82
14	Targeting the CD73-adenosine axis in immuno-oncology. Immunology Letters, 2019, 205, 31-39.	2.5	106
15	Targeting the adenosine pathway for cancer immunotherapy. Seminars in Immunology, 2019, 42, 101304.	5.6	60
16	Measurement of CD73 enzymatic activity using luminescence-based and colorimetric assays. Methods in Enzymology, 2019, 629, 269-289.	1.0	6
17	NR4A Expression by Human Marginal Zone B-Cells. Antibodies, 2019, 8, 50.	2.5	10
18	Adenosine A2a receptor promotes lymphangiogenesis and lymph node metastasis. Oncolmmunology, 2019, 8, 1601481.	4.6	24

John Stagg

#	Article	IF	CITATIONS
19	WISP1 is associated to advanced disease, EMT and an inflamed tumor microenvironment in multiple solid tumors. Oncolmmunology, 2019, 8, e1581545.	4.6	28
20	Spatially distinct tumor immune microenvironments stratify triple-negative breast cancers. Journal of Clinical Investigation, 2019, 129, 1785-1800.	8.2	266
21	Clinical significance of CD73 in triple-negative breast cancer: multiplex analysis of a phase III clinical trial. Annals of Oncology, 2018, 29, 1056-1062.	1.2	138
22	CD73-A2a adenosine receptor axis promotes innate B cell antibody responses to pneumococcal polysaccharide vaccination. PLoS ONE, 2018, 13, e0191973.	2.5	3
23	Prognostic value of CD73 expression in resected colorectal cancer liver metastasis Journal of Clinical Oncology, 2018, 36, 3584-3584.	1.6	2
24	Targeting A2 adenosine receptors in cancer. Immunology and Cell Biology, 2017, 95, 333-339.	2.3	91
25	The ectonucleotidases <scp>CD</scp> 39 and <scp>CD</scp> 73: Novel checkpoint inhibitor targets. Immunological Reviews, 2017, 276, 121-144.	6.0	637
26	CD73 Promotes Resistance to HER2/ErbB2 Antibody Therapy. Cancer Research, 2017, 77, 5652-5663.	0.9	90
27	Polyl:C and CpG Synergize with Anti-ErbB2 mAb for Treatment of Breast Tumors Resistant to Immune Checkpoint Inhibitors. Cancer Research, 2017, 77, 312-319.	0.9	28
28	Targeting the adenosine 2A receptor enhances chimeric antigen receptor T cell efficacy. Journal of Clinical Investigation, 2017, 127, 929-941.	8.2	251
29	Adenosine 2B Receptor Expression on Cancer Cells Promotes Metastasis. Cancer Research, 2016, 76, 4372-4382.	0.9	130
30	Immunosuppressive activities of adenosine in cancer. Current Opinion in Pharmacology, 2016, 29, 7-16.	3.5	216
31	Methods to Evaluate the Antitumor Activity of Immune Checkpoint Inhibitors in Preclinical Studies. Methods in Molecular Biology, 2016, 1458, 159-177.	0.9	7
32	The Present and Future of Biomarkers in Prostate Cancer: Proteomics, Genomics, and Immunology Advancements. Biomarkers in Cancer, 2016, 8s2, BIC.S31802.	3.6	70
33	CD73–adenosine: a next-generation target in immuno-oncology. Immunotherapy, 2016, 8, 145-163.	2.0	110
34	CD73-adenosine reduces immune responses and survival in ovarian cancer patients. Oncolmmunology, 2016, 5, e1127496.	4.6	38
35	CD73 Expression Is an Independent Prognostic Factor in Prostate Cancer. Clinical Cancer Research, 2016, 22, 158-166.	7.0	156

JOHN STAGG

#	Article	IF	CITATIONS
37	Adenosine Receptor 2A Blockade Increases the Efficacy of Anti–PD-1 through Enhanced Antitumor T-cell Responses. Cancer Immunology Research, 2015, 3, 506-517.	3.4	262
38	CD73 Plays a Protective Role in Collagen-Induced Arthritis. Journal of Immunology, 2015, 194, 2487-2492.	0.8	34
39	CD73 Is Associated with Poor Prognosis in High-Grade Serous Ovarian Cancer. Cancer Research, 2015, 75, 4494-4503.	0.9	186
40	Abstract 3361: CD73 expression on tumor-infiltrating breast cancer leukocytes. Cancer Research, 2015, 75, 3361-3361.	0.9	3
41	Co-blockade of immune checkpoints and adenosine A _{2A} receptor suppresses metastasis. Oncolmmunology, 2014, 3, e958952.	4.6	22
42	Anti D73 therapy impairs tumor angiogenesis. International Journal of Cancer, 2014, 134, 1466-1473.	5.1	135
43	Targeting CD73 and downstream adenosine receptor signaling in triple-negative breast cancer. Expert Opinion on Therapeutic Targets, 2014, 18, 863-881.	3.4	37
44	Targeting Cancer-Derived Adenosine:New Therapeutic Approaches. Cancer Discovery, 2014, 4, 879-888.	9.4	256
45	Antimetastatic Effects of Blocking PD-1 and the Adenosine A2A Receptor. Cancer Research, 2014, 74, 3652-3658.	0.9	217
46	CD73 promotes anthracycline resistance and poor prognosis in triple negative breast cancer. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 11091-11096.	7.1	406
47	Immunotherapeutic approaches in triple-negative breast cancer: latest research and clinical prospects. Therapeutic Advances in Medical Oncology, 2013, 5, 169-181.	3.2	149
48	Blockade of A _{2A} receptors potently suppresses the metastasis of CD73 ⁺ tumors. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 14711-14716.	7.1	306
49	Targeting CD73 Enhances the Antitumor Activity of Anti-PD-1 and Anti-CTLA-4 mAbs. Clinical Cancer Research, 2013, 19, 5626-5635.	7.0	381
50	CD73-Generated Adenosine: Orchestrating the Tumor-Stroma Interplay to Promote Cancer Growth. Journal of Biomedicine and Biotechnology, 2012, 2012, 1-8.	3.0	80
51	The double-edge sword effect of anti-CD73 cancer therapy. Oncolmmunology, 2012, 1, 217-218.	4.6	23
52	Immunomodulation via Chemotherapy and Targeted Therapy: A New Paradigm in Breast Cancer Therapy?. Breast Care, 2012, 7, 267-272.	1.4	12
53	CD73-Deficient Mice Are Resistant to Carcinogenesis. Cancer Research, 2012, 72, 2190-2196.	0.9	178
54	CD73: a potent suppressor of antitumor immune responses. Trends in Immunology, 2012, 33, 231-237.	6.8	310

JOHN STAGG

#	Article	IF	CITATIONS
55	CD73-Deficient Mice Have Increased Antitumor Immunity and Are Resistant to Experimental Metastasis. Cancer Research, 2011, 71, 2892-2900.	0.9	353
56	Anti–ErbB-2 mAb therapy requires type I and II interferons and synergizes with anti–PD-1 or anti-CD137 mAb therapy. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 7142-7147.	7.1	413
57	Anti-CD73 antibody therapy inhibits breast tumor growth and metastasis. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 1547-1552.	7.1	492
58	Mesenchymal Stem Cells in Cancer. Stem Cell Reviews and Reports, 2008, 4, 119-124.	5.6	85
59	Antibodies targeted to TRAIL receptor-2 and ErbB-2 synergize in vivo and induce an antitumor immune response. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 16254-16259.	7.1	45
60	From cancer immunosurveillance to cancer immunotherapy. Immunological Reviews, 2007, 220, 82-101.	6.0	78
61	NK Cell-Based Cancer Immunotherapy. Drug News and Perspectives, 2007, 20, 155.	1.5	18