
Jeremy J Midgley

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1356082/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cryptic polymorphic Proteaceae seeds reduce detection by visually-cued predators on post-fire soils. South African Journal of Botany, 2022, 146, 538-545.	2.5	0
2	Unequal allocation between male versus female reproduction cannot explain extreme vegetative dimorphism in Aulax species (Cape Proteaceae). Scientific Reports, 2022, 12, 1407.	3.3	3
3	Appraising widespread resprouting but variable levels of postfire seeding in Australian ecosystems: the effect of phylogeny, fire regime and productivity. Australian Journal of Botany, 2022, 70, 114-130.	0.6	5

Seed dispersal, directed deterrence and germination in gifboom (Hyaenanche globosa;) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 622 Td (Pi $\frac{2.5}{4}$

5	Seed dispersal by dung beetles in Ceratocaryum pulchrum (Restionaceae): Another example of faecal mimicry in plants. South African Journal of Botany, 2021, 137, 365-368.	2.5	7
6	Corolla stickiness prevents nectar robbing in Erica. Journal of Plant Research, 2021, 134, 963-970.	2.4	6
7	Bark functional ecology and its influence on the distribution of Australian halfâ€butt eucalypts. Austral Ecology, 2021, 46, 1097-1111.	1.5	7
8	Getting around: Effects of fragmentation on a bird-pollinated Erica species. South African Journal of Botany, 2021, 141, 196-199.	2.5	0
9	Pollination biology of Erica aristata: First confirmation of long-proboscid fly-pollination in the Ericaceae. South African Journal of Botany, 2021, 142, 403-408.	2.5	7
10	Breeding Systems and Pollen-Ovule Ratios in <i>Erica</i> Species (Ericaceae) of the Cape Floristic Region. International Journal of Plant Sciences, 2021, 182, 151-160.	1.3	6
11	Mass sterilization of a common palm species by elephants in Kruger National Park, South Africa. Scientific Reports, 2020, 10, 11719.	3.3	8
12	Fairy circles in Namibia are assembled from genetically distinct grasses. Communications Biology, 2020, 3, 698.	4.4	3
13	Reproductive biology of the sausage tree (Kigelia africana) in Kruger National Park, South Africa. Koedoe, 2019, 61, .	0.9	9
14	Evidence from Cape Proteaceae that high relative bark thickness is correlated with high bark thickness growth rates. South African Journal of Botany, 2019, 124, 36-38.	2.5	5
15	Serotiny in the South African shrub Protea repens is associated with gradients of precipitation, temperature, and fire intensity. Plant Ecology, 2019, 220, 97-109.	1.6	3
16	Female and male costs of reproduction must be equal in dioecious Cape plant genus Leucadendron (Proteaceae). Australian Journal of Botany, 2019, 67, 517.	0.6	4
17	Ramification has little impact on shoot hydraulic efficiency in the sexually dimorphic genus <i>Leucadendron</i> (Proteaceae). PeerJ, 2019, 7, e6835.	2.0	9
18	Camera-trapping and seed-labelling reveals widespread granivory and scatter-hoarding of nuts by rodents in the Fynbos Biome. African Zoology, 2017, 52, 31-41.	0.4	15

JEREMY J MIDGLEY

#	Article	IF	CITATIONS
19	Demographic Bottlenecks and Savanna Tree Abundance. , 2017, , 161-188.		5
20	Restio culm felling is a consequence of pre-dispersal seed predation by the rodent Rhabdomys pumilio in the Fynbos. South African Journal of Botany, 2017, 112, 123-127.	2.5	3
21	Dispersal of semi-fleshy fruits to rock crevices by a rock-restricted rodent. South African Journal of Science, 2017, 113, 5.	0.7	3
22	Two dung beetle species that disperse mimetic seeds both feed on eland dung. South African Journal of Science, 2016, 112, 3.	0.7	5
23	Experimental evidence for heat plumeâ€induced cavitation and xylem deformation as a mechanism of rapid postâ€fire tree mortality. New Phytologist, 2016, 211, 828-838.	7.3	52
24	Further evidence that in African acacia, white is a warning colour to herbivores: the white pseudo-galls of Vachellia seyal. African Journal of Range and Forage Science, 2016, 33, 127-129.	1.4	6
25	Relative bark thickness: towards standardised measurement and analysis. Plant Ecology, 2016, 217, 677-681.	1.6	23
26	Spinescent East African savannah acacias also have thick bark, suggesting they evolved under both an intense fire and herbivory regime. African Journal of Ecology, 2016, 54, 118-120.	0.9	8
27	Floral trait evolution associated with shifts between insect and wind pollination in the dioecious genus <i>Leucadendron</i> (Proteaceae). Evolution; International Journal of Organic Evolution, 2016, 70, 126-139.	2.3	32
28	Fire regime, soil fertility and growth form interact to shape fire and growth traits in two co-occurring Banksia species. Evolutionary Ecology, 2016, 30, 35-45.	1.2	4
29	Faecal mimicry by seeds ensures dispersal by dung beetles. Nature Plants, 2015, 1, 15141.	9.3	43
30	A synthesis of postfire recovery traits of woody plants in Australian ecosystems. Science of the Total Environment, 2015, 534, 31-42.	8.0	151
31	Experimental Evaluation of Insect Pollination versus Wind Pollination in <i>Leucadendron</i> (Proteaceae). International Journal of Plant Sciences, 2014, 175, 296-306.	1.3	6
32	Do pollinator distributions underlie the evolution of pollination ecotypes in the Cape shrub Erica plukenetii?. Annals of Botany, 2014, 113, 301-316.	2.9	83
33	Comparing bark thickness: testing methods with bark–stem data from two South African fireâ€prone biomes. Journal of Vegetation Science, 2014, 25, 1247-1256.	2.2	29
34	Bark thickness does not explain the different susceptibility of Australian and New Zealand temperate rain forests to anthropogenic fire. Journal of Biogeography, 2014, 41, 1467-1477.	3.0	29
35	Costs and benefits of relative bark thickness in relation to fire damage: a savanna/forest contrast. Journal of Ecology, 2013, 101, 517-524.	4.0	117
36	Competing Seed Consumers Drive the Evolution of Scatter-Hoarding: Why Rodents do Not Put All Their Seeds in One Larder. African Zoology, 2013, 48, 152-158.	0.4	3

JEREMY J MIDGLEY

#	Article	IF	CITATIONS
37	Flammability is not selected for, it emerges. Australian Journal of Botany, 2013, 61, 102.	0.6	30
38	Competing seed consumers drive the evolution of scatter-hoarding: Why rodents do not put all their seeds in one larder. African Zoology, 2013, 48, 152-158.	0.4	7
39	The role of the elephant (<i>Loxodonta africana</i>) and the tree squirrel (<i>Paraxerus cepapi</i>) in marula (<i>Sclerocarya birrea</i>) seed predation, dispersal and germination. Journal of Tropical Ecology, 2012, 28, 227-231.	1.1	24
40	Optimal resource allocation in a serotinous nonâ€resprouting plant species under different fire regimes. Journal of Ecology, 2012, 100, 1464-1474.	4.0	22
41	Fire and the Angiosperm Revolutions. International Journal of Plant Sciences, 2012, 173, 569-583.	1.3	59
42	How do small savanna trees avoid stem mortality by fire? The roles of stem diameter, height and bark thickness. Ecosphere, 2011, 2, art42.	2.2	174
43	Coexistence theory in the Cape Floristic Region: revisiting an example of leaf niches in the Proteaceae. Austral Ecology, 2011, 36, 212-219.	1.5	13
44	Investigating the vulnerability of an African savanna tree (Sclerocarya birrea ssp. caffra) to fire and herbivory. Austral Ecology, 2011, 36, 964-973.	1.5	34
45	Pushing back in time: the role of fire in plant evolution. New Phytologist, 2011, 191, 5-7.	7.3	24
46	Evidence for rodent pollination in Erica hanekomii (Ericaceae). Botanical Journal of the Linnean Society, 2011, 166, 163-170.	1.6	32
47	Bark thickness determines fire resistance of selected tree species from fire-prone tropical savanna in north Australia. Plant Ecology, 2011, 212, 2057-2069.	1.6	153
48	Are the eucalypt and non-eucalypt components of Australian tropical savannas independent?. Oecologia, 2011, 166, 229-239.	2.0	31
49	More mysterious mounds: origins of the Brazilian campos de murundus. Plant and Soil, 2010, 336, 1-2.	3.7	11
50	Causes of secondary sexual differences in plants — Evidence from extreme leaf dimorphism in Leucadendron (Proteaceae). South African Journal of Botany, 2010, 76, 588-592.	2.5	27
51	Patterns of elephant impact on woody plants in the Hluhluweâ€Imfolozi park, Kwazuluâ€Natal, South Africa. African Journal of Ecology, 2010, 48, 206-214.	0.9	38
52	Savanna woody plant dynamics: the role of fire and herbivory, separately and synergistically. Australian Journal of Botany, 2010, 58, 1.	0.6	173
53	Stable isotope and 14C study of biogenic calcrete in a termite mound, Western Cape, South Africa, and its palaeoenvironmental significance. Quaternary Research, 2009, 72, 258-264.	1.7	37
54	<i>Euphorbia candelabrum</i> juveniles are nursed by spinescent shrubs in shortâ€grass areas of Queen Elizabeth Park, Uganda. African Journal of Ecology, 2009, 47, 788-789.	0.9	1

JEREMY J MIDGLEY

#	Article	IF	CITATIONS
55	Rodent pollination in the Cape legume <i>Liparia parva</i> . Austral Ecology, 2009, 34, 233-236.	1.5	26
56	Stem mortality of <i>Acacia nigrescens</i> induced by the synergistic effects of elephants and fire in Kruger National Park, South Africa. Journal of Tropical Ecology, 2008, 24, 655-662.	1.1	40
57	Distinguishing forest tree communities in Kibale National Park, western Uganda using ordination and classification methods. African Journal of Ecology, 2007, 45, 99-108.	0.9	4
58	Fire induced stem death in an African acacia is not caused by canopy scorching. Austral Ecology, 2006, 31, 892-896.	1.5	60
59	The worldwide leaf economics spectrum. Nature, 2004, 428, 821-827.	27.8	6,489
60	Does disturbance prevent total basal area and biomass in indigenous forests from being at equilibrium with the local environment?. Journal of Tropical Ecology, 2004, 20, 595-597.	1.1	16
61	Tree size frequency distributions, plant density, age and community disturbance. Ecology Letters, 2003, 6, 405-411.	6.4	112
62	Size-dependent species richness: trends within plant communities and across latitude. Ecology Letters, 2003, 6, 631-636.	6.4	37
63	Ecology of sprouting in woody plants: the persistence niche. Trends in Ecology and Evolution, 2001, 16, 45-51.	8.7	1,168
64	Rodent pollination in the African lily Massonia depressa (Hyacinthaceae). American Journal of Botany, 2001, 88, 1768-1773.	1.7	75
65	Determinants of clutch size and cone in Leucadendron (Proteaceae); Pleiotropy versus trade-offs. Flora: Morphology, Distribution, Functional Ecology of Plants, 2000, 195, 252-256.	1.2	0
66	What are the relative costs, limits and correlates of increased degree of serotiny?. Austral Ecology, 2000, 25, 65-68.	1.5	26
67	Regeneration failure and the potential importance of human disturbance in a subtropical forest. Applied Vegetation Science, 2000, 3, 223-232.	1.9	16
68	Anemophilous plants select pollen from their own species from the air. Oecologia, 1996, 108, 85-87.	2.0	31
69	Gap characteristics and replacement patterns in the Knysna Forest, South Africa. Journal of Vegetation Science, 1995, 6, 29-36.	2.2	55
70	Kill Thy Neighbour: An Individualistic Argument for the Evolution of Flammability. Oikos, 1995, 73, 79.	2.7	207
71	Leaf size and inflorescence size may be allometrically related traits. Oecologia, 1989, 78, 427-429.	2.0	81
72	A question worth asking. South African Journal of Science, 0, , .	0.7	0

#	Article	IF	CITATIONS
73	Constraints, crashes and conservation: were historical African savanna elephants <i>Loxodonta africana</i> densities relatively high or lower than those seen in protected areas today?. Plant Ecology and Diversity, 0, , .	2.4	0
74	Phenological asynchrony between sexes of Restionaceae can explain culm <scp> l´ ¹³ C </scp> differences. Austral Ecology, 0, , .	1.5	1