
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1355356/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Interfacial Effect on Dielectric Properties of Selfâ€Assembled Polythioureaâ€Based Copolymers for Ultrahigh Energy Storage. Macromolecular Rapid Communications, 2022, 43, e2100700.	3.9	9
2	Delicate crystallinity control enables high-efficiency P3HT organic photovoltaic cells. Journal of Materials Chemistry A, 2022, 10, 3418-3429.	10.3	45
3	Layer-by-layer processed binary all-polymer solar cells with efficiency over 16% enabled by finely optimized morphology. Nano Energy, 2022, 93, 106858.	16.0	71
4	Enhancing organic photovoltaic performance with 3D-transport dual nonfullerene acceptors. Journal of Materials Chemistry A, 2022, 10, 1948-1955.	10.3	11
5	Trifluoro alkyl side chains in the non-fullerene acceptors to optimize the phase miscibility and vertical distribution of organic solar cells. Journal of Materials Chemistry A, 2022, 10, 8837-8845.	10.3	12
6	Tuning the Phase Separation by Thermal Annealing Enables High-Performance All-Small-Molecule Organic Solar Cells. Chemistry of Materials, 2022, 34, 3168-3177.	6.7	12
7	Efficient and mechanically-robust organic solar cells based on vertical stratification modulation through sequential blade-coating. Nano Energy, 2022, 97, 107194.	16.0	24
8	Improving Charge Injection at Gold/Conjugated Polymer Contacts by Polymer Insulatorâ€Assisted Annealing for Transistors. Small, 2022, 18, e2105896.	10.0	7
9	All‣mallâ€Molecule Organic Solar Cells with Efficiency Approaching 16% and FF over 80%. Small, 2022, 18, e2201400.	10.0	21
10	Vertically optimized phase separation with improved exciton diffusion enables efficient organic solar cells with thick active layers. Nature Communications, 2022, 13, 2369.	12.8	122
11	Enhanced Performance of Organic Field-Effect Transistors by a Molecular Dopant with High Electron Affinity. ACS Applied Materials & Interfaces, 2022, 14, 23709-23716.	8.0	10
12	Efficient All-Polymer Solar Cells with Sequentially Processed Active Layers. Polymers, 2022, 14, 2058.	4.5	6
13	Rapid Charge Storage and Release at Etchingâ€Assist Electret in Organic Transistors for Memories, Photodetectors, and Artificial Synapses. Advanced Materials Interfaces, 2022, 9, .	3.7	3
14	Binary Organic Solar Cells Breaking 19% via Manipulating the Vertical Component Distribution. Advanced Materials, 2022, 34, .	21.0	384
15	A Topâ€Đown Strategy to Engineer ActiveLayer Morphology for Highly Efficient and Stable Allâ€Polymer Solar Cells. Advanced Materials, 2022, 34, .	21.0	41
16	Nonhalogenated Dualâ€5lotâ€Die Processing Enables Highâ€Efficiency Organic Solar Cells. Advanced Materials, 2022, 34, .	21.0	56
17	Spectroscopic depth profilometry of organic thin films upon inductively coupled plasma etching. Review of Scientific Instruments, 2022, 93, 073903.	1.3	2
18	Achieving over 18 % Efficiency Organic Solar Cell Enabled by a ZnOâ€Based Hybrid Electron Transport Layer with an Operational Lifetime up to 5â€Years. Angewandte Chemie - International Edition, 2022, 61, .	13.8	36

#	Article	IF	CITATIONS
19	Side-Chain Engineering of Polystyrene Dielectrics Toward High-Performance Photon Memories and Artificial Synapses. Chemistry of Materials, 2022, 34, 6505-6517.	6.7	15
20	Achieving over 18 % Efficiency Organic Solar Cell Enabled by a ZnOâ€Based Hybrid Electron Transport Layer with an Operational Lifetime up to 5â€Years. Angewandte Chemie, 2022, 134, .	2.0	10
21	Versatile Sequential Casting Processing for Highly Efficient and Stable Binary Organic Photovoltaics. Advanced Materials, 2022, 34, .	21.0	52
22	Contrastive manipulations on vertical stratifications by a fluorescent guest component in ternary nonfullerene and fullerene organic solar cells. Chemical Engineering Journal, 2022, 450, 138018.	12.7	14
23	High-performance all-small-molecule organic solar cells without interlayers. Energy and Environmental Science, 2021, 14, 3174-3183.	30.8	43
24	Top and bottom electrode optimization enabled high-performance flexible and semi-transparent organic solar cells. Materials Chemistry Frontiers, 2021, 5, 4310-4316.	5.9	7
25	Suppressing trap states and energy loss by optimizing vertical phase distribution through ternary strategy in organic solar cells. Science China Chemistry, 2021, 64, 599-607.	8.2	22
26	Surface Etching of Polymeric Semiconductor Films Improves Environmental Stability of Transistors. Chemistry of Materials, 2021, 33, 2673-2682.	6.7	13
27	Short-Term Master-Slave Forecast Method for Distributed Photovoltaic Plants Based on the Spatial Correlation. Mathematical Problems in Engineering, 2021, 2021, 1-13.	1.1	4
28	Balancing the efficiency, stability, and cost potential for organic solar cells via a new figure of merit. Joule, 2021, 5, 1209-1230.	24.0	138
29	Crystallization Control of N,Nâ€2-Dioctyl Perylene Diimide by Amphiphilic Block Copolymers Containing poly(3-Hexylthiophene) and Polyethylene Glycol. Frontiers in Chemistry, 2021, 9, 699387.	3.6	1
30	Reconfigurable Multifunctional Ambipolar Polymerâ€Blend Transistors with Improved Switchingâ€Off Capability. Advanced Functional Materials, 2021, 31, 2103369.	14.9	13
31	Layer-by-layer slot-die coated high-efficiency organic solar cells processed using twin boiling point solvents under ambient condition. Nano Research, 2021, 14, 4236-4242.	10.4	28
32	PEDOT:PSSâ€Free Polymer Nonâ€Fullerene Polymer Solar Cells with Efficiency up to 18.60% Employing a Binaryâ€Solventâ€Chlorinated ITO Anode. Advanced Functional Materials, 2021, 31, 2106846.	14.9	40
33	Selfâ€Powered Organic Photodetectors with High Detectivity for Near Infrared Light Detection Enabled by Dark Current Reduction. Advanced Functional Materials, 2021, 31, 2106326.	14.9	70
34	Infrared spectroscopy depth profiling of organic thin films. Materials Horizons, 2021, 8, 1461-1471.	12.2	10
35	Electrochromism of Viologen/Polymer Composite: From Gel to Insulating Bulk for High-Voltage Applications. Materials, 2021, 14, 5901.	2.9	2
36	Baseplate Temperatureâ€Dependent Vertical Composition Gradient in Pseudoâ€Bilayer Films for Printing Nonâ€Fullerene Organic Solar Cells. Advanced Energy Materials, 2021, 11, 2102135.	19.5	33

#	Article	IF	CITATIONS
37	Filmâ€Ðepthâ€Ðependent Light Reflection Spectroscopy for Photovoltaics and Transistors. Advanced Materials Interfaces, 2021, 8, 2101476.	3.7	8
38	Regulating the phase separation of ternary organic solar cells via 3D architectured AIE molecules. Nano Energy, 2020, 68, 104271.	16.0	47
39	Film-depth-dependent crystallinity for light transmission and charge transport in semitransparent organic solar cells. Journal of Materials Chemistry A, 2020, 8, 401-411.	10.3	45
40	Efficient organic solar cells with the active layer fabricated from glovebox to ambient condition. Applied Physics Letters, 2020, 117, 133301.	3.3	11
41	Fingerprints of relaxor ferroelectrics: Characteristic hierarchical domain configurations and quantitative performances. Applied Materials Today, 2020, 21, 100789.	4.3	8
42	Origin of superb electrical insulating capability of cellulose-liquid biphasic dielectrics by interfacial charge behaviors. Applied Physics Letters, 2020, 117, .	3.3	7
43	Highâ€Efficiency Organic Solar Cells with Wide Toleration of Active Layer Thickness. Solar Rrl, 2020, 4, 2000476.	5.8	10
44	Polymer Electret Improves the Performance of the Oxygen-Doped Organic Field-Effect Transistors. IEEE Electron Device Letters, 2020, 41, 1665-1668.	3.9	9
45	Highâ€Performance Nonfullerene Organic Solar Cells with Unusual Inverted Structure. Solar Rrl, 2020, 4, 2000115.	5.8	21
46	Semitransparent Flexible Organic Solar Cells. Chemical Research in Chinese Universities, 2020, 36, 343-350.	2.6	18
47	Fibril Network Strategy Enables Highâ€Performance Semitransparent Organic Solar Cells. Advanced Functional Materials, 2020, 30, 2002181.	14.9	113
48	Optimized active layer morphology toward efficient and polymer batch insensitive organic solar cells. Nature Communications, 2020, 11, 2855.	12.8	237
49	Double doping approach for unusually stable and large n-type thermoelectric voltage from p-type multi-walled carbon nanotube mats. Journal of Materials Chemistry A, 2020, 8, 13095-13105.	10.3	40
50	Vertical Miscibility of Bulk Heterojunction Films Contributes to High Photovoltaic Performance. Advanced Materials Interfaces, 2020, 7, 2000577.	3.7	33
51	Verticalâ€Resolved Composition and Aggregation Gradient of Conjugatedâ€Polymer@Insulatorâ€Matrix for Transistors and Memory. Advanced Electronic Materials, 2020, 6, 1901156.	5.1	17
52	In situ Measuring Film-Depth-Dependent Light Absorption Spectra for Organic Photovoltaics. Frontiers in Chemistry, 2020, 8, 211.	3.6	12
53	Integrated Perovskite/Organic Photovoltaics with Ultrahigh Photocurrent and Photoresponse Approaching 1000 nm. Solar Rrl, 2020, 4, 2000140.	5.8	19
54	Soluble poly(4-fluorostyrene): a high-performance dielectric electret for organic transistors and memories. Materials Horizons, 2020, 7, 1861-1871.	12.2	32

#	Article	IF	CITATIONS
55	Interfacial strain driven magnetoelectric coupling in (111)-oriented self-assembled BiFeO3–CoFe2O4 thin films. Journal of Materials Chemistry C, 2020, 8, 3527-3535.	5.5	9
56	Light-assisted charge injection and depletion of insulator electrets for organic field-effect transistors. Journal of Materials Chemistry C, 2019, 7, 12862-12868.	5.5	9
57	Separating Crystallization Process of P3HT and Oâ€IDTBR to Construct Highly Crystalline Interpenetrating Network with Optimized Vertical Phase Separation. Advanced Functional Materials, 2019, 29, 1807591.	14.9	82
58	Dark Current Reduction Strategy via a Layer-By-Layer Solution Process for a High-Performance All-Polymer Photodetector. ACS Applied Materials & Interfaces, 2019, 11, 8350-8356.	8.0	64
59	Rapidly Measuring Charge Carrier Mobility of Organic Semiconductor Films Upon a Point-Contact Four-Probes Method. IEEE Journal of the Electron Devices Society, 2019, 7, 303-308.	2.1	10
60	Significant enhancement of responsivity of organic photodetectors upon molecular engineering. Journal of Materials Chemistry C, 2019, 7, 5739-5747.	5.5	28
61	Correlations between Performance of Organic Solar Cells and Filmâ€Depthâ€Dependent Optical and Electronic Variations. Advanced Optical Materials, 2019, 7, 1900152.	7.3	43
62	"Twisted―conjugated molecules as donor materials for efficient all-small-molecule organic solar cells processed with tetrahydrofuran. Journal of Materials Chemistry A, 2019, 7, 23008-23018.	10.3	37
63	A Sequential Slotâ€Die Coated Ternary System Enables Efficient Flexible Organic Solar Cells. Solar Rrl, 2019, 3, 1800333.	5.8	37
64	Achieving High Doping Concentration by Dopant Vapor Deposition in Organic Solar Cells. ACS Applied Materials & Interfaces, 2019, 11, 4178-4184.	8.0	17
65	Regulating the vertical phase distribution by fullerene-derivative in high performance ternary organic solar cells. Nano Energy, 2018, 46, 81-90.	16.0	129
66	Reconstructing Space- and Energy-Dependent Exciton Generation in Solution-Processed Inverted Organic Solar Cells. ACS Applied Materials & amp; Interfaces, 2018, 10, 13741-13747.	8.0	12
67	Critical Role of Vertical Phase Separation in Small-Molecule Organic Solar Cells. ACS Applied Materials & Interfaces, 2018, 10, 12913-12920.	8.0	21
68	Printing Semiconductor–Insulator Polymer Bilayers for Highâ€Performance Coplanar Fieldâ€Effect Transistors. Advanced Materials, 2018, 30, 1704695.	21.0	43
69	Giant Transconductance of Organic Field-Effect Transistors in Compensation Electric Fields. Physical Review Applied, 2018, 10, .	3.8	15
70	Field-Effect Charge Transport in Doped Polymer Semiconductor–Insulator Alternating Bulk Junctions with Ultrathin Transport Layers. ACS Applied Materials & Interfaces, 2018, 10, 39091-39099.	8.0	2
71	Dual-Accepting-Unit Design of Donor Material for All-Small-Molecule Organic Solar Cells with Efficiency Approaching 11%. Chemistry of Materials, 2018, 30, 8661-8668.	6.7	101
72	Organic-semiconductor: Polymer-electret blends for high-performance transistors. Nano Research, 2018, 11, 5835-5848.	10.4	17

#	Article	IF	CITATIONS
73	Effect of Isomerization on High-Performance Nonfullerene Electron Acceptors. Journal of the American Chemical Society, 2018, 140, 9140-9147.	13.7	361
74	Dopant/Semiconductor/Electret Trilayer Architecture for Highâ€Performance Organic Fieldâ€Effect Transistors. Advanced Electronic Materials, 2018, 4, 1800339.	5.1	17
75	Manipulating Doping of Organic Semiconductors by Reactive Oxygen for Fieldâ€Effect Transistors. Physica Status Solidi - Rapid Research Letters, 2018, 12, 1800297.	2.4	13
76	Gate-voltage-dependent charge transport in multi-dispersed polymer thin films. Applied Physics Letters, 2017, 110, .	3.3	9
77	Enhancing the Photovoltaic Performance via Vertical Phase Distribution Optimization in Small Molecule:PC ₇₁ BM Blends. Advanced Energy Materials, 2017, 7, 1701548.	19.5	57
78	Probing film-depth-related light harvesting in polymer solar cells via plasma etching. AIP Advances, 2017, 7, .	1.3	15
79	Manipulating Transistor Operation via Nonuniformly Distributed Charges in a Polymer Insulating Electret Layer. Physical Review Applied, 2016, 6, .	3.8	19
80	Dualâ€Characteristic Transistors Based on Semiconducting Polymer Blends. Advanced Electronic Materials, 2016, 2, 1600267.	5.1	20
81	Filmâ€Ðepthâ€Ðependent Light Absorption and Charge Transport for Polymer Electronics: A Case Study on Semiconductor/Insulator Blends by Plasma Etching. Advanced Electronic Materials, 2016, 2, 1600359.	5.1	74
82	Influence of fluorination on the properties and performance of isoindigo–quaterthiophene-based polymers. Journal of Materials Chemistry A, 2016, 4, 5039-5043.	10.3	35
83	Large interfacial area enhances electrical conductivity of poly(3-hexylthiophene)/insulating polymer blends. RSC Advances, 2015, 5, 1777-1784.	3.6	10
84	<i>In-situ</i> tuning threshold voltage of field-effect transistors based on blends of poly(3-hexylthiophene) with an insulator electret. Applied Physics Letters, 2015, 107, .	3.3	24
85	Organic Electronics: Bulk Interpenetration Network of Thermoelectric Polymer in Insulating Supporting Matrix (Adv. Mater. 15/2014). Advanced Materials, 2014, 26, 2447-2447.	21.0	0
86	Bulk Interpenetration Network of Thermoelectric Polymer in Insulating Supporting Matrix. Advanced Materials, 2014, 26, 2359-2364.	21.0	63
87	Aligned Polythiophene and its Blend Film by Directâ€Writing for Anisotropic Charge Transport. Advanced Functional Materials, 2014, 24, 4959-4968.	14.9	26
88	Moderate doping leads to high performance of semiconductor/insulator polymer blend transistors. Nature Communications, 2013, 4, 1588.	12.8	240
89	H-Aggregated Form II Spherulite of Poly(3-butylthiophene) Grown from Solution. ACS Macro Letters, 2012, 1, 1274-1278.	4.8	27
90	Ternary Donor–Insulator–Acceptor Systems for Polymer Solar Cells. Macromolecular Rapid Communications, 2012, 33, 1882-1887.	3.9	4

#	Article	IF	CITATIONS
91	A novel melting behavior of poly(3-alkylthiophene) cocrystals: premelting and recrystallization of component polymers. Polymer Chemistry, 2012, 3, 3301.	3.9	32
92	The Role of Morphology Control in Determining the Performance of P3HT/C-70 Bulk Heterojunction Polymer Solar Cells. IEEE Journal of Selected Topics in Quantum Electronics, 2010, 16, 1725-1731.	2.9	15
93	Enhanced Charge Transportation in Semiconducting Polymer/Insulating Polymer Composites: The Role of an Interpenetrating Bulk Interface. Advanced Functional Materials, 2010, 20, 1714-1720.	14.9	56
94	Precise construction of PCBM aggregates for polymer solar cellsvia multi-step controlled solvent vapor annealing. Journal of Materials Chemistry, 2010, 20, 683-688.	6.7	130
95	Effects of fullerene solubility on the crystallization of poly(3-hexylthiophene) and performance of photovoltaic devices. Organic Electronics, 2009, 10, 1334-1344.	2.6	52
96	Constructing Thin Polythiophene Film Composed of Aligned Lamellae via Controlled Solvent Vapor Treatment. Langmuir, 2009, 25, 3763-3768.	3.5	22
97	Creating a Uniform Distribution of Fullerene C ₆₀ Nanorods in a Polymer Matrix and its Photovoltaic Applications. Small, 2008, 4, 601-606.	10.0	69
98	Improving performance of polymer photovoltaic devices using an annealing-free approach via construction of ordered aggregates in solution. Journal of Materials Chemistry, 2008, 18, 1984.	6.7	235
99	Morphology and Crystalline Transition of Poly(3-butylthiophene) Associated with Its Polymorphic Modifications. Macromolecules, 2008, 41, 2062-2070.	4.8	82
100	Novel Morphology of Polyethylene Crystals Created upon Melt Crystallization of Spin-Coated Film. Macromolecules, 2008, 41, 1273-1280.	4.8	5
101	Epitaxy-Assisted Creation of PCBM Nanocrystals and Its Application in Constructing Optimized Morphology for Bulk-Heterojunction Polymer Solar Cells. Journal of Physical Chemistry B, 2008, 112, 15651-15658.	2.6	30
102	Enhanced Electrical Conductivity of Highly Crystalline Polythiophene/Insulating-Polymer Composite. Macromolecules, 2007, 40, 6579-6584.	4.8	86
103	Achieving Perpendicular Alignment of Rigid Polythiophene Backbones to the Substrate by Using Solventâ€Vapor Treatment. Advanced Materials, 2007, 19, 3594-3598.	21.0	125
104	Nanoscale Phase-Aggregation-Induced Performance Improvement of Polymer Solar Cells. Small, 2007, 3, 611-615.	10.0	38
105	Progress in polymer solar cell. Science Bulletin, 2007, 52, 145-158.	1.7	18