Andrew Lyon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1354860/publications.pdf

Version: 2024-02-01

157	14,505	66 h-index	118
papers	citations		g-index
183	183	183	13173 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	Emergence of Nonâ∈Hexagonal Crystal Packing of Deswollen and Deformed Ultraâ∈Soft Microgels under Osmotic Pressure Control. Macromolecular Rapid Communications, 2021, 42, e2100372.	2.0	7
2	Design and Synthesis of Core–Shell Microgels with Oneâ€Step Clickable Crosslinked Cores and Ultralow Crosslinked Shells. Macromolecular Chemistry and Physics, 2020, 221, 2000156.	1.1	3
3	Highly swelling pH-responsive microgels for dual mode near infra-red fluorescence reporting and imaging. Nanoscale Advances, 2020, 2, 4261-4271.	2.2	8
4	Deswelling studies of pH and temperature-sensitive ultra-low cross-linked microgels with cross-linked cores. Colloid and Polymer Science, 2020, 298, 395-405.	1.0	6
5	Using green emitting pH-responsive nanogels to report environmental changes within hydrogels: a nanoprobe for versatile sensing. Nanoscale, 2019, 11, 11484-11495.	2.8	10
6	Nanogels and Microgels: From Model Colloids to Applications, Recent Developments, and Future Trends. Langmuir, 2019, 35, 6231-6255.	1.6	395
7	Deswelling induced morphological changes in dual pH- and temperature-responsive ultra-low cross-linked poly(N-isopropyl acrylamide)-co-acrylic acid microgels. Colloid and Polymer Science, 2019, 297, 667-676.	1.0	10
8	Enhancing clot properties through fibrin-specific self-cross-linked PEG side-chain microgels. Colloids and Surfaces B: Biointerfaces, 2018, 166, 89-97.	2.5	15
9	Microgel core/shell architectures as targeted agents for fibrinolysis. Biomaterials Science, 2018, 6, 2054-2058.	2.6	4
10	Dynamic assembly of ultrasoft colloidal networks enables cell invasion within restrictive fibrillar polymers. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 885-890.	3.3	45
11	Platelet–Microcapsule Hybrids Leverage Contractile Force for Targeted Delivery of Hemostatic Agents. ACS Nano, 2017, 11, 5579-5589.	7.3	45
12	Responsive Nanogel Probe for Ratiometric Fluorescent Sensing of pH and Strain in Hydrogels. ACS Macro Letters, 2017, 6, 1245-1250.	2.3	33
13	Phase behavior of binary and polydisperse suspensions of compressible microgels controlled by selective particle deswelling. Physical Review E, 2017, 96, 032609.	0.8	37
14	Oligo(ethylene glycol)-sidechain microgels prepared in absence of cross-linking agent: Polymerization, characterization and variation of particle deformability. PLoS ONE, 2017, 12, e0181369.	1,1	23
15	Design of functional cationic microgels as conjugation scaffolds. RSC Advances, 2016, 6, 31619-31631.	1.7	10
16	An oil-in-water nanoemulsion enhances immunogenicity of H5N1 vaccine in mice. Nanomedicine: Nanotechnology, Biology, and Medicine, 2016, 12, 1909-1917.	1.7	12
17	The role of ions in the self-healing behavior of soft particle suspensions. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 5576-5581.	3.3	77
18	Microgel Surface Modification with Self-Assembling Peptides. Macromolecules, 2016, 49, 5366-5373.	2.2	12

#	Article	IF	CITATIONS
19	Enabling method to design versatile biomaterial systems from colloidal building blocks. Molecular Systems Design and Engineering, 2016, 1, 189-201.	1.7	4
20	Spontaneous reduction of polydispersity and self-healing colloidal crystals. Acta Crystallographica Section A: Foundations and Advances, 2016, 72, s330-s330.	0.0	0
21	Leveraging the Contractile Force of Platelets for Targeted Factor VIII Delivery in Hemophilia with Inhibitors. Blood, 2016, 128, 81-81.	0.6	0
22	Segregation of mass at the periphery of N-isopropylacrylamide-co-acrylic-acid microgels at high temperatures. Physical Review E, 2015, 92, 030302.	0.8	11
23	Ultrasoft, highly deformable microgels. Soft Matter, 2015, 11, 2018-2028.	1.2	84
24	Thin Films Constructed by Centrifugal Deposition of Highly Deformable, Charged Microgels. ACS Macro Letters, 2015, 4, 302-307.	2.3	18
25	Core/Shell Microgels Decouple the pH and Temperature Responsivities of Microgel Films. Chemistry of Materials, 2015, 27, 1391-1396.	3.2	27
26	Influence of binary microgel phase behavior on the assembly of multi-functional raspberry-structured microgel heteroaggregates. Journal of Colloid and Interface Science, 2015, 455, 93-100.	5.0	5
27	Electrostatic Interactions and Osmotic Pressure of Counterions Control the pH-Dependent Swelling and Collapse of Polyampholyte Microgels with Random Distribution of Ionizable Groups. Macromolecules, 2015, 48, 5914-5927.	2.2	88
28	Impact of Single-Particle Compressibility on the Fluid-Solid Phase Transition for Ionic Microgel Suspensions. Physical Review Letters, 2015, 114, 098303.	2.9	49
29	Resolving the multifaceted mechanisms of the ferric chloride thrombosis model using an interdisciplinary microfluidic approach. Blood, 2015, 126, 817-824.	0.6	66
30	Polyelectrolyte exchange and diffusion in microgel multilayer thin films. Colloid and Polymer Science, 2015, 293, 1535-1544.	1.0	9
31	The CONTIN algorithm and its application to determine the size distribution of microgel suspensions. Journal of Chemical Physics, 2015, 142, 234905.	1.2	107
32	Influence of microgel packing on raspberry-like heteroaggregate assembly. Journal of Colloid and Interface Science, 2015, 442, 39-48.	5.0	10
33	Synthesis and Properties of Inulin Based Microgels. Colloids and Interface Science Communications, 2014, 2, 15-18.	2.0	27
34	Form factor of pNIPAM microgels in overpacked states. Journal of Chemical Physics, 2014, 141, 034901.	1.2	57
35	Direct observation of ligand-induced receptor dimerization with a bioresponsive hydrogel. RSC Advances, 2014, 4, 65173-65175.	1.7	8
36	Microgel film dynamics modulate cell adhesion behavior. Soft Matter, 2014, 10, 1356-1364.	1.2	40

#	Article	IF	CITATIONS
37	Host response to microgel coatings on neural electrodes implanted in the brain. Journal of Biomedical Materials Research - Part A, 2014, 102, 1486-1499.	2.1	46
38	Ultrasoft microgels displaying emergent platelet-like behaviours. Nature Materials, 2014, 13, 1108-1114.	13.3	181
39	Dynamic Materials from Microgel Multilayers. Langmuir, 2014, 30, 6314-6323.	1.6	23
40	Tunable Swelling and Rolling of Microgel Membranes. Langmuir, 2014, 30, 7628-7634.	1.6	20
41	ILC (ionic liquid colloids) based on p(4-VP) (poly(4-vinyl pyridine)) microgels: Synthesis, characterization and use in hydrogen production. Energy, 2014, 66, 256-263.	4.5	26
42	Microgel Mechanics in Biomaterial Design. Accounts of Chemical Research, 2014, 47, 2426-2434.	7.6	69
43	Disposable platform provides visual and color-based point-of-care anemia self-testing. Journal of Clinical Investigation, 2014, 124, 4387-4394.	3.9	48
44	Colloid-matrix assemblies in regenerative medicine. Current Opinion in Colloid and Interface Science, 2013, 18, 393-405.	3.4	9
45	Hydrolytically degradable shells on thermoresponsive microgels. Colloid and Polymer Science, 2013, 291, 99-107.	1.0	15
46	Modulation of the Deswelling Temperature of Thermoresponsive Microgel Films. Langmuir, 2013, 29, 12852-12857.	1.6	23
47	Development of Selfâ€Assembling Mixed Protein Micelles with Temperatureâ€Modulated Avidities. Advanced Healthcare Materials, 2013, 2, 1045-1055.	3.9	25
48	Plastic deformation, wrinkling, and recovery in microgel multilayers. Polymer Chemistry, 2013, 4, 4890.	1.9	24
49	Packed Colloidal Phases Mediate the Synthesis of Raspberry-Structured Microgel Heteroaggregates. ACS Macro Letters, 2013, 2, 337-340.	2.3	12
50	New Insights Into The Mechanisms Of Ferric Chloride-Induced Thrombosis: a Reductionist Microfluidic Approach. Blood, 2013, 122, 2308-2308.	0.6	0
51	Structural properties of thermoresponsive poly(<i>N</i> i>isopropylacrylamide)-poly(ethyleneglycol) microgels. Journal of Chemical Physics, 2012, 136, 214903.	1.2	29
52	The Polymer/Colloid Duality of Microgel Suspensions. Annual Review of Physical Chemistry, 2012, 63, 25-43.	4.8	198
53	Reversible Inter- and Intra-Microgel Cross-Linking Using Disulfides. Macromolecules, 2012, 45, 39-45.	2.2	83
54	Multifunctional Nanogels for siRNA Delivery. Accounts of Chemical Research, 2012, 45, 985-993.	7.6	145

#	Article	IF	Citations
55	Resistive Pulse Analysis of Microgel Deformation During Nanopore Translocation. Journal of Physical Chemistry C, 2011, 115, 2999-3004.	1.5	61
56	Network Deconstruction Reveals Network Structure in Responsive Microgels. Journal of Physical Chemistry B, 2011, 115, 3761-3764.	1.2	41
57	Bulk modulus of poly(<mml:math)="" 0.784314="" 011406.<="" 1="" 2011,="" 84,="" e,="" etqq1="" microgels="" physical="" r="" review="" swelling="" td="" the="" through="" tj="" transition.="" xmlns:mml="http://www.w3.org/1998/Math/MathML"><td>gBT /Overl 0.8</td><td>ock 10 Tf 50 43</td></mml:math>	gBT /Overl 0.8	ock 10 Tf 50 43
58	Electrical signature of the deformation and dehydration of microgels during translocation through nanopores. Soft Matter, 2011, 7, 8035.	1.2	50
59	Tunable Encapsulation of Proteins within Charged Microgels. Macromolecules, 2011, 44, 8154-8160.	2.2	84
60	Control of Poly(<i>N</i> -isopropylacrylamide) Microgel Network Structure by Precipitation Polymerization near the Lower Critical Solution Temperature. Langmuir, 2011, 27, 4142-4148.	1.6	85
61	Synthesis and physicochemical properties of cationic microgels based on poly(N-isopropylmethacrylamide). Colloid and Polymer Science, 2011, 289, 333-339.	1.0	60
62	Gold nanoparticles reinforce self-healing microgel multilayers. Colloid and Polymer Science, 2011, 289, 583-590.	1.0	27
63	An upper limit for macromolecular crowding effects. BMC Biophysics, 2011, 4, 13.	4.4	29
64	Oneâ€Pot Synthesis of Microcapsules with Nanoscale Inclusions. Macromolecular Rapid Communications, 2011, 32, 1461-1466.	2.0	11
65	Chemosensitization of cancer cells by siRNA using targeted nanogel delivery. BMC Cancer, 2010, 10, 10.	1.1	120
66	Chronic inflammatory responses to microgelâ€based implant coatings. Journal of Biomedical Materials Research - Part A, 2010, 94A, 252-258.	2.1	42
67	Design of Multiresponsive Hydrogel Particles and Assemblies. Advanced Functional Materials, 2010, 20, 1697-1712.	7.8	171
68	Autonomic Selfâ€Healing of Hydrogel Thin Films. Angewandte Chemie - International Edition, 2010, 49, 767-771.	7.2	166
69	Microgel Translocation through Pores under Confinement. Angewandte Chemie - International Edition, 2010, 49, 2193-2197.	7.2	107
70	In situ fabrication of ordered nanoring arrays via the reconstruction of patterned block copolymer thin films. Chemical Communications, 2010, 46, 7927.	2.2	25
71	Direct Observation of Microgel Erosion via in-Liquid Atomic Force Microscopy. Chemistry of Materials, 2010, 22, 3300-3306.	3.2	29
72	Monitoring the Erosion of Hydrolytically-Degradable Nanogels via Multiangle Light Scattering Coupled to Asymmetrical Flow Field-Flow Fractionation. Analytical Chemistry, 2010, 82, 523-530.	3.2	31

#	Article	IF	CITATIONS
73	Multicompartment Core/Shell Microgels. Journal of the American Chemical Society, 2010, 132, 11470-11472.	6.6	79
74	Tunable attractive and repulsive interactions between pH-responsive microgels. Soft Matter, 2009, 5, 3599.	1.2	46
75	Rapid modification of retroviruses using lipid conjugates. Nanotechnology, 2009, 20, 065103.	1.3	10
76	Selfâ€Healing Colloidal Crystals. Angewandte Chemie - International Edition, 2009, 48, 4562-4566.	7.2	125
77	Temperature-programmed synthesis of micron-sized multi-responsive microgels. Colloid and Polymer Science, 2009, 287, 277-285.	1.0	111
78	Simultaneous Orthogonal Chemoligations on Multiresponsive Microgels. Macromolecules, 2009, 42, 7664-7669.	2.2	31
79	Peptide-Functionalized Nanogels for Targeted siRNA Delivery. Bioconjugate Chemistry, 2009, 20, 960-968.	1.8	179
80	Centrifugal Deposition of Microgels for the Rapid Assembly of Nonfouling Thin Films. ACS Applied Materials & Samp; Interfaces, 2009, 1, 2747-2754.	4.0	69
81	Physical Aging and Phase Behavior of Multiresponsive Microgel Colloidal Dispersions. Journal of Physical Chemistry B, 2009, 113, 4590-4599.	1.2	45
82	Bioresponsive hydrogels for sensing applications. Soft Matter, 2009, 5, 29-35.	1.2	127
83	Thermoresponsive microgel-based materials. Chemical Society Reviews, 2009, 38, 865.	18.7	273
84	Size-controlled synthesis of monodisperse core/shell nanogels. Colloid and Polymer Science, 2008, 286, 563-569.	1.0	110
85	Synthesis of multifunctional nanogels using a protected macromonomer approach. Colloid and Polymer Science, 2008, 286, 1061-1069.	1.0	24
86	Reduced acute inflammatory responses to microgel conformal coatings. Biomaterials, 2008, 29, 4605-4615.	5.7	114
87	Local Control over Phase Transitions in Microgel Assemblies. Journal of Physical Chemistry B, 2008, 112, 11258-11263.	1.2	9
88	Deformation Controlled Assembly of Binary Microgel Thin Films. Langmuir, 2008, 24, 7216-7222.	1.6	34
89	Direct Observation of Phase Transition Dynamics in Suspensions of Soft Colloidal Hydrogel Particles. AIP Conference Proceedings, 2008, , .	0.3	1
90	Core-Shell Hydrogel Nanoparticles. , 2008, , 993-1002.		0

#	Article	IF	CITATIONS
91	Au Nanoparticle Templated Synthesis of pNIPAm Nanogels. Chemistry of Materials, 2007, 19, 719-726.	3.2	134
92	Self-Assembly of "Paint-On―Colloidal Crystals Using Poly(styrene-co-N-isopropylacrylamide) Spheres. Chemistry of Materials, 2007, 19, 1584-1591.	3.2	102
93	Displacement-Induced Switching Rates of Bioresponsive Hydrogel Microlenses. Chemistry of Materials, 2007, 19, 2527-2532.	3.2	30
94	In-Situ AFM Studies of the Phase-Transition Behavior of Single Thermoresponsive Hydrogel Particles. Langmuir, 2007, 23, 130-137.	1.6	109
95	Colloidal Crystals of Thermosensitive, Core/Shell Hybrid Microgels. Journal of Physical Chemistry C, 2007, 111, 5667-5672.	1.5	101
96	Crystallization Behavior of Soft, Attractive Microgels. Journal of Physical Chemistry B, 2007, 111, 6992-6997.	1.2	58
97	On the Unusual Stability of Succinimidyl Esters in pNIPAm-AAc Microgels. Bioconjugate Chemistry, 2007, 18, 601-604.	1.8	14
98	Influence of Ancillary Binding and Nonspecific Adsorption on Bioresponsive Hydrogel Microlenses. Biomacromolecules, 2007, 8, 1157-1161.	2.6	31
99	Phase Behavior in Highly Concentrated Assemblies of Microgels with Soft Repulsive Interaction Potentials. Journal of Physical Chemistry B, 2007, 111, 7796-7801.	1.2	58
100	Bimodal Swelling Responses in Microgel Thin Films. Journal of Physical Chemistry B, 2007, 111, 4060-4066.	1.2	51
101	Covalent Tethering of Functional Microgel Films onto Poly(ethylene terephthalate) Surfaces. Biomacromolecules, 2007, 8, 3271-3275.	2.6	55
102	Amphiphilic, Peptide-Modified Core/Shell Microgels. , 2006, , 1-8.		7
103	H NMR Investigation of Thermally Triggered Insulin Release from Poly(N-isopropylacrylamide) Microgels. Biomacromolecules, 2006, 7, 2918-2922.	2.6	94
104	Label-Free Biosensing with Hydrogel Microlenses. Angewandte Chemie - International Edition, 2006, 45, 1446-1449.	7.2	148
105	Pulsatile Release of Insulin from Layer-by-Layer Assembled Microgel Thin Films. Macromolecular Symposia, 2005, 227, 285-294.	0.4	25
106	Photoswitchable Microlens Arrays. Angewandte Chemie - International Edition, 2005, 44, 1333-1336.	7.2	90
107	Soft Nanotechnology with Soft Nanoparticles. Angewandte Chemie - International Edition, 2005, 44, 7686-7708.	7.2	781
108	Hollow Thermoresponsive Microgels. Small, 2005, 1, 416-421.	5.2	142

#	Article	IF	Citations
109	Doxorubicin Uptake and Release from Microgel Thin Films. Biomacromolecules, 2005, 6, 408-413.	2.6	211
110	Phase Transition Behavior, Protein Adsorption, and Cell Adhesion Resistance of Poly(ethylene glycol) Cross-Linked Microgel Particles. Biomacromolecules, 2005, 6, 2032-2039.	2.6	163
111	Bioresponsive Hydrogel Microlenses. Journal of the American Chemical Society, 2005, 127, 9588-9592.	6.6	275
112	Application of microgels for optical tagging. , 2004, , .		1
113	Ligand-Functionalized Core/Shell Microgels with Permselective Shells. Angewandte Chemie - International Edition, 2004, 43, 6706-6709.	7.2	89
114	Colloidal Hydrogel Microlenses. Advanced Materials, 2004, 16, 184-187.	11.1	122
115	Optical and Acoustic Studies of pH-Dependent Swelling in Microgel Thin Films. Chemistry of Materials, 2004, 16, 4373-4380.	3.2	67
116	Characterization of Cyanine Dye-Labeled Poly(N-isopropylacrylamide) Core/Shell Microgels Using Fluorescence Resonance Energy Transfer. Journal of Physical Chemistry B, 2004, 108, 12652-12657.	1.2	65
117	Photoinduced Phase Transitions in Poly(N-isopropylacrylamide) Microgels. Chemistry of Materials, 2004, 16, 2623-2627.	3.2	118
118	Thermally Modulated Insulin Release from Microgel Thin Films. Biomacromolecules, 2004, 5, 1940-1946.	2.6	186
119	Hydrogel Microparticles as Dynamically Tunable Microlenses. Journal of the American Chemical Society, 2004, 126, 9512-9513.	6.6	155
120	Microgel Colloidal Crystals. Journal of Physical Chemistry B, 2004, 108, 19099-19108.	1.2	219
121	Folate-Mediated Cell Targeting and Cytotoxicity Using Thermoresponsive Microgels. Journal of the American Chemical Society, 2004, 126, 10258-10259.	6.6	298
122	Fluorescence nonradiative energy transfer analysis of crosslinker heterogeneity in core–shell hydrogel nanoparticles. Analytica Chimica Acta, 2003, 496, 53-63.	2.6	29
123	Photothermal Patterning of Microgel/Gold Nanoparticle Composite Colloidal Crystals. Journal of the American Chemical Society, 2003, 125, 460-465.	6.6	125
124	Shell-Restricted Swelling and Core Compression in Poly(N-isopropylacrylamide) Coreâ^'Shell Microgels. Macromolecules, 2003, 36, 1988-1993.	2.2	221
125	Investigations into the Deswelling Dynamics and Thermodynamics of Thermoresponsive Microgel Composite Films. Langmuir, 2003, 19, 7374-7379.	1.6	61
126	Layer-by-Layer Deposition of Thermoresponsive Microgel Thin Films. Langmuir, 2003, 19, 8759-8764.	1.6	197

#	Article	IF	Citations
127	Microlens Formation in Microgel/Gold Colloid Composite Materials via Photothermal Patterning. Journal of the American Chemical Society, 2003, 125, 5292-5293.	6.6	77
128	Dependence of Shell Thickness on Core Compression in Acrylic Acid Modified Poly(N-isopropylacrylamide) Core/Shell Microgels. Langmuir, 2003, 19, 4544-4547.	1.6	105
129	Synthesis and Characterization of pH-Responsive Copolymer Microgels with Tunable Volume Phase Transition Temperatures. Langmuir, 2003, 19, 7662-7664.	1.6	191
130	Influence of Particle Volume Fraction on Packing in Responsive Hydrogel Colloidal Crystals. Journal of Physical Chemistry B, 2003, 107, 2927-2932.	1.2	115
131	In-Lens Cryo-High Resolution Scanning Electron Microscopy: Methodologies for Molecular Imaging of Self-Assembled Organic Hydrogels. Microscopy and Microanalysis, 2003, 9, 286-295.	0.2	30
132	Synthesis and Protein Adsorption Resistance of PEG-Modified Poly(N-isopropylacrylamide) Core/Shell Microgels. Macromolecules, 2002, 35, 9634-9639.	2.2	149
133	Tunable Swelling Kinetics in Coreâ^'Shell Hydrogel Nanoparticles. Journal of the American Chemical Society, 2001, 123, 7511-7517.	6.6	269
134	Temperature-Jump Investigations of the Kinetics of Hydrogel Nanoparticle Volume Phase Transitions. Journal of the American Chemical Society, 2001, 123, 11284-11289.	6.6	138
135	Interfacial Nonradiative Energy Transfer in Responsive Coreâ [^] 'Shell Hydrogel Nanoparticles. Journal of the American Chemical Society, 2001, 123, 8203-8209.	6.6	113
136	Synthesis and Characterization of Environmentally Responsive Core-Shell Hydrogel Nanoparticles. Materials Research Society Symposia Proceedings, 2000, 662, 1.	0.1	0
137	Synthesis and Characterization of Multiresponsive Coreâ ⁻ 'Shell Microgels. Macromolecules, 2000, 33, 8301-8306.	2.2	517
138	Unidirectional Plasmon Propagation in Metallic Nanowires. Journal of Physical Chemistry B, 2000, 104, 6095-6098.	1.2	387
139	Thermoresponsive Photonic Crystals. Journal of Physical Chemistry B, 2000, 104, 6327-6331.	1.2	335
140	Metal Films Prepared by Stepwise Assembly. 2. Construction and Characterization of Colloidal Au and Ag Multilayers. Chemistry of Materials, 2000, 12, 2869-2881.	3.2	262
141	Hydroxylamine Seeding of Colloidal Au Nanoparticles. 3. Controlled Formation of Conductive Au Films. Chemistry of Materials, 2000, 12, 314-323.	3.2	164
142	An improved surface plasmon resonance imaging apparatus. Review of Scientific Instruments, 1999, 70, 2076-2081.	0.6	34
143	Surface plasmon resonance of colloidal Au-modified gold films. Sensors and Actuators B: Chemical, 1999, 54, 118-124.	4.0	149
144	Energetics of the Nanocrystalline Titanium Dioxide/Aqueous Solution Interface:  Approximate Conduction Band Edge Variations between H0 = â^'10 and H- = +26. Journal of Physical Chemistry B, 1999, 103, 4623-4628.	1.2	210

#	Article	IF	Citations
145	Orthogonal Self-Assembly on Colloidal Gold-Platinum Nanorods. Advanced Materials, 1999, 11, 1021-1025.	11.1	476
146	Surface Plasmon Resonance of Au Colloid-Modified Au Films:Â Particle Size Dependence. Journal of Physical Chemistry B, 1999, 103, 5826-5831.	1.2	226
147	Orthogonal Self-Assembly on Colloidal Gold-Platinum Nanorods. , 1999, 11, 1021.		2
148	Colloidal Au-Enhanced Surface Plasmon Resonance Immunosensing. Analytical Chemistry, 1998, 70, 5177-5183.	3.2	629
149	Nanometer-Scale Architecture Using Colloidal Gold. ACS Symposium Series, 1997, , 7-16.	0.5	5
150	Energy Conversion Chemistry: Mechanisms of Charge Transfer at Metal-Oxide Semiconductor/Solution Interfaces. Journal of Chemical Education, 1997, 74, 657.	1.1	30
151	Primitive Molecular Recognition Effects in Electron Transfer Processes:Â Modulation of ((Trimethylammonio)methyl)ferrocenium/ferrocene Self-Exchange Kinetics via Hydrophobic Encapsulation. Inorganic Chemistry, 1996, 35, 970-973.	1.9	36
152	Ion modulated electroactivity in thin-film polymers derived from bipyridyl and phenanthroline complexes of iron. Journal of Electroanalytical Chemistry, 1995, 387, 109-113.	1.9	7
153	Energetics of Semiconductor Electrode/Solution Interfaces: EQCM Evidence for Charge-Compensating Cation Adsorption and Intercalation during Accumulation Layer Formation in the Titanium Dioxide/Acetonitrile System. The Journal of Physical Chemistry, 1995, 99, 15718-15720.	2.9	114
154	Ionic Association Effects upon Optical Electron Transfer Energetics: Studies in Water with (CN)5Fell-BPE-FellI(CN)55 Inorganic Chemistry, 1994, 33, 4446-4452.	1.9	21
155	Bioconjugation of Soft Nanomaterials. , 0, , 61-91.		0
156	Core–Shell Hydrogel Nanoparticles. , 0, , 1045-1053.		0
157	Amphiphilic, Peptide-Modified Core/Shell Microgels. , 0, , 1-8.		O