Jin Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1355663/publications.pdf

Version: 2024-02-01

499 papers 31,366 citations

90 h-index 158 g-index

506 all docs 506 docs citations

506 times ranked

29718 citing authors

#	Article	IF	CITATIONS
1	Carbothermal shock enabled facile and fast growth of carbon nanotubes in a second. Nano Research, 2022, 15, 2576-2581.	10.4	11
2	Boron doped graphdiyne: A metal-free peroxidase mimetic nanozyme for antibacterial application. Nano Research, 2022, 15, 1446-1454.	10.4	64
3	Monolayer puckered pentagonal VTe2: An emergent two-dimensional ferromagnetic semiconductor with multiferroic coupling. Nano Research, 2022, 15, 1486-1491.	10.4	20
4	Spatially Confined CVD Growth of Highâ€Density Semiconducting Singleâ€Walled Carbon Nanotube Horizontal Arrays. Advanced Functional Materials, 2022, 32, 2106643.	14.9	5
5	Modulusâ€√ailorable, Stretchable, and Biocompatible Carbonene Fiber for Adaptive Neural Electrode. Advanced Functional Materials, 2022, 32, 2107360.	14.9	15
6	Indirect to Direct Charge Transfer Transition in Plasmonâ€Enabled CO ₂ Photoreduction. Advanced Science, 2022, 9, e2102978.	11,2	24
7	The helicity of Raman scattered light: principles and applications in two-dimensional materials. Science China Chemistry, 2022, 65, 269-283.	8.2	12
8	Calibrating the unphysical divergence in TDDFTÂ+ÂU simulations of a correlated oxide. Computational Materials Science, 2022, 203, 111167.	3.0	0
9	Graphdiyne/Graphene/Graphdiyne Sandwiched Carbonaceous Anode for Potassium-Ion Batteries. ACS Nano, 2022, 16, 3163-3172.	14.6	56
10	Complex Raman Tensor in Helicity-Changing Raman Spectra of Black Phosphorus under Circularly Polarized Light. Journal of Physical Chemistry Letters, 2022, 13, 1241-1248.	4.6	4
11	Optical Control of Multistage Phase Transition via Phonon Coupling in <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><m< td=""><td>. <mark>7.8</mark> าmไ:mn>2</td><td></td></m<></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:math>	. <mark>7.8</mark> าmไ:mn>2	
12	Spatially indirect intervalley excitons in bilayer <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi mathvariant="normal">W</mml:mi><mml:msub>Se<mml:mn>2</mml:mn></mml:msub></mml:mrow></mml:math>	nml:mrov	v> ₹/mml:matł
13	Creation of a novel inverted charge density wave state. Structural Dynamics, 2022, 9, 014501.	2.3	7
14	Comparison Study on Single Nucleotide Transport Phenomena in Carbon Nanotubes. Nano Letters, 2022, 22, 2147-2154.	9.1	8
15	Soft-lock drawing of super-aligned carbon nanotube bundles for nanometre electrical contacts. Nature Nanotechnology, 2022, 17, 278-284.	31.5	24
16	Ultra-low lattice thermal conductivity and anisotropic thermoelectric transport properties in Zintl compound \hat{l}^2 -K ₂ Te ₂ . Physical Chemistry Chemical Physics, 2022, 24, 4666-4673.	2.8	10
17	Observation of One-Dimensional Dirac Fermions in Silicon Nanoribbons. Nano Letters, 2022, 22, 695-701.	9.1	12
18	Tracking photocarrier-enhanced electron-phonon coupling in nonequilibrium. Npj Quantum Materials, 2022, 7, .	5.2	10

#	Article	IF	Citations
19	Narrow-chirality distributed single-walled carbon nanotube synthesized from oxide promoted Fe–SiC catalyst. Carbon, 2022, 191, 146-152.	10.3	11
20	Intrinsic Wettability in Pristine Graphene (Adv. Mater. 6/2022). Advanced Materials, 2022, 34, .	21.0	5
21	Thermoelectric performance in the binary semiconductor compound <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>A</mml:mi><mml:mi width="4pt"></mml:mi><mml:mo>(</mml:mo><mml:mi>A</mml:mi></mml:msub></mml:mrow></mml:math> = K, Rb) with host-guest structure. Physical Review B, 2022, 105	1>2 <td>:mn> 25</td>	:mn> 25
22	Plasmon-mediated photodecomposition of NH3 via intramolecular charge transfer. Nano Research, 2022, 15, 3894-3900.	10.4	9
23	Nanometer-Scale Lateral p–n Junctions in Graphene/α-RuCl ₃ Heterostructures. Nano Letters, 2022, 22, 1946-1953.	9.1	25
24	Chloroformâ€Assisted Rapid Growth of Vertical Graphene Array and Its Application in Thermal Interface Materials. Advanced Science, 2022, 9, e2200737.	11.2	17
25	Passivation of Transition Metal Dichalcogenides Monolayers with a Surface onfined Atomically Thick Sulfur Layer. Small Structures, 2022, 3, .	12.0	2
26	Dual-gated single-molecule field-effect transistors beyond Moore's law. Nature Communications, 2022, 13, 1410.	12.8	38
27	Anomalous Thermal Decomposition Behavior of Polycrystalline LiNi _{0.8} Mn _{0.1} Co _{0.1} O _{O₂ in PEOâ€Based Solid Polymer Electrolyte. Advanced Functional Materials, 2022, 32, .}	14.9	19
28	Spinâ€Class State above Room Temperature in a Layered Nickelate La <i>_n</i> ₊₁ Ni <i>_n</i> O ₃ <i>_n</i> Advanced Electronic Materials, 2022, 8, .	ubs.1	0
29	Renaissance of Oneâ€Dimensional Nanomaterials. Advanced Functional Materials, 2022, 32, .	14.9	3
30	Durably Self-Sustained Droplet on a Fully Miscible Liquid Film. Langmuir, 2022, 38, 3993-4000.	3.5	2
31	Quantum interference directed chiral raman scattering in two-dimensional enantiomers. Nature Communications, 2022, 13, 1254.	12.8	12
32	Ultrafast Electrochemical Capacitors with Carbon Related Materials as Electrodes for AC Line Filtering. Chemistry - A European Journal, 2022, 28, .	3.3	4
33	Bulk growth and separation of single-walled carbon nanotubes from rhenium catalyst. Nano Research, 2022, 15, 5775-5780.	10.4	3
34	Solid supported ruthenium catalyst for growing single-walled carbon nanotubes with narrow chirality distribution. Carbon, 2022, 193, 35-41.	10.3	7
35	Moir \tilde{A} © enhanced charge density wave state in twisted 1T-TiTe2/1T-TiSe2 heterostructures. Nature Materials, 2022, 21, 284-289.	27.5	35
36	Brillouin Light Scattering of Halide Double Perovskite. Advanced Photonics Research, 2022, 3, .	3.6	2

#	Article	IF	CITATIONS
37	Abnormal intensity and polarization of Raman scattered light at edges of layered MoS2. Nano Research, 2022, 15, 6416-6421.	10.4	2
38	A Common Tracking Software Project. Computing and Software for Big Science, 2022, 6, 1.	2.9	19
39	Unusual Deformation and Fracture in Gallium Telluride Multilayers. Journal of Physical Chemistry Letters, 2022, 13, 3831-3839.	4.6	9
40	Theoretical Insights into Ultrafast Dynamics in Quantum Materials. Ultrafast Science, 2022, 2022, .	11.2	40
41	High-temperature fractional quantum Hall state in the Floquet kagome flat band. Physical Review B, 2022, 105, .	3.2	7
42	Observation of Topological Flat Bands in the Kagome Semiconductor Nb ₃ Cl ₈ . Nano Letters, 2022, 22, 4596-4602.	9.1	37
43	Highly Potassiophilic Graphdiyne Skeletons Decorated with Cu Quantum Dots Enable Dendriteâ€Free Potassiumâ€Metal Anodes. Advanced Materials, 2022, 34, e2202685.	21.0	26
44	Subnanometer Single-Walled carbon nanotube growth from Fe-Containing Layered double hydroxides. Chemical Engineering Journal, 2022, 446, 137087.	12.7	7
45	Holey Reduced Graphene Oxide Scaffolded Heterocyclic Aramid Fibers with Enhanced Mechanical Performance. Advanced Functional Materials, 2022, 32, .	14.9	14
46	Frontispiece: Ultrafast Electrochemical Capacitors with Carbon Related Materials as Electrodes for AC Line Filtering. Chemistry - A European Journal, 2022, 28, .	3.3	0
47	Calibrating Out-of-Equilibrium Electron–Phonon Couplings in Photoexcited MoS ₂ . Nano Letters, 2022, 22, 4800-4806.	9.1	10
48	Twist-Induced New Phonon Scattering Pathways in Bilayer Graphene Probed by Helicity-Resolved Raman Spectroscopy. Journal of Physical Chemistry C, 2022, 126, 10487-10493.	3.1	3
49	Nonadiabatic electron-phonon coupling and its effects on superconductivity. Physical Review B, 2022, 105, .	3.2	1
50	Orbital Dependence in Single-Atom Electrocatalytic Reactions. Journal of Physical Chemistry Letters, 2022, 13, 5969-5976.	4.6	18
51	Ultrafast Internal Exciton Dissociation through Edge States in MoS ₂ Nanosheets with Diffusion Blocking. Nano Letters, 2022, 22, 5651-5658.	9.1	16
52	Rapid Synthesis of Graphdiyne Films on Hydrogel at the Superspreading Interface for Antibacteria. ACS Nano, 2022, 16, 11338-11345.	14.6	30
53	Traversing Double-Well Potential Energy Surfaces: Photoinduced Concurrent Intralayer and Interlayer Structural Transitions in XTe ₂ (X = Mo, W). ACS Nano, 2022, 16, 11124-11135.	14.6	5
54	Firstâ€principles dynamics of photoexcited molecules and materials towards a quantum description. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2021, 11, e1492.	14.6	18

#	Article	IF	CITATIONS
55	Helicityâ€resolved resonant Raman spectroscopy of layered WS ₂ . Journal of Raman Spectroscopy, 2021, 52, 525-531.	2.5	16
56	Aptamer-Functionalized Microdevices for Bioanalysis. ACS Applied Materials & Eamp; Interfaces, 2021, 13, 9402-9411.	8.0	18
57	Cellular processes involved in RAW 264.7 macrophages exposed to NPFF: A transcriptional study. Peptides, 2021, 136, 170469.	2.4	7
58	Quartic anharmonicity and ultra″ow lattice thermal conductivity of alkali antimonide compounds M 3 Sb (M = K, Rb and Cs). International Journal of Energy Research, 2021, 45, 6958-6965.	4.5	8
59	Local Kondo scattering in 4d-electron RuO _{<i>x</i>} nanoclusters on atomically-resolved ultrathin SrRuO ₃ films. Physical Chemistry Chemical Physics, 2021, 23, 22526-22531.	2.8	0
60	The role of entrance functionalization in carbon nanotube-based nanofluidic systems: An intrinsic challenge. Physics of Fluids, 2021, 33, .	4.0	9
61	Growth of Semiconducting Singleâ€Walled Carbon Nanotubes Array by Precisely Inhibiting Metallic Tubes Using ZrO ₂ Nanoparticles. Small, 2021, 17, e2006605.	10.0	8
62	Unravelling a Zigzag Pathway for Hot Carrier Collection with Graphene Electrode. Journal of Physical Chemistry Letters, 2021, 12, 2886-2891.	4.6	2
63	Enhanced tunable second harmonic generation from twistable interfaces and vertical superlattices in boron nitride homostructures. Science Advances, 2021, 7, .	10.3	73
64	Growth of Homogeneous Highâ€Density Horizontal SWNT Arrays on Sapphire through a Magnesiumâ€Assisted Catalyst Anchoring Strategy. Angewandte Chemie, 2021, 133, 9416-9419.	2.0	1
65	Manipulating Weyl quasiparticles by orbital-selective photoexcitation in WTe2. Nature Communications, 2021, 12, 1885.	12.8	25
66	Growth of Homogeneous Highâ€Density Horizontal SWNT Arrays on Sapphire through a Magnesiumâ€Assisted Catalyst Anchoring Strategy. Angewandte Chemie - International Edition, 2021, 60, 9330-9333.	13.8	13
67	<i>In-Situ</i> Manipulation of the Magnetic Anisotropy of Single Mn Atom via Molecular Ligands. Nano Letters, 2021, 21, 3566-3572.	9.1	7
68	Graphene: A promising candidate for charge regulation in high-performance lithium-ion batteries. Nano Research, 2021, 14, 4370-4385.	10.4	25
69	Determining the Oblique Angle of Vertical Graphene Arrays Using Helicity-Resolved Raman Spectroscopy. Journal of Physical Chemistry C, 2021, 125, 8353-8359.	3.1	5
70	Core-shell Ag@nitrogen-doped carbon quantum dots modified BiVO4 nanosheets with enhanced photocatalytic performance under Vis-NIR light: Synergism of molecular oxygen activation and surface plasmon resonance. Chemical Engineering Journal, 2021, 410, 128336.	12.7	79
71	Atomically Precise Engineering of Singleâ€Molecule Stereoelectronic Effect. Angewandte Chemie - International Edition, 2021, 60, 12274-12278.	13.8	16
72	An Ultrafast Nonvolatile Memory with Low Operation Voltage for Highâ€Speed and Lowâ€Power Applications. Advanced Functional Materials, 2021, 31, 2102571.	14.9	27

#	Article	IF	CITATIONS
73	Giant enhancement of optical nonlinearity in two-dimensional materials by multiphoton-excitation resonance energy transfer from quantum dots. Nature Photonics, 2021, 15, 510-515.	31.4	50
74	Nonâ€Volatile Electrolyteâ€Gated Transistors Based on Graphdiyne/MoS ₂ with Robust Stability for Lowâ€Power Neuromorphic Computing and Logicâ€Inâ€Memory. Advanced Functional Materials, 2021, 31, 2100069.	14.9	66
75	Strategies for Scalable Gas-Phase Preparation of Free-Standing Graphene. CCS Chemistry, 2021, 3, 1058-1077.	7.8	7
76	Electric Field Tunable Ultrafast Interlayer Charge Transfer in Graphene/WS ₂ Heterostructure. Nano Letters, 2021, 21, 4403-4409.	9.1	15
77	Synthesis of wafer-scale ultrathin graphdiyne for flexible optoelectronic memory with over 256 storage levels. CheM, 2021, 7, 1284-1296. Identification of the Mott Insulating Charge Density Wave State in <mml:math< td=""><td>11.7</td><td>34</td></mml:math<>	11.7	34
78	xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:mrow><mml:mn>1</mml:mn><mml:mi mathvariant="normal">T</mml:mi><mml:mtext>a^2</mml:mtext><mml:mi>Ta</mml:mi><mml:msub><mml:mrow mathvariant="normal">S</mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow><td>w>^{7.8}mml:n >><td>ni ²⁷ Irow></td></td></mml:msub></mml:mrow>	w> ^{7.8} mml:n >> <td>ni ²⁷ Irow></td>	ni ²⁷ Irow>
79	Physical Review Letters, 2021, 126, 196406 Graphdiyne/Graphene Heterostructure: A Universal 2D Scaffold Anchoring Monodispersed Transition-Metal Phthalocyanines for Selective and Durable CO sub>2 Electroreduction. Journal of the American Chemical Society, 2021, 143, 8679-8688 Presence of Ammi:math xmins:mini= http://www.w3.org/1998/Math/MathML"	13.7	87
80	display="inline"> <mml:mrow><mml:mi>s</mml:mi></mml:mrow> -Wave Pairing in Josephson Junctions Made of Twisted Ultrathin <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><</mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:math>	8.9 mn>2 <td>34 ml:mn></td>	34 ml:mn>
81	Physical Review X, 2021, 11, . Rapid synthesis of few-layer graphdiyne using radio frequency heating and its application for dendrite-free zinc anodes. 2D Materials, 2021, 8, 044003.	4.4	10
82	Nonadiabatic Dynamics of Photocatalytic Water Splitting on A Polymeric Semiconductor. Nano Letters, 2021, 21, 6449-6455.	9.1	22
83	Ultra-low lattice thermal conductivity and high thermoelectric efficiency of K3AuO. Journal of Applied Physics, 2021, 130, 045101.	2.5	2
84	Probing Laser-Induced Plasma Generation in Liquid Water. Journal of the American Chemical Society, 2021, 143, 10382-10388.	13.7	12
85	High-Throughput Screening of Element-Doped Carbon Nanotubes Toward an Optimal One-Dimensional Superconductor. Journal of Physical Chemistry Letters, 2021, 12, 6667-6675.	4.6	4
86	Complete structural characterization of single carbon nanotubes by Rayleigh scattering circular dichroism. Nature Nanotechnology, 2021, 16, 1073-1078.	31.5	18
87	Low lattice thermal conductivity and high figure of merit in nâ€type doped <scp>fullâ€Heusler</scp> compounds X ₂ <scp>YAu</scp> (XÂ=ÂSr, Ba; YÂ=Âas, Sb). International Journal of Energy Research, 2021, 45, 20949-20958.	4.5	11
88	Polarized Raman Spectroscopy for Determining Crystallographic Orientation of Low-Dimensional Materials. Journal of Physical Chemistry Letters, 2021, 12, 7442-7452.	4.6	28
89	Vertical Graphene Arrays as Electrodes for Ultraâ€High Energy Density AC Lineâ€Filtering Capacitors. Angewandte Chemie, 2021, 133, 24710-24714.	2.0	7
90	Vertical Graphene Arrays as Electrodes for Ultraâ∈High Energy Density AC Lineâ∈Filtering Capacitors. Angewandte Chemie - International Edition, 2021, 60, 24505-24509.	13.8	15

#	Article	IF	Citations
91	Deep-learning-based image registration for nano-resolution tomographic reconstruction. Journal of Synchrotron Radiation, 2021, 28, 1909-1915.	2.4	9
92	Confined Fe Catalysts for Highâ€Density SWNT Arrays Growth: a New Territory for Catalystâ€Substrate Interaction Engineering. Small, 2021, 17, e2103433.	10.0	4
93	Accurate reconstruction algorithm for bilateral differential phase signals. Radiation Detection Technology and Methods, 2021, 5, 474-479.	0.8	1
94	Engineering Three-Dimensional Moiré Flat Bands. Nano Letters, 2021, 21, 7519-7526.	9.1	10
95	Electronically induced defect creation at semiconductor/oxide interface revealed by time-dependent density functional theory. Physical Review B, 2021, 104, .	3.2	4
96	Bi/Ti-phenolic network induced biomimetic synthesis of mesoporous hierarchical bimetallic hybrid nanocatalysts with enhanced visible-light photocatalytic performance. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 629, 127518.	4.7	4
97	A gift to the Queen of Carbon: A special collection in honor and memory of Mildred Dresselhaus. Science Advances, 2021, 7, .	10.3	0
98	Inspecting the nonbonding and antibonding orbitals in a surface-supported metal–organic framework. Chemical Communications, 2021, 57, 4580-4583.	4.1	5
99	Automatic 3D image registration for nano-resolution chemical mapping using synchrotron spectro-tomography. Journal of Synchrotron Radiation, 2021, 28, 278-282.	2.4	11
100	Large-Scale and Flexible Optical Synapses for Neuromorphic Computing and Integrated Visible Information Sensing Memory Processing. ACS Nano, 2021, 15, 1497-1508.	14.6	210
101	Plasmon-Induced Water Splitting on Ag-Alloyed Pt Single-Atom Catalysts. Frontiers in Chemistry, 2021, 9, 742794.	3.6	6
102	Probing Atomicâ€Scale Fracture of Grain Boundaries in Lowâ€symmetry 2D Materials. Small, 2021, 17, e2102739.	10.0	7
103	Viable substrates for the honeycomb-borophene growth. Physical Review Materials, 2021, 5, .	2.4	4
104	Building a Bridge for Carbon Nanotubes from Nanoscale Structure to Macroscopic Application. Journal of the American Chemical Society, 2021, 143, 18805-18819.	13.7	25
105	Plasmon-Mediated CO ₂ Photoreduction via Indirect Charge Transfer on Small Silver Nanoclusters. Journal of Physical Chemistry C, 2021, 125, 26348-26353.	3.1	10
106	Monitoring Strain-Controlled Exciton–Phonon Coupling in Layered MoS ₂ by Circularly Polarized Light. Journal of Physical Chemistry Letters, 2021, 12, 11555-11562.	4.6	1
107	Lattice thermal conductivity including phonon frequency shifts and scattering rates induced by quartic anharmonicity in cubic oxide and fluoride perovskites. Physical Review B, 2021, 104, .	3.2	40
108	Carbon fiber-promoted activation of catalyst for efficient growth of single-walled carbon nanotubes. Carbon, 2020, 156, 410-415.	10.3	12

#	Article	IF	CITATIONS
109	Growth of high-density horizontal SWNT arrays using multi-cycle in-situ loading catalysts. Carbon, 2020, 157, 164-168.	10.3	12
110	Carbon nanotube: Controlled synthesis determines its future. Science China Materials, 2020, 63, 16-34.	6.3	16
111	Electronic Structures and Catalytic Activities of Niobium Oxides as Electrocatalysts in Liquidâ€Junction Photovoltaic Devices. Solar Rrl, 2020, 4, 1900430.	5.8	29
112	Ultrafast charge ordering by self-amplified exciton–phonon dynamics in TiSe2. Nature Communications, 2020, 11, 43.	12.8	53
113	Graphdiyne for crucial gas involved catalytic reactions in energy conversion applications. Energy and Environmental Science, 2020, 13, 1326-1346.	30.8	115
114	Anomalous electronic and thermoelectric transport properties in cubic <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>Rb</mml:mi><mml:mathperovskite. .<="" 102,="" 2020,="" b,="" physical="" review="" td=""><td>ın₃3⊻/mm</td><td>ll:r24 > </td></mml:mathperovskite.></mml:msub></mml:mrow></mml:math>	ın ₃3 ⊻/mm	ll:r24 >
115	Horizontal Single-Walled Carbon Nanotube Arrays: Controlled Synthesis, Characterizations, and Applications. Chemical Reviews, 2020, 120, 12592-12684.	47.7	74
116	Graphene Oxide "Surfactantâ€â€Directed Tunable Concentration of Graphene Dispersion. Small, 2020, 16, e2003426.	10.0	31
117	First-principles study of phonon thermal transport in II–VI group graphenelike materials. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2020, 38, 062202.	2.1	2
118	The structural, electronic and optic properties in a series of M2XY ($M = Ga$, In; X,Y = S, Se, Te) Janus monolayer materials based on GW and the Bethe-Salpeter equation. European Physical Journal B, 2020, 93, 1.	1.5	7
119	Bridging the Gap between Reality and Ideality of Graphdiyne: The Advances of Synthetic Methodology. CheM, 2020, 6, 1933-1951.	11.7	54
120	Unique structural advances of graphdiyne for energy applications. EnergyChem, 2020, 2, 100041.	19.1	48
121	Atomic-Scale Studies of Overlapping Grain Boundaries between Parallel and Quasi-Parallel Grains in Low-Symmetry Monolayer ReS2. Matter, 2020, 3, 2108-2123.	10.0	11
122	Experimental observation of Dirac cones in artificial graphene lattices. Physical Review B, 2020, 102, .	3.2	9
123	Charge-Transfer Plasmon Polaritons at Graphene/l±-RuCl ₃ Interfaces. Nano Letters, 2020, 20, 8438-8445.	9.1	53
124	Single-water-dipole-layer-driven Reversible Charge Order Transition in $1 < i > T < /i > -TaS < sub > 2 < /sub > .$ Nano Letters, 2020, 20, 8854-8860.	9.1	12
125	Phase Transition Photodetection in Charge Density Wave Tantalum Disulfide. Nano Letters, 2020, 20, 6725-6731.	9.1	10
126	Vertically Aligned Graphene for Thermal Interface Materials. Small Structures, 2020, 1, 2000034.	12.0	28

#	Article	IF	CITATIONS
127	Characterization of Excitonic Nature in Raman Spectra Using Circularly Polarized Light. ACS Nano, 2020, 14, 10527-10535.	14.6	21
128	Ultrafast Optical Modulation of Harmonic Generation in Two-Dimensional Materials. Nano Letters, 2020, 20, 8053-8058.	9.1	31
129	Role of Explicitly Included Solvents on Ultrafast Electron Injection and Recombination Dynamics at TiO ₂ /Dye Interfaces. ACS Applied Materials & Samp; Interfaces, 2020, 12, 49174-49181.	8.0	4
130	Band Engineering of Carbon Nanotubes for Device Applications. Matter, 2020, 3, 664-695.	10.0	23
131	Integrated Plasmonics: Broadband Dirac Plasmons in Borophene. Physical Review Letters, 2020, 125, 116802.	7.8	67
132	Depth-dependent valence stratification driven by oxygen redox in lithium-rich layered oxide. Nature Communications, 2020, 11 , 6342 .	12.8	34
133	Continuous "Snowing―Thermotherapeutic Graphene. Advanced Materials, 2020, 32, e2002024.	21.0	20
134	Probing Nonequilibrium Dynamics of Photoexcited Polarons on a Metal-Oxide Surface with Atomic Precision. Physical Review Letters, 2020, 124, 206801.	7.8	37
135	xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow><mml:msub><mml:mi>A</mml:mi><mml:mrow><mml:math< td=""><td>ı>3<td>mn></td></td></mml:math<></mml:mrow></mml:msub></mml:mrow>	ı>3 <td>mn></td>	mn>

#	Article	IF	CITATIONS
145	Graphdiyne Coupled with g ₃ N ₄ /NiFeâ€Layered Double Hydroxide, a Layered Nanohybrid for Highly Efficient Photoelectrochemical Water Oxidation. Advanced Materials Interfaces, 2020, 7, 1902083.	3.7	23
146	Mixed-Dimensional Vertical Point p <i>–</i> i>n Junctions. ACS Nano, 2020, 14, 3181-3189.	14.6	18
147	Visualizing molecular orientational ordering and electronic structure in CsnC60 fulleride films. Physical Review B, 2020, 101, .	3.2	11
148	Rotational and Vibrational Excitations of a Single Water Molecule by Inelastic Electron Tunneling Spectroscopy. Journal of Physical Chemistry Letters, 2020, 11, 1650-1655.	4.6	3
149	Toward attosecond control of electron dynamics in two-dimensional materials. Applied Physics Letters, 2020, 116, .	3.3	14
150	Differentiated Visualization of Single-Cell 5-Hydroxymethylpyrimidines with Microfluidic Hydrogel Encoding. Journal of the American Chemical Society, 2020, 142, 2889-2896.	13.7	32
151	Catalystâ€Free Synthesis of Fewâ€Layer Graphdiyne Using a Microwaveâ€Induced Temperature Gradient at a Solid/Liquid Interface. Advanced Functional Materials, 2020, 30, 2001396.	14.9	54
152	Gate-Tunable Reversible Rashba–Edelstein Effect in a Few-Layer Graphene/2H-TaS ₂ Heterostructure at Room Temperature. ACS Nano, 2020, 14, 5251-5259.	14.6	50
153	xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi>d</mml:mi> -orbital magnetic Dirac fermions in a <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>Mo</mml:mi><mml:msub><mml:mi mathvariant="normal">S</mml:mi><mml:mn>2</mml:mn></mml:msub></mml:mrow></mml:math>	i ^{3.2}	7
154	Gas exfoliation of graphitic carbon nitride to improve the photocatalytic hydrogen evolution of metal-free 2D/2D g-C3N4/graphdiyne heterojunction. Journal of Alloys and Compounds, 2020, 833, 155054.	5.5	51
155	Low lattice thermal conductivity and high figure of merit in p-type doped K ₃ IO*. Chinese Physics B, 2020, 29, 126501.	1.4	7
156	Epitaxial growth and band structure of antiferromagnetic Mott insulator CeOI. Physical Review Materials, 2020, 4, .	2.4	2
157	Graphdiyne Nanowall for Enhanced Photoelectrochemical Performance of Si Heterojunction Photoanode. ACS Applied Materials & Samp; Interfaces, 2019, 11, 2745-2749.	8.0	28
158	Atomic Pd on Graphdiyne/Graphene Heterostructure as Efficient Catalyst for Aromatic Nitroreduction. Advanced Functional Materials, 2019, 29, 1905423.	14.9	112
159	Photoexcitation Induced Quantum Dynamics of Charge Density Wave and Emergence of a Collective Mode in 1 <i>T</i> -TaS ₂ . Nano Letters, 2019, 19, 6027-6034.	9.1	31
160	Ultrafast Catalyst-Free Graphene Growth on Glass Assisted by Local Fluorine Supply. ACS Nano, 2019, 13, 10272-10278.	14.6	32
161	Band evolution of two-dimensional transition metal dichalcogenides under electric fields. Applied Physics Letters, 2019, 115, 083104.	3.3	9
162	The excellent TE performance of photoelectric material CdSe along with a study of Zn(Cd)Se and Zn(Cd)Te based on first-principles. RSC Advances, 2019, 9, 25471-25479.	3.6	7

#	Article	IF	CITATIONS
163	Strong-coupled hybrid structure of carbon nanotube and MoS ₂ monolayer with ultrafast interfacial charge transfer. Nanoscale, 2019, 11, 17195-17200.	5.6	17
164	Carburization of Fe/Ni Catalyst for Efficient Growth of Singleâ€Walled Carbon Nanotubes. Small, 2019, 15, e1902240.	10.0	13
165	Extreme nonlinear strong-field photoemission from carbon nanotubes. Nature Communications, 2019, 10, 4891.	12.8	16
166	Mechanical deformations of carbon nanorings: a study by molecular dynamics and nonlocal continuum mechanics. Meccanica, 2019, 54, 2281-2293.	2.0	3
167	Linear Dichroism and Nondestructive Crystalline Identification of Anisotropic Semimetal Fewâ€Layer MoTe ₂ . Small, 2019, 15, e1903159.	10.0	24
168	Giant photoinduced lattice distortion in oxygen vacancy ordered <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>SrCoO</mml:mi><mml:mrow><mr .<="" 100,="" 2019,="" b,="" films.="" physical="" review="" td="" thin=""><td>ml3m2n>2.5</td><td>5<<i>[</i>mml:mn><</td></mr></mml:mrow></mml:msub></mml:math>	ml 3m2 n>2.5	5< <i>[</i> mml:mn><
169	Growth of Singleâ€Walled Carbon Nanotubes with Different Chirality on Same Solid Cobalt Catalysts at Low Temperature. Small, 2019, 15, e1903896.	10.0	13
170	2D MoTe ₂ : Linear Dichroism and Nondestructive Crystalline Identification of Anisotropic Semimetal Few‣ayer MoTe ₂ (Small 44/2019). Small, 2019, 15, 1970239.	10.0	1
171	Nucleation and dissociation of methane clathrate embryo at the gas–water interface. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 23410-23415.	7.1	18
172	Water nanostructure formation on oxide probed in situ by optical resonances. Science Advances, 2019, 5, eaax6973.	10.3	16
173	ldeal type-II Weyl phonons in wurtzite Cul. Physical Review B, 2019, 100, .	3.2	45
174	Global Photocurrent Generation in Phototransistors Based on Singleâ€Walled Carbon Nanotubes toward Highly Sensitive Infrared Detection. Advanced Optical Materials, 2019, 7, 1900597.	7.3	15
175	Transparent proton transport through a two-dimensional nanomesh material. Nature Communications, 2019, 10, 3971.	12.8	50
176	Two-gap and three-gap superconductivity in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>AlB</mml:mi><mml:mn>2<td>nn3.2/mml:</td><td>:m28b></td></mml:mn></mml:msub></mml:math>	nn 3. 2/mml:	:m 28 b>
177	Real-Space Imaging of Orbital Selectivity on SrTiO ₃ (001) Surface. ACS Applied Materials & Amp; Interfaces, 2019, 11, 37279-37284.	8.0	5
178	Superhydrophilic Graphdiyne Accelerates Interfacial Mass/Electron Transportation to Boost Electrocatalytic and Photoelectrocatalytic Water Oxidation Activity. Advanced Functional Materials, 2019, 29, 1808079.	14.9	95
179	Bifacial Raman Enhancement on Monolayer Two-Dimensional Materials. Nano Letters, 2019, 19, 1124-1130.	9.1	10
180	Cooperative evolution of intraband and interband excitations for high-harmonic generation in strained <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>MoS</mml:mi><mml:mn>2<td>mn;><td>ıl:msub></td></td></mml:mn></mml:msub></mml:math>	mn;> <td>ıl:msub></td>	ıl:msub>

#	Article	IF	Citations
181	Superstructure-Induced Splitting of Dirac Cones in Silicene. Physical Review Letters, 2019, 122, 196801.	7.8	26
182	Coexistence of Different Charge-Transfer Mechanisms in the Hot-Carrier Dynamics of Hybrid Plasmonic Nanomaterials. Nano Letters, 2019, 19, 3187-3193.	9.1	34
183	Hard BN Clathrate Superconductors. Journal of Physical Chemistry Letters, 2019, 10, 2554-2560.	4.6	14
184	Superhydrophilic Graphdiyne: Superhydrophilic Graphdiyne Accelerates Interfacial Mass/Electron Transportation to Boost Electrocatalytic and Photoelectrocatalytic Water Oxidation Activity (Adv.) Tj ETQq0 0 C) rg B4.∮ Ove	erloæk 10 Tf 50
185	Spin-Orientation-Dependent Topological States in Two-Dimensional Antiferromagnetic NiTl ₂ S ₄ Monolayers. Nano Letters, 2019, 19, 3321-3326.	9.1	28
186	Doping modulated in-plane anisotropic Raman enhancement on layered ReS2. Nano Research, 2019, 12, 563-568.	10.4	15
187	Electrical control of spatial resolution in mixed-dimensional heterostructured photodetectors. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 6586-6593.	7.1	20
188	Flat AgTe Honeycomb Monolayer on Ag(111). Journal of Physical Chemistry Letters, 2019, 10, 1866-1871.	4.6	28
189	Advance in Closeâ€Edged Graphene Nanoribbon: Property Investigation and Structure Fabrication. Small, 2019, 15, e1804473.	10.0	20
190	Sub-10 nm Monolayer MoS ₂ Transistors Using Single-Walled Carbon Nanotubes as an Evaporating Mask. ACS Applied Materials & Interfaces, 2019, 11, 11612-11617.	8.0	27
191	Side-group chemical gating via reversible optical and electric control in a single molecule transistor. Nature Communications, 2019, 10, 1450.	12.8	96
192	Controllable Growth of (n, n â^1) Family of Semiconducting Carbon Nanotubes. CheM, 2019, 5, 1182-1193.	11.7	38
193	Preparation of Mo2C–carbon nanomaterials for hydrogen evolution reaction. Carbon Letters, 2019, 29, 225-232.	5.9	3
194	Exploring Approaches for the Synthesis of Fewâ€Layered Graphdiyne. Advanced Materials, 2019, 31, e1803758.	21.0	67
195	Engineering Dirac states in graphene: Coexisting type-I and type-II Floquet-Dirac fermions. Physical Review B, 2019, 99, .	3.2	12
196	Reply to "Comment on " <i>Ab initio</i> evidence for nonthermal characteristics in ultrafast laser meltingâ€â€‰â€• Physical Review B, 2019, 99, .	3.2	4
197	Synthesis of Hydrogenâ€6ubstituted Graphyne Film for Lithium–Sulfur Battery Applications. Small, 2019, 15, 1805344.	10.0	42
198	Quantum dynamics simulations: combining path integral nuclear dynamics and real-time TDDFT. Electronic Structure, 2019, 1, 044005.	2.8	7

#	Article	IF	Citations
199	Dynamic defect as nonradiative recombination center in semiconductors. Physical Review B, 2019, 100, .	3.2	5
200	Growth kinetics of single-walled carbon nanotubes with a (2 <i>n</i> , <i>n</i>) chirality selection. Science Advances, 2019, 5, eaav9668.	10.3	42
201	Designing Catalysts for Chiralityâ€Selective Synthesis of Singleâ€Walled Carbon Nanotubes: Past Success and Future Opportunity. Advanced Materials, 2019, 31, e1800805.	21.0	59
202	Improving Photovoltaic Stability and Performance of Perovskite Solar Cells by Molecular Interface Engineering. Journal of Physical Chemistry C, 2019, 123, 1219-1225.	3.1	16
203	Carbon nanotubes assisting interchain charge transport in semiconducting polymer thin films towards much improved charge carrier mobility. Science China Materials, 2019, 62, 813-822.	6.3	6
204	Graphdiyne: synthesis, properties, and applications. Chemical Society Reviews, 2019, 48, 908-936.	38.1	584
205	Water transport through subnanopores in the ultimate size limit: Mechanism from molecular dynamics. Nano Research, 2019, 12, 587-592.	10.4	25
206	Synthesis and Applications of Graphdiyneâ€Based Metalâ€Free Catalysts. Advanced Materials, 2019, 31, e1803762.	21.0	143
207	Template Synthesis of an Ultrathin \hat{l}^2 -Graphdiyne-Like Film Using the Eglinton Coupling Reaction. ACS Applied Materials & Samp; Interfaces, 2019, 11, 2734-2739.	8.0	69
208	Synthesis of Ultrathin Graphdiyne Film Using a Surface Template. ACS Applied Materials & Samp; Interfaces, 2019, 11, 2632-2637.	8.0	103
209	Universal Scaling of Intrinsic Resistivity in Twoâ€Dimensional Metallic Borophene. Angewandte Chemie - International Edition, 2018, 57, 4585-4589.	13.8	25
210	A combined experimental and theoretical investigation of donor and acceptor interface in efficient aqueous-processed polymer/nanocrystal hybrid solar cells. Science China Chemistry, 2018, 61, 437-443.	8.2	7
211	Effect of Cation–π Interaction on Macroionic Selfâ€Assembly. Angewandte Chemie, 2018, 130, 4131-4136.	2.0	13
212	Electrostatic Functionalization and Passivation of Water-Exfoliated Few-Layer Black Phosphorus by Poly Dimethyldiallyl Ammonium Chloride and Its Ultrafast Laser Application. ACS Applied Materials & Amp; Interfaces, 2018, 10, 9679-9687.	8.0	57
213	Optical Properties of Single- and Double-Functionalized Small Diamondoids. Journal of Physical Chemistry A, 2018, 122, 3583-3593.	2.5	10
214	Growing highly pure semiconducting carbon nanotubes by electrotwisting the helicity. Nature Catalysis, 2018, 1, 326-331.	34.4	61
215	Lattice Vibration and Raman Scattering in Anisotropic Black Phosphorus Crystals. Small Methods, 2018, 2, 1700409.	8.6	37
216	Diatomiteâ€Templated Synthesis of Freestanding 3D Graphdiyne for Energy Storage and Catalysis Application. Advanced Materials, 2018, 30, e1800548.	21.0	134

#	Article	IF	Citations
217	Universal Scaling of Intrinsic Resistivity in Twoâ€Dimensional Metallic Borophene. Angewandte Chemie, 2018, 130, 4675-4679.	2.0	4
218	Phonon thermal transport in monolayer FeB2 from first principles. Computational Materials Science, 2018, 147, 132-136.	3.0	13
219	Effect of Cation‑π Interaction on Macroionic Selfâ€Assembly. Angewandte Chemie - International Edition, 2018, 57, 4067-4072.	13.8	37
220	Microwaveâ€Assisted Regeneration of Singleâ€Walled Carbon Nanotubes from Carbon Fragments. Small, 2018, 14, e1800033.	10.0	21
221	Anisotropic Strain Relaxation of Graphene by Corrugation on Copper Crystal Surfaces. Small, 2018, 14, e1800725.	10.0	46
222	Significant Enhancement of Single-Walled Carbon Nanotube Based Infrared Photodetector Using PbS Quantum Dots. IEEE Journal of Selected Topics in Quantum Electronics, 2018, 24, 1-8.	2.9	19
223	Spotting the differences in two-dimensional materials – the Raman scattering perspective. Chemical Society Reviews, 2018, 47, 3217-3240.	38.1	71
224	Z-scheme Ag3PO4/graphdiyne/g-C3N4 composites: Enhanced photocatalytic O2 generation benefiting from dual roles of graphdiyne. Carbon, 2018, 132, 598-605.	10.3	67
225	Discovery of 2D Anisotropic Dirac Cones. Advanced Materials, 2018, 30, 1704025.	21.0	91
226	Anisotropic Ramanâ€Enhancement Effect on Singleâ€Walled Carbon Nanotube Arrays. Advanced Materials Interfaces, 2018, 5, 1700941.	3.7	3
227	Plasmon-Induced Ultrafast Hydrogen Production in Liquid Water. Journal of Physical Chemistry Letters, 2018, 9, 63-69.	4.6	37
228	Substrate-anchored solid solution catalysts for high density SWNTs growth. Carbon, 2018, 126, 313-318.	10.3	4
229	Selective sorting of metallic/semiconducting single-walled carbon nanotube arrays by â€igniter-assisted gas-phase etching'. Materials Chemistry Frontiers, 2018, 2, 157-162.	5.9	6
230	The road to chirality-specific growth of single-walled carbon nanotubes. National Science Review, 2018, 5, 310-312.	9.5	8
231	Investigation of black phosphorus as a nano-optical polarization element by polarized Raman spectroscopy. Nano Research, 2018, 11, 3154-3163.	10.4	19
232	Low transverse momentum track reconstruction based on the Hough transform for the BESIII drift chamber. Radiation Detection Technology and Methods, 2018, 2, 1.	0.8	6
233	Screening Magnetic Two-Dimensional Atomic Crystals with Nontrivial Electronic Topology. Journal of Physical Chemistry Letters, 2018, 9, 6709-6715.	4.6	53
234	Boron oxides under pressure: Prediction of the hardest oxides. Physical Review B, 2018, 98, .	3.2	18

#	Article	IF	CITATIONS
235	Hexagonal Monolayer Ice without Shared Edges. Physical Review Letters, 2018, 121, 256001.	7.8	20
236	Carbon Nanotubes and Related Nanomaterials: Critical Advances and Challenges for Synthesis toward Mainstream Commercial Applications. ACS Nano, 2018, 12, 11756-11784.	14.6	388
237	High-Yield Formation of Graphdiyne Macrocycles through On-Surface Assembling and Coupling Reaction. ACS Nano, 2018, 12, 12612-12618.	14.6	35
238	Multigap anisotropic superconductivity in borophenes. Physical Review B, 2018, 98, .	3.2	34
239	Momentum-resolved TDDFT algorithm in atomic basis for real time tracking of electronic excitation. Journal of Chemical Physics, 2018, 149, 154104.	3.0	21
240	Ultrafast Broadband Charge Collection from Clean Graphene/CH ₃ NH ₃ PbI ₃ Interface. Journal of the American Chemical Society, 2018, 140, 14952-14957.	13.7	29
241	Increasing the Density of Single-Walled Carbon Nanotube Arrays by Multiple Catalysts Reactivation. Journal of Physical Chemistry C, 2018, 122, 24823-24829.	3.1	10
242	Water printing of ferroelectric polarization. Nature Communications, 2018, 9, 3809.	12.8	75
243	Fast Growth of Strain-Free AlN on Graphene-Buffered Sapphire. Journal of the American Chemical Society, 2018, 140, 11935-11941.	13.7	75
244	Identifying Few-Molecule Water Clusters with High Precision on Au(111) Surface. ACS Nano, 2018, 12, 6452-6457.	14.6	25
245	Photoexcitation in Solids: Firstâ€Principles Quantum Simulations by Realâ€Time TDDFT. Advanced Theory and Simulations, 2018, 1, 1800055.	2.8	64
246	Absorption, refraction and scattering retrieval in X-ray analyzer-based imaging. Journal of Synchrotron Radiation, 2018, 25, 1206-1213.	2.4	7
247	Identifying and Modulating Accidental Fermi Resonance: 2D IR and DFT Study of 4-Azido- <scp>I</scp> -phenylalanine. Journal of Physical Chemistry B, 2018, 122, 8122-8133.	2.6	27
248	Ultrathin graphdiyne film on graphene through solution-phase van der Waals epitaxy. Science Advances, 2018, 4, eaat6378.	10.3	198
249	Macroscopic superhydrophobicity achieved by atomic decoration with silicones. Journal of Chemical Physics, 2018, 149, 014706.	3.0	1
250	Direct imaging of surface states hidden in the third layer of Si (111)-7 × 7 surface by <i>pz</i> hyave ti Applied Physics Letters, 2018, 113, .	p. _{3.3}	6
251	Vibrational relaxation dynamics of the nitrogen-vacancy center in diamond. Physical Review B, 2018, 97,	3.2	14
252	"Snowing―Graphene using Microwave Ovens. Advanced Materials, 2018, 30, e1803189.	21.0	47

#	Article	IF	CITATIONS
253	Measurement of complex optical susceptibility for individual carbon nanotubes by elliptically polarized light excitation. Nature Communications, 2018, 9, 3387.	12.8	18
254	New Pathway for Hot Electron Relaxation in Two-Dimensional Heterostructures. Nano Letters, 2018, 18, 6057-6063.	9.1	49
255	Superconductor–Insulator Transitions in Exfoliated Bi ₂ Sr ₂ CaCu ₂ O _{8+δ} Flakes. Nano Letters, 2018, 18, 5660-5665.	9.1	50
256	Intelligent identification of two-dimensional nanostructures by machine-learning optical microscopy. Nano Research, 2018, 11, 6316-6324.	10.4	59
257	Preliminary Study on High-sensitive Diffraction Enhanced Imaging at BSRF. Microscopy and Microanalysis, 2018, 24, 102-103.	0.4	0
258	Photoinduced Nonequilibrium Topological States in Strained Black Phosphorus. Physical Review Letters, 2018, 120, 237403.	7.8	80
259	2D graphdiyne materials: challenges and opportunities in energy field. Science China Chemistry, 2018, 61, 765-786.	8.2	123
260	Adaptive weighted total variation regularized phase retrieval in differential phase-contrast imaging. Optical Engineering, 2018, 57, $1.$	1.0	1
261	Fe on Sb(111): Potential Two-Dimensional Ferromagnetic Superstructures. ACS Nano, 2017, 11, 2143-2149.	14.6	9
262	Metastable phases of 2D boron sheets on Ag($1\hat{a} \in \%$ 1). Journal of Physics Condensed Matter, 2017, 29, 095002.	1.8	78
263	Atomistic insights into plasmon induced water splitting. Science China: Physics, Mechanics and Astronomy, 2017, 60, 1.	5.1	3
264	Suppressed superconductivity in substrate-supported $\langle i \rangle \hat{l}^2 \langle i \rangle \langle sub \rangle 12 \langle sub \rangle$ borophene by tensile strain and electron doping. 2D Materials, 2017, 4, 025032.	4.4	90
265	Free-Standing Single-Molecule Thick Crystals Consisting of Linear Long-Chain Polymers. Nano Letters, 2017, 17, 1655-1659.	9.1	10
266	Scanning electron microscopy imaging of single-walled carbon nanotubes on substrates. Nano Research, 2017, 10, 1804-1818.	10.4	12
267	High thermopower and potential thermoelectric properties of crystalline LiH and NaH. Physical Review B, 2017, 95, .	3.2	26
268	A modified Wenzel model for water wetting on van der Waals layered materials with topographic surfaces. Nanoscale, 2017, 9, 3843-3849.	5.6	12
269	Chemical Vapor Deposition Growth of Linked Carbon Monolayers with Acetylenic Scaffoldings on Silver Foil. Advanced Materials, 2017, 29, 1604665.	21.0	114
270	SnO ₂ @PANI Coreâ€"Shell Nanorod Arrays on 3D Graphite Foam: A High-Performance Integrated Electrode for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2017, 9, 9620-9629.	8.0	78

#	Article	IF	Citations
271	Dirac Fermions in Borophene. Physical Review Letters, 2017, 118, 096401.	7.8	353
272	Arrays of horizontal carbon nanotubes of controlled chirality grown using designed catalysts. Nature, 2017, 543, 234-238.	27.8	317
273	Epitaxial growth of large-area and highly crystalline anisotropic ReSe2 atomic layer. Nano Research, 2017, 10, 2732-2742.	10.4	69
274	Recycling Strategy for Fabricating Low-Cost and High-Performance Carbon Nanotube TFT Devices. ACS Applied Materials & Devices, 2017, 9, 15719-15726.	8.0	30
275	Interlayerâ€Stateâ€Coupling Dependent Ultrafast Charge Transfer in MoS ₂ /WS ₂ Bilayers. Advanced Science, 2017, 4, 1700086.	11.2	87
276	Pyrolysis-induced synthesis of iron and nitrogen-containing carbon nanolayers modified graphdiyne nanostructure as a promising core-shell electrocatalyst for oxygen reduction reaction. Carbon, 2017, 119, 201-210.	10.3	99
277	Investigation on the relationship between solubility of artemisinin and polyvinylpyrroli done addition by using DAOSD approach. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2017, 182, 136-142.	3.9	9
278	In Situ Quantitative Graphene-Based Surface-Enhanced Raman Spectroscopy. Small Methods, 2017, 1, 1700126.	8.6	41
279	Self-assembly of glycine on Cu(001): the effect of temperature and polarity. RSC Advances, 2017, 7, 4116-4123.	3.6	3
280	Allâ€Silicon Switchable Magnetoelectric Effect through Interlayer Exchange Coupling. ChemPhysChem, 2017, 18, 1916-1920.	2.1	1
281	Realâ€Time Observation of Carbon Nanotube Etching Process Using Polarized Optical Microscope. Advanced Materials, 2017, 29, 1701959.	21.0	13
282	Inâ€Plane Uniaxial Strain in Black Phosphorus Enables the Identification of Crystalline Orientation. Small, 2017, 13, 1700466.	10.0	29
283	Exotic thermoelectric behavior in nitrogenated holey graphene. RSC Advances, 2017, 7, 25803-25810.	3.6	25
284	Graphdiyne Filter for Decontaminating Leadâ€lonâ€Polluted Water. Advanced Electronic Materials, 2017, 3, 1700122.	5.1	56
285	Highâ€Throughput Optical Imaging and Spectroscopy of Oneâ€Dimensional Materials. Chemistry - A European Journal, 2017, 23, 9703-9710.	3.3	1
286	Architecture of βâ€Graphdiyneâ€Containing Thin Film Using Modified Glaser–Hay Coupling Reaction for Enhanced Photocatalytic Property of TiO ₂ . Advanced Materials, 2017, 29, 1700421.	21.0	115
287	SWCNTâ€MoS ₂ â€SWCNT Vertical Point Heterostructures. Advanced Materials, 2017, 29, 1604469.	21.0	32
288	Direct Synthesis of Graphdiyne Nanowalls on Arbitrary Substrates and Its Application for Photoelectrochemical Water Splitting Cell. Advanced Materials, 2017, 29, 1605308.	21.0	189

#	Article	lF	CITATIONS
289	A Mixedâ€Extractor Strategy for Efficient Sorting of Semiconducting Singleâ€Walled Carbon Nanotubes. Advanced Materials, 2017, 29, 1603565.	21.0	18
290	Direct discrimination between semiconducting and metallic single-walled carbon nanotubes with high spatial resolution by SEM. Nano Research, 2017, 10, 1896-1902.	10.4	11
291	An Iron-Porphyrin Complex with Large Easy-Axis Magnetic Anisotropy on Metal Substrate. ACS Nano, 2017, 11, 11402-11408.	14.6	20
292	Anomalous Polarized Raman Scattering and Large Circular Intensity Differential in Layered Triclinic ReS ₂ . ACS Nano, 2017, 11, 10366-10372.	14.6	74
293	An Unprecedented Class of Benzoyldiazenidoâ€Functionalized Polyoxometalates with Enhanced Antitumour Activities. European Journal of Inorganic Chemistry, 2017, 2017, 5475-5484.	2.0	11
294	Effects of line defects on the electronic and optical properties of strain-engineered WO ₃ thin films. Journal of Materials Chemistry C, 2017, 5, 11694-11699.	5 . 5	25
295	Carbonâ€Nanotubeâ€Confined Vertical Heterostructures with Asymmetric Contacts. Advanced Materials, 2017, 29, 1702942.	21.0	21
296	Highâ€Efficiency Photovoltaic Conversion at Selective Electron Tunneling Heterointerfaces. Advanced Electronic Materials, 2017, 3, 1700211.	5.1	5
297	Frontispiece: Highâ€Throughput Optical Imaging and Spectroscopy of Oneâ€Dimensional Materials. Chemistry - A European Journal, 2017, 23, .	3.3	0
298	Wrinkle-Free Single-Crystal Graphene Wafer Grown on Strain-Engineered Substrates. ACS Nano, 2017, 11, 12337-12345.	14.6	172
299	Investigation of Etching Behavior of Single-Walled Carbon Nanotubes Using Different Etchants. Journal of Physical Chemistry C, 2017, 121, 27655-27663.	3.1	11
300	Monitoring Local Strain Vector in Atomic-Layered MoSe ₂ by Second-Harmonic Generation. Nano Letters, 2017, 17, 7539-7543.	9.1	128
301	Robust Stacking-Independent Ultrafast Charge Transfer in MoS ₂ /WS ₂ Bilayers. ACS Nano, 2017, 11, 12020-12026.	14.6	130
302	Superconducting transition of FeSe / SrTiO3 induced by adsorption of semiconducting organic molecules. Physical Review B, 2017, 95, .	3.2	10
303	Graphdiyne: A Promising Catalyst–Support To Stabilize Cobalt Nanoparticles for Oxygen Evolution. ACS Catalysis, 2017, 7, 5209-5213.	11.2	150
304	Prediction of two-dimensional electron gas mediated magnetoelectric coupling at ferroelectric <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>PbTiO</mml:mi><mr .<="" 2017,="" 95,="" b,="" heterostructures.="" physical="" review="" td=""><td>nl:mn>3<!--</td--><td>mmil:mn></td></td></mr></mml:msub></mml:mrow></mml:math 	nl:mn>3 </td <td>mmil:mn></td>	mmil:mn>
305	Synthesis of Hierarchical Graphdiyne-Based Architecture for Efficient Solar Steam Generation. Chemistry of Materials, 2017, 29, 5777-5781.	6.7	206
306	Dirac cone pairs in silicene induced by interface Si-Ag hybridization: A first-principles effective band study. Physical Review B, 2017, 95, .	3.2	20

#	Article	IF	Citations
307	High throughput methods for evaluating the homogeneity of nanomaterials for nanoelectronics. , 2017, , .		0
308	Controlling catalytic activity of gold cluster on MgO thin film for water splitting. Physical Review Materials, 2017, 1 , .	2.4	9
309	Low lattice thermal conductivity and good thermoelectric performance of cinnabar. Physical Review Materials, $2017,1,.$	2.4	16
310	Tunable electron-phonon coupling superconductivity in platinum diselenide. Physical Review Materials, 2017, 1 , .	2.4	18
311	Prediction of silicon-based room temperature quantum spin Hall insulator via orbital mixing. Europhysics Letters, 2016, 113, 67003.	2.0	6
312	The Origin of Oxygen Vacancies Controlling La _{2/3} Sr _{1/3} MnO ₃ Electronic and Magnetic Properties. Advanced Materials Interfaces, 2016, 3, 1500753.	3.7	73
313	Microscopic Dimensions Engineering: Stepwise Manipulation of the Surface Wettability on 3D Substrates for Oil/Water Separation. Advanced Materials, 2016, 28, 936-942.	21.0	109
314	Birefringenceâ€Directed Raman Selection Rules in 2D Black Phosphorus Crystals. Small, 2016, 12, 2627-2633.	10.0	57
315	Highâ€Throughput Determination of Statistical Structure Information for Horizontal Carbon Nanotube Arrays by Optical Imaging. Advanced Materials, 2016, 28, 2018-2023.	21.0	11
316	Interfaceâ€Engineered Plasmonics in Metal/Semiconductor Heterostructures. Advanced Energy Materials, 2016, 6, 1600431.	19.5	95
317	Telluriumâ€Assisted Epitaxial Growth of Largeâ€Area, Highly Crystalline ReS ₂ Atomic Layers on Mica Substrate. Advanced Materials, 2016, 28, 5019-5024.	21.0	169
318	Mechanism and modulation of terahertz generation from a semimetal - graphite. Scientific Reports, 2016, 6, 22798.	3.3	4
319	Preparation of Horizontal Single-Walled Carbon Nanotubes Arrays. Topics in Current Chemistry, 2016, 374, 85.	5.8	5
320	<i>Ab initio</i> evidence for nonthermal characteristics in ultrafast laser melting. Physical Review B, 2016, 94, .	3.2	32
321	Reversible proton-switchable fluorescence controlled by conjugation effect in an organically-functionalized polyoxometalate. Scientific Reports, 2016, 6, 27861.	3.3	6
322	Carbene-mediated self-assembly of diamondoids on metal surfaces. Nanoscale, 2016, 8, 8966-8975.	5.6	20
323	Robust Superhydrophobic Foam: A Graphdiyneâ€Based Hierarchical Architecture for Oil/Water Separation. Advanced Materials, 2016, 28, 168-173.	21.0	449
324	Growth of Horizontal Semiconducting SWNT Arrays with Density Higher than 100 tubes li¼m using Ethanol/Methane Chemical Vapor Deposition. Journal of the American Chemical Society, 2016, 138, 6727-6730.	13.7	46

#	Article	IF	Citations
325	High-Efficiency Selective Electron Tunnelling in a Heterostructure Photovoltaic Diode. Nano Letters, 2016, 16, 3600-3606.	9.1	14
326	Novel Excitonic Solar Cells in Phosphorene–TiO ₂ Heterostructures with Extraordinary Charge Separation Efficiency. Journal of Physical Chemistry Letters, 2016, 7, 1880-1887.	4.6	51
327	CVD Growth of Carbon Nanotube Forest with Selective Wall-Number from Fe–Cu Catalyst. Journal of Physical Chemistry C, 2016, 120, 11163-11169.	3.1	13
328	Raman Spectra and Corresponding Strain Effects in Graphyne and Graphdiyne. Journal of Physical Chemistry C, 2016, 120, 10605-10613.	3.1	116
329	Photocontrol of charge injection/extraction at electrode/semiconductor interfaces for high-photoresponsivity organic transistors. Journal of Materials Chemistry C, 2016, 4, 5289-5296.	5.5	29
330	Quantum Mode Selectivity of Plasmon-Induced Water Splitting on Gold Nanoparticles. ACS Nano, 2016, 10, 5452-5458.	14.6	106
331	Graphene-Based Enhanced Raman Scattering toward Analytical Applications. Chemistry of Materials, 2016, 28, 6426-6435.	6.7	120
332	Temperature-dependent photoluminescence emission and Raman scattering from Mo _{1â^'<i>x</i>} W _{<i>x</i>} S ₂ monolayers. Nanotechnology, 2016, 27, 445705.	2.6	48
333	Selective Growth of Subnanometer Diameter Single-Walled Carbon Nanotube Arrays in Hydrogen-Free CVD. Journal of the American Chemical Society, 2016, 138, 12723-12726.	13.7	22
334	Nonlinear Rashba spin splitting in transition metal dichalcogenide monolayers. Nanoscale, 2016, 8, 17854-17860.	5.6	60
335	Superconductivity in dense carbon-based materials. Physical Review B, 2016, 93, .	3.2	37
336	Magnetic Dirac fermions and Chern insulator supported on pristine silicon surface. Physical Review B, 2016, 94, .	3.2	18
337	Atomic Layers: Tellurium-Assisted Epitaxial Growth of Large-Area, Highly Crystalline ReS2 Atomic Layers on Mica Substrate (Adv. Mater. 25/2016). Advanced Materials, 2016, 28, 5018-5018.	21.0	5
338	New sensitizers containing amide moieties as electron-accepting and anchoring groups for dye-sensitized solar cells. RSC Advances, 2016, 6, 74039-74045.	3.6	5
339	Direct evidence of metallic bands in a monolayer boron sheet. Physical Review B, 2016, 94, .	3.2	152
340	Sharp-Tip Silver Nanowires Mounted on Cantilevers for High-Aspect-Ratio High-Resolution Imaging. Nano Letters, 2016, 16, 6896-6902.	9.1	30
341	Chemical vapor deposition synthesis of near-zigzag single-walled carbon nanotubes with stable tube-catalyst interface. Science Advances, 2016, 2, e1501729.	10.3	59
342	Controlled growth of large-area anisotropic ReS ₂ atomic layer and its photodetector application. Nanoscale, 2016, 8, 18956-18962.	5.6	114

#	Article	IF	Citations
343	Characterizing hydrophobicity of amino acid side chains in a protein environment via measuring contact angle of a water nanodroplet on planar peptide network. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 12946-12951.	7.1	87
344	Origin of Improved Optical Quality of Monolayer Molybdenum Disulfide Grown on Hexagonal Boron Nitride Substrate. Small, 2016, 12, 198-203.	10.0	22
345	Correlations between Immobilizing Ions and Suppressing Hysteresis in Perovskite Solar Cells. ACS Energy Letters, 2016, 1, 266-272.	17.4	118
346	A photodegradable hexaaza-pentacene molecule for selective dispersion of large-diameter semiconducting carbon nanotubes. Chemical Communications, 2016, 52, 7683-7686.	4.1	21
347	Solutionâ€Processable Highâ€Purity Semiconducting SWCNTs for Largeâ€Area Fabrication of Highâ€Performance Thinâ€Film Transistors. Small, 2016, 12, 4993-4999.	10.0	107
348	Longâ€Lived Multifunctional Superhydrophobic Heterostructure Via Molecular Selfâ€Supply. Advanced Materials Interfaces, 2016, 3, 1500727.	3.7	19
349	3D Selfâ€6upporting Porous Magnetic Assemblies for Water Remediation and Beyond. Advanced Energy Materials, 2016, 6, 1600473.	19.5	37
350	pH-Dependent Synthesis of Novel Structure-Controllable Polymer-Carbon NanoDots with High Acidophilic Luminescence and Super Carbon Dots Assembly for White Light-Emitting Diodes. ACS Applied Materials & Diversary Interfaces, 2016, 8, 4062-4068.	8.0	106
351	Optical Anisotropy of Black Phosphorus in the Visible Regime. Journal of the American Chemical Society, 2016, 138, 300-305.	13.7	273
352	Carbon science in 2016: Status, challenges and perspectives. Carbon, 2016, 98, 708-732.	10.3	261
353	Hybrid-dimensional magnetic microstructure based 3D substrates for remote controllable and ultrafast water remediation. Journal of Materials Chemistry A, 2016, 4, 938-943.	10.3	32
354	Inducing Transient Charge State of a Single Water Cluster on Cu(111) Surface. ACS Nano, 2016, 10, 4489-4495.	14.6	12
355	Experimental realization of two-dimensional boron sheets. Nature Chemistry, 2016, 8, 563-568.	13.6	1,398
356	A new phase diagram of water under negative pressure: The rise of the lowest-density clathrate s-III. Science Advances, 2016, 2, e1501010.	10.3	92
357	Graphdiyne: A Metal-Free Material as Hole Transfer Layer To Fabricate Quantum Dot-Sensitized Photocathodes for Hydrogen Production. Journal of the American Chemical Society, 2016, 138, 3954-3957.	13.7	335
358	The proton-controlled synthesis of unprecedented diol functionalized Anderson-type POMs. Chemical Communications, 2016, 52, 2378-2381.	4.1	33
359	Ultrathermostable, Magnetic-Driven, and Superhydrophobic Quartz Fibers for Water Remediation. ACS Applied Materials & Driverfaces, 2016, 8, 1025-1032.	8.0	30
360	Design of a Photoactive Hybrid Bilayer Dielectric for Flexible Nonvolatile Organic Memory Transistors. ACS Nano, 2016, 10, 436-445.	14.6	91

#	Article	IF	Citations
361	Recent progresses in real-time local-basis implementation of time dependent density functional theory for electron–nucleus dynamics. Computational Materials Science, 2016, 112, 478-486.	3.0	28
362	Nucleophilic substitution reaction for rational post-functionalization of polyoxometalates. New Journal of Chemistry, 2016, 40, 906-909.	2.8	2
363	Organic Fieldâ€Effect Transistors: Solutionâ€Processable, Lowâ€Voltage, and Highâ€Performance Monolayer Fieldâ€Effect Transistors with Aqueous Stability and High Sensitivity (Adv. Mater. 12/2015). Advanced Materials, 2015, 27, 2124-2124.	21.0	0
364	Synthesis of Graphdiyne Nanowalls Using Acetylenic Coupling Reaction. Journal of the American Chemical Society, 2015, 137, 7596-7599.	13.7	484
365	Growth of Close-Packed Semiconducting Single-Walled Carbon Nanotube Arrays Using Oxygen-Deficient TiO ₂ Nanoparticles as Catalysts. Nano Letters, 2015, 15, 403-409.	9.1	59
366	Combining superior surface enhanced Raman scattering and photothermal conversion on one platform: a strategy of ill-defined gold nanoparticles. RSC Advances, 2015, 5, 27120-27125.	3.6	2
367	Controlled Synthesis of ZrS ₂ Monolayer and Few Layers on Hexagonal Boron Nitride. Journal of the American Chemical Society, 2015, 137, 7051-7054.	13.7	178
368	Identifying the Crystalline Orientation of Black Phosphorus Using Angleâ€Resolved Polarized Raman Spectroscopy. Angewandte Chemie, 2015, 127, 2396-2399.	2.0	97
369	Identifying the Crystalline Orientation of Black Phosphorus Using Angleâ€Resolved Polarized Raman Spectroscopy. Angewandte Chemie - International Edition, 2015, 54, 2366-2369.	13.8	284
370	Rational design of three-dimensional nitrogen-doped carbon nanoleaf networks for high-performance oxygen reduction. Journal of Materials Chemistry A, 2015, 3, 5617-5627.	10.3	32
371	Growth of high-density horizontally aligned SWNT arrays using Trojan catalysts. Nature Communications, 2015, 6, 6099.	12.8	120
372	Selective Scission of C–O and C–C Bonds in Ethanol Using Bimetal Catalysts for the Preferential Growth of Semiconducting SWNT Arrays. Journal of the American Chemical Society, 2015, 137, 1012-1015.	13.7	38
373	Exploring atomic defects in molybdenum disulphide monolayers. Nature Communications, 2015, 6, 6293.	12.8	1,124
374	Macroscopic Carbon Nanotubeâ€based 3D Monoliths. Small, 2015, 11, 3263-3289.	10.0	83
375	True-color real-time imaging and spectroscopy of carbon nanotubes on substrates using enhanced Rayleigh scattering. Nano Research, 2015, 8, 2721-2732.	10.4	34
376	Growth of MoS _{2(1â€"<i>x</i>)} Se _{2<i>x</i>} (<i>x</i> = 0.41â€"1.00) Monolayer Alloys with Controlled Morphology by Physical Vapor Deposition. ACS Nano, 2015, 9, 7450-7455.	14.6	217
377	Density controlled oil uptake and beyond: from carbon nanotubes to graphene nanoribbon aerogels. Journal of Materials Chemistry A, 2015, 3, 20547-20553.	10.3	69
378	Diameter-Specific Growth of Semiconducting SWNT Arrays Using Uniform Mo2C Solid Catalyst. Journal of the American Chemical Society, 2015, 137, 8904-8907.	13.7	71

#	Article	IF	CITATIONS
379	Lighting Up the Raman Signal of Molecules in the Vicinity of Graphene Related Materials. Accounts of Chemical Research, 2015, 48, 1862-1870.	15.6	141
380	Nitrogenâ€Doped Carbon Nanotube Aerogels for Highâ€Performance ORR Catalysts. Small, 2015, 11, 3903-3908.	10.0	96
381	Molecular Selectivity of Graphene-Enhanced Raman Scattering. Nano Letters, 2015, 15, 2892-2901.	9.1	177
382	Field and temperature dependence of intrinsic diamagnetism in graphene: Theory and experiment. Physical Review B, 2015, 91, .	3.2	61
383	Ordered and Reversible Hydrogenation of Silicene. Physical Review Letters, 2015, 114, 126101.	7.8	127
384	Large-area growth of ultra-high-density single-walled carbon nanotube arrays on sapphire surface. Nano Research, 2015, 8, 3694-3703.	10.4	36
385	Two-dimensional silicon-carbon hybrids with a honeycomb lattice: New family for two-dimensional photovoltaic materials. Science China: Physics, Mechanics and Astronomy, 2015, 58, 1.	5.1	13
386	From Silicene to Half-Silicane by Hydrogenation. ACS Nano, 2015, 9, 11192-11199.	14.6	97
387	Multilayered silicene: the bottom-up approach for a weakly relaxed Si(111) with Dirac surface states. Nanoscale, 2015, 7, 15880-15885.	5.6	28
388	Atomic Disorders Induced by Silver and Magnesium Ion Migrations Favor High Thermoelectric Performance in αâ€MgAgSbâ€Based Materials. Advanced Functional Materials, 2015, 25, 6478-6488.	14.9	70
389	A universal etching-free transfer of MoS2 films for applications in photodetectors. Nano Research, 2015, 8, 3662-3672.	10.4	94
390	Basic science of water: Challenges and current status towards a molecular picture. Nano Research, 2015, 8, 3085-3110.	10.4	27
391	Silicene: from monolayer to multilayer — A concise review. Chinese Physics B, 2015, 24, 086102.	1.4	17
392	Emergence of electron coherence and two-color all-optical switching in MoS ₂ based on spatial self-phase modulation. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 11800-11805.	7.1	133
393	Enhanced Raman Scattering on In-Plane Anisotropic Layered Materials. Journal of the American Chemical Society, 2015, 137, 15511-15517.	13.7	122
394	Investigation on the trioctylphosphine oxide-based super-concentrated HCl system. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2015, 136, 288-294.	3.9	2
395	Transport behavior of water molecules through two-dimensional nanopores. Journal of Chemical Physics, 2014, 141, 18C528.	3.0	48
396	CMP Aerogels: Ultrahighâ€Surfaceâ€Area Carbonâ€Based Monolithic Materials with Superb Sorption Performance. Advanced Materials, 2014, 26, 8053-8058.	21.0	125

#	Article	IF	Citations
397	Scalable Fabrication of Ambipolar Transistors and Radioâ€Frequency Circuits Using Aligned Carbon Nanotube Arrays. Advanced Materials, 2014, 26, 645-652.	21.0	30
398	Observation of Low-Frequency Combination and Overtone Raman Modes in Misoriented Graphene. Journal of Physical Chemistry C, 2014, 118, 3636-3643.	3.1	15
399	Stacking-dependent electronic structure of bilayer silicene. Applied Physics Letters, 2014, 104, .	3.3	70
400	Predicting Energy Conversion Efficiency of Dye Solar Cells from First Principles. Journal of Physical Chemistry C, 2014, 118, 16447-16457.	3.1	115
401	Pristine organo-imido polyoxometalates as an anode for lithium ion batteries. RSC Advances, 2014, 4, 7374.	3.6	40
402	Direct measurement of the Raman enhancement factor of rhodamine 6G on graphene under resonant excitation. Nano Research, 2014, 7, 1271-1279.	10.4	26
403	Identifying sp–sp ² carbon materials by Raman and infrared spectroscopies. Physical Chemistry Chemical Physics, 2014, 16, 11303-11309.	2.8	81
404	Dye-sensitized solar cells: Atomic scale investigation of interface structure and dynamics. Chinese Physics B, 2014, 23, 086801.	1.4	4
405	State of the Art of Singleâ€Walled Carbon Nanotube Synthesis on Surfaces. Advanced Materials, 2014, 26, 5898-5922.	21.0	71
406	Enhancing the performance of poly(3-hexylthiophene)/ZnO nanorod arrays based hybrid solar cells through incorporation of a third component. Science China: Physics, Mechanics and Astronomy, 2014, 57, 1289-1298.	5.1	6
407	Metal-film-assisted ultra-clean transfer of single-walled carbon nanotubes. Nano Research, 2014, 7, 981-989.	10.4	15
408	Two-Dimensional Molybdenum Tungsten Diselenide Alloys: Photoluminescence, Raman Scattering, and Electrical Transport. ACS Nano, 2014, 8, 7130-7137.	14.6	208
409	Raman Enhancement Effect on Two-Dimensional Layered Materials: Graphene, h-BN and MoS ₂ . Nano Letters, 2014, 14, 3033-3040.	9.1	464
410	Chemical Vapor Deposition Growth of Single-Walled Carbon Nanotubes with Controlled Structures for Nanodevice Applications. Accounts of Chemical Research, 2014, 47, 2273-2281.	15.6	69
411	Few-Layer Graphene-Encapsulated Metal Nanoparticles for Surface-Enhanced Raman Spectroscopy. Journal of Physical Chemistry C, 2014, 118, 8993-8998.	3.1	113
412	Semiconductors: Growth of Large-Area 2D MoS2(1-x) Se2x Semiconductor Alloys (Adv. Mater. 17/2014). Advanced Materials, 2014, 26, 2763-2763.	21.0	8
413	Raman Spectroscopy of Graphene. Acta Chimica Sinica, 2014, 72, 301.	1.4	105
414	Modeling charge recombination in dye-sensitized solar cells using first-principles electron dynamics: effects of structural modification. Physical Chemistry Chemical Physics, 2013, 15, 17187.	2.8	41

#	Article	IF	Citations
415	Observation of Dirac Cone Warping and Chirality Effects in Silicene. ACS Nano, 2013, 7, 9049-9054.	14.6	88
416	Chen <i>etÂal.</i> Reply:. Physical Review Letters, 2013, 110, 229702.	7.8	30
417	Evaluating Bandgap Distributions of Carbon Nanotubes via Scanning Electron Microscopy Imaging of the Schottky Barriers. Nano Letters, 2013, 13, 5556-5562.	9.1	24
418	Sorting out Semiconducting Singleâ€Walled Carbon Nanotube Arrays by Washing off Metallic Tubes Using SDS Aqueous Solution. Small, 2013, 9, 1306-1311.	10.0	26
419	Microscopic Insight into Surface Wetting: Relations between Interfacial Water Structure and the Underlying Lattice Constant. Physical Review Letters, 2013, 110, 126101.	7.8	67
420	Graphene: A Platform for Surfaceâ€Enhanced Raman Spectroscopy. Small, 2013, 9, 1206-1224.	10.0	453
421	Spontaneous Symmetry Breaking and Dynamic Phase Transition in Monolayer Silicene. Physical Review Letters, 2013, 110, 085504.	7.8	205
422	First Principles Design of Dye Molecules with Ullazine Donor for Dye Sensitized Solar Cells. Journal of Physical Chemistry C, 2013, 117, 3772-3778.	3.1	169
423	Nanotube Arrays: Sorting out Semiconducting Singleâ€Walled Carbon Nanotube Arrays by Washing off Metallic Tubes Using SDS Aqueous Solution (Small 8/2013). Small, 2013, 9, 1305-1305.	10.0	4
424	Structure–Property Relations in Allâ€Organic Dyeâ€Sensitized Solar Cells. Advanced Functional Materials, 2013, 23, 424-429.	14.9	68
425	Helicity-dependent single-walled carbon nanotube alignment on graphite for helical angle and handedness recognition. Nature Communications, 2013, 4, 2205.	12.8	45
426	trans-Dinitrosyl-Substituted Hexamolybdate and Study of Its Controllable NO Release. European Journal of Inorganic Chemistry, 2013, 2013, 1664-1671.	2.0	6
427	Quantum plasmonics: Symmetry-dependent plasmon-molecule coupling and quantized photoconductances. Physical Review B, 2012, 86, .	3.2	29
428	The chemistry of organoimido derivatives of polyoxometalates. Dalton Transactions, 2012, 41, 3599.	3.3	87
429	Influence of water on the electronic structure of metal-supported graphene: Insights from van der Waals density functional theory. Physical Review B, 2012, 85, .	3.2	70
430	Synthesis and Assembly of a Difunctional Core POM Cluster with Two Appended POM Cluster Caps. Chemistry - A European Journal, 2012, 18, 13596-13599.	3.3	16
431	Controllable synthesis of brookite/anatase/rutile TiO2 nanocomposites and single-crystalline rutile nanorods array. Journal of Materials Chemistry, 2012, 22, 7937.	6.7	188
432	Sequential assembly of metal-free phthalocyanine on few-layer epitaxial graphene mediated by thickness-dependent surface potential. Nano Research, 2012, 5, 543-549.	10.4	6

#	Article	IF	CITATIONS
433	Evidence for Dirac Fermions in a Honeycomb Lattice Based on Silicon. Physical Review Letters, 2012, 109, 056804.	7.8	634
434	Probing the Effect of Molecular Orientation on the Intensity of Chemical Enhancement Using Grapheneâ€Enhanced Raman Spectroscopy. Small, 2012, 8, 1365-1372.	10.0	105
435	Evidence of Silicene in Honeycomb Structures of Silicon on Ag(111). Nano Letters, 2012, 12, 3507-3511.	9.1	1,190
436	Bis(pyrazol-1-yl)methane as Non-Chromophoric Ancillary Ligand for Charged Bis-Cyclometalated Iridium(III) Complexes. European Journal of Inorganic Chemistry, 2012, 2012, 3209-3215.	2.0	16
437	Preparation of Al-doped ZnO nanocrystalline aggregates with enhanced performance for dye adsorption. Science China: Physics, Mechanics and Astronomy, 2012, 55, 1198-1202.	5.1	4
438	Theoretical investigation of the C60/copper phthalocyanine organic photovoltaic heterojunction. Nano Research, 2012, 5, 248-257.	10.4	32
439	Lattice-directed growth of single-walled carbon nanotubes with controlled geometries on surface. Carbon, 2012, 50, 3295-3297.	10.3	17
440	Sorting out semiconducting single-walled carbon nanotube arrays by preferential destruction of metallic tubes using water. Journal of Materials Chemistry, 2011, 21, 11815.	6.7	47
441	Effect of Graphene Fermi Level on the Raman Scattering Intensity of Molecules on Graphene. ACS Nano, 2011, 5, 5338-5344.	14.6	193
442	Quantum simulation of molecular interaction and dynamics at surfaces. Frontiers of Physics, 2011, 6, 294-308.	5.0	10
443	Heterogeneous solvothermal synthesis of oneâ€dimensional titania nanostructures on transparent conductive glasses. Physica Status Solidi (A) Applications and Materials Science, 2011, 208, 2313-2316.	1.8	5
444	Modulating the Chargeâ€Transfer Enhancement in GERS using an Electrical Field under Vacuum and an n/pâ€Doping Atmosphere. Small, 2011, 7, 2945-2952.	10.0	65
445	Rücktitelbild: Separation of Metallic and Semiconducting Single-Walled Carbon Nanotube Arrays by "Scotch Tape―(Angew. Chem. 30/2011). Angewandte Chemie, 2011, 123, 6804-6804.	2.0	1
446	Separation of Metallic and Semiconducting Singleâ€Walled Carbon Nanotube Arrays by "Scotch Tapeâ€. Angewandte Chemie - International Edition, 2011, 50, 6819-6823.	13.8	64
447	Enrichment of metallic carbon nanotubes by electric field-assisted chemical vapor deposition. Carbon, 2011, 49, 2555-2560.	10.3	25
448	Either of Left–Right Hands Fits into an Identical Glove: A New Crystal of Polyoxometalate-Amino Acid Salt. Journal of Cluster Science, 2010, 21, 173-179.	3.3	5
449	Synthesis, Characterization and Structure of [Fe(2,2′-bipy)3]2[î±-Mo8O26]: An î±-Octamolybdate-Supported Compound Formed During the Diffuse Process. Journal of Cluster Science, 2010, 21, 181-186.	3.3	2
450	First‣ayer Effect in Grapheneâ€Enhanced Raman Scattering. Small, 2010, 6, 2020-2025.	10.0	207

#	Article	IF	Citations
451	Ultrahigh secondary electron emission of carbon nanotubes. Applied Physics Letters, 2010, 96, .	3.3	22
452	< >p< >-Cu _{2< SUB>O < >n< >-ZnO Nanowires on ITO Glass for Solar Cells. Journal of Nanoscience and Nanotechnology, 2010, 10, 7473-7476.}	0.9	7
453	Single-Walled Carbon Nanotubes Probing the Denaturation of Lysozyme. Journal of Physical Chemistry C, 2010, 114, 7717-7720.	3.1	13
454	Cap Formation Engineering: From Opened C ₆₀ to Single-Walled Carbon Nanotubes. Nano Letters, 2010, 10, 3343-3349.	9.1	115
455	Selective adsorption and electronic interaction of F16CuPcon epitaxial graphene. Physical Review B, 2010, 82, .	3.2	37
456	Can Graphene be used as a Substrate for Raman Enhancement?. Nano Letters, 2010, 10, 553-561.	9.1	914
457	Nanoscale Chiral Rod-like Molecular Triads Assembled from Achiral Polyoxometalates. Journal of the American Chemical Society, 2010, 132, 14-15.	13.7	240
458	Optical properties of clusters and molecules from real-time time-dependent density functional theory using a self-consistent field. Molecular Physics, 2010, 108, 1829-1844.	1.7	15
459	Electron and Hole Dynamics in Dye-Sensitized Solar Cells: Influencing Factors and Systematic Trends. Nano Letters, 2010, 10, 1238-1247.	9.1	137
460	Controlled synthesis of one-dimensional titania nanostructure films on transparent conductive glasses from a heterogeneous solvothermal method. , 2010, , .		0
461	An Incremental Approach to Efficiently Retrieving Representative Information for Mobile Search on Web. , 2010, , .		1
462	Crinkling Ultralong Carbon Nanotubes into Serpentines by a Controlled Landing Process. Advanced Materials, 2009, 21, 4158-4162.	21.0	38
463	Fabrication of metal suspending nanostructures by nanoimprint lithography (NIL) and isotropic reactive ion etching (RIE). Science in China Series D: Earth Sciences, 2009, 52, 1181-1186.	0.9	4
464	Nanobarrier-terminated growth of single-walled carbon nanotubes on quartz surfaces. Nano Research, 2009, 2, 768.	10.4	16
465	Direct Growth of Semiconducting Single-Walled Carbon Nanotube Array. Journal of the American Chemical Society, 2009, 131, 14642-14643.	13.7	143
466	Growth of Single-Walled Carbon Nanotubes on Surface with Controlled Structures. Materials Research Society Symposia Proceedings, 2009, 1204, 1.	0.1	0
467	Grow Single-Walled Carbon Nanotubes Cross-Bar in One Batch. Journal of Physical Chemistry C, 2009, 113, 5341-5344.	3.1	27
468	Graphene as a Substrate To Suppress Fluorescence in Resonance Raman Spectroscopy. Journal of the American Chemical Society, 2009, 131, 9890-9891.	13.7	460

#	Article	IF	CITATIONS
469	"Cloning―of Single-Walled Carbon Nanotubes via Open-End Growth Mechanism. Nano Letters, 2009, 9, 1673-1677.	9.1	191
470	Sorting out Semiconducting Single-Walled Carbon Nanotube Arrays by Preferential Destruction of Metallic Tubes Using Xenon-Lamp Irradiation. Journal of Physical Chemistry C, 2008, 112, 3849-3856.	3.1	95
471	Theoretical Models of Eumelanin Protomolecules and their Optical Properties. Biophysical Journal, 2008, 94, 2095-2105.	0.5	100
472	Mechanisms for Ultrafast Nonradiative Relaxation in Electronically Excited Eumelanin Constituents. Biophysical Journal, 2008, 95, 4396-4402.	0.5	39
473	Natural Dyes Adsorbed on TiO ₂ Nanowire for Photovoltaic Applications: Enhanced Light Absorption and Ultrafast Electron Injection. Nano Letters, 2008, 8, 3266-3272.	9.1	198
474	Real-time, local basis-set implementation of time-dependent density functional theory for excited state dynamics simulations. Journal of Chemical Physics, 2008, 129, 054110.	3.0	191
475	Creation of Nanostructures with Poly(methyl methacrylate)-Mediated Nanotransfer Printing. Journal of the American Chemical Society, 2008, 130, 12612-12613.	13.7	283
476	Effective Hamiltonian for FeAs-based superconductors. Physical Review B, 2008, 78, .	3.2	27
477	Water wettability of close-packed metal surfaces. Journal of Chemical Physics, 2007, 127, 244710.	3.0	20
478	Precise replication of antireflective nanostructures from biotemplates. Applied Physics Letters, 2007, 90, 123115.	3.3	21
479	Doping-Free Fabrication of Carbon Nanotube Based Ballistic CMOS Devices and Circuits. Nano Letters, 2007, 7, 3603-3607.	9.1	319
480	Photoluminescence Recovery from Single-Walled Carbon Nanotubes on Substrates. Journal of the American Chemical Society, 2007, 129, 12382-12383.	13.7	19
481	Determination of DNA-Base Orientation on Carbon Nanotubes through Directional Optical Absorbance. Nano Letters, 2007, 7, 2312-2316.	9.1	60
482	DNA Nucleoside Interaction and Identification with Carbon Nanotubes. Nano Letters, 2007, 7, 45-50.	9.1	156
483	A carbon nanotube-based sensing element. Optoelectronics Letters, 2007, 3, 81-84.	0.8	6
484	Water adsorption on a NaCl (001) surface: A density functional theory study. Physical Review B, 2006, 74, .	3.2	43
485	CO2 mitigation in coal gasification cogeneration systems with integration of the shift reaction, CO2 absorption and methanol production. Journal of Thermal Science, 2004, 13, 193-198.	1.9	2
486	Iron Catalysts Reactivation for Efficient CVD Growth of SWNT with Base-growth Mode on Surface. Journal of Physical Chemistry B, 2004, 108, 12665-12668.	2.6	38

#	Article	IF	CITATIONS
487	Water adsorption on metal surfaces: A general picture from density functional theory studies. Physical Review B, 2004, 69, .	3.2	448
488	Bimetallic Catalysts for the Efficient Growth of SWNTs on Surfaces. Chemistry of Materials, 2004, 16, 799-805.	6.7	47
489	Low-temperature growth and properties of ZnO nanowires. Applied Physics Letters, 2004, 84, 4941-4943.	3.3	163
490	Synthesis and electrical properties of carbon nanotube polyaniline composites. Applied Physics Letters, 2004, 85, 1796-1798.	3.3	142
491	First-principles studies of cation-doped spinelLiMn2O4for lithium ion batteries. Physical Review B, 2003, 67, .	3.2	51
492	Vibrational Recognition of Hydrogen-Bonded Water Networks on a Metal Surface. Physical Review Letters, 2002, 89, 176104.	7.8	229
493	Toward the Chemistry of Carboxylic Single-Walled Carbon Nanotubes by Chemical Force Microscopy. Journal of Physical Chemistry B, 2002, 106, 4139-4144.	2.6	45
494	Chemical Alignment of Oxidatively Shortened Single-Walled Carbon Nanotubes on Silver Surface. Journal of Physical Chemistry B, 2001, 105, 5075-5078.	2.6	120
495	Surface-Enhanced Raman Scattering (SERS) from Azobenzene Self-Assembled "Sandwiches― Langmuir, 1999, 15, 16-19.	3.5	90
496	Fabrication and Structural Characterization of Azobenzene Monolayer on Silver Island Films By LB and SA Techniques. Molecular Crystals and Liquid Crystals, 1998, 314, 297-302.	0.3	0
497	Molecular level interface designs using self-assembling technique for stabilizing Langmuir-Blodgett films. Zeitschrift Fur Elektrotechnik Und Elektrochemie, 1997, 101, 1113-1120.	0.9	2
498	Interaction of DNA with CNTs: Properties and Prospects for Electronic Sequencing., 0,, 67-96.		7
499	Simultaneous switching of supramolecular chirality and organizational chirality driven by Coulomb expansion. Nano Research, $0, 1$.	10.4	2