Bobbi Fleiss

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1354826/publications.pdf

Version: 2024-02-01

59	3,793	147801	133252
papers	citations	h-index	g-index
65	65	65	4855
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Characterization of phenotype markers and neuronotoxic potential of polarised primary microglia in vitro. Brain, Behavior, and Immunity, 2013, 32, 70-85.	4.1	529
2	Systemic inflammation disrupts the developmental program of white matter. Annals of Neurology, 2011, 70, 550-565.	5.3	337
3	Tertiary mechanisms of brain damage: a new hope for treatment of cerebral palsy?. Lancet Neurology, The, 2012, 11, 556-566.	10.2	299
4	Melatonin augments hypothermic neuroprotection in a perinatal asphyxia model. Brain, 2013, 136, 90-105.	7.6	222
5	Lipopolysaccharideâ€induced alteration of mitochondrial morphology induces a metabolic shift in microglia modulating the inflammatory response in vitro and in vivo. Glia, 2019, 67, 1047-1061.	4.9	155
6	Blood-brain barrier dysfunction in disorders of the developing brain. Frontiers in Neuroscience, 2015, 9, 40.	2.8	119
7	Impaired oligodendrocyte maturation in preterm infants: Potential therapeutic targets. Progress in Neurobiology, 2016, 136, 28-49.	5.7	110
8	Molecular Mechanisms of Neonatal Brain Injury. Neurology Research International, 2012, 2012, 1-16.	1.3	102
9	Decreased microglial Wnt/ \hat{l}^2 -catenin signalling drives microglial pro-inflammatory activation in the developing brain. Brain, 2019, 142, 3806-3833.	7.6	97
10	Temporal Characterization of Microglia/Macrophage Phenotypes in a Mouse Model of Neonatal Hypoxic-Ischemic Brain Injury. Frontiers in Cellular Neuroscience, 2016, 10, 286.	3.7	83
11	Brain Cell Death Is Reduced With Cooling by 3.5°C to 5°C but Increased With Cooling by 8.5°C in a Piglet Asphyxia Model. Stroke, 2015, 46, 275-278.	2.0	82
12	Reactive astrocyte COX2â€PGE2 production inhibits oligodendrocyte maturation in neonatal white matter injury. Glia, 2017, 65, 2024-2037.	4.9	81
13	Systemic Stimulation of TLR2 Impairs Neonatal Mouse Brain Development. PLoS ONE, 2011, 6, e19583.	2.5	81
14	Inflammationâ€induced sensitization of the brain in term infants. Developmental Medicine and Child Neurology, 2015, 57, 17-28.	2.1	79
15	Integrative genomics of microglia implicates DLG4 (PSD95) in the white matter development of preterm infants. Nature Communications, 2017, 8, 428.	12.8	74
16	Microglial MyD88 signaling regulates acute neuronal toxicity of LPS-stimulated microglia in vitro. Brain, Behavior, and Immunity, 2010, 24, 776-783.	4.1	71
17	Neuroprotection by the histone deacetylase inhibitor trichostatin A in a model of lipopolysaccharide-sensitised neonatal hypoxic-ischaemic brain injury. Journal of Neuroinflammation, 2012, 9, 70.	7.2	69
18	Role of microglia in a mouse model of paediatric traumatic brain injury. Brain, Behavior, and Immunity, 2017, 63, 197-209.	4.1	64

#	Article	IF	CITATIONS
19	Chorioamnionitis, neuroinflammation, and injury: timing is key in the preterm ovine fetus. Journal of Neuroinflammation, $2018, 15, 113$.	7.2	63
20	Brain damage of the preterm infant: new insights into the role of inflammation. Biochemical Society Transactions, 2014, 42, 557-563.	3.4	59
21	Neuroinflammation in preterm babies and autism spectrum disorders. Pediatric Research, 2019, 85, 155-165.	2.3	59
22	Controversies in preterm brain injury. Neurobiology of Disease, 2016, 92, 90-101.	4.4	57
23	Interneuron Development Is Disrupted in Preterm Brains With Diffuse White Matter Injury: Observations in Mouse and Human. Frontiers in Physiology, 2019, 10, 955.	2.8	55
24	Inhaled 45–50% argon augments hypothermic brain protection in a piglet model of perinatal asphyxia. Neurobiology of Disease, 2016, 87, 29-38.	4.4	52
25	Stem Cell Therapy for Neonatal Brain Injury. Clinics in Perinatology, 2014, 41, 133-148.	2.1	45
26	Failure of thyroid hormone treatment to prevent inflammation-induced white matter injury in the immature brain. Brain, Behavior, and Immunity, 2014, 37, 95-102.	4.1	39
27	Pharmacokinetics of dexmedetomidine combined with therapeutic hypothermia in a piglet asphyxia model. Acta Anaesthesiologica Scandinavica, 2014, 58, 733-742.	1.6	38
28	Knowledge Gaps and Emerging Research Areas in Intrauterine Growth Restriction-Associated Brain Injury. Frontiers in Endocrinology, 2019, 10, 188.	3.5	38
29	Neuroprotection offered by mesenchymal stem cells in perinatal brain injury: Role of mitochondria, inflammation, and reactive oxygen species. Journal of Neurochemistry, 2021, 158, 59-73.	3.9	38
30	Acute LPS sensitization and continuous infusion exacerbates hypoxic brain injury in a piglet model of neonatal encephalopathy. Scientific Reports, 2019, 9, 10184.	3.3	36
31	A Critical Review of Models of Perinatal Infection. Developmental Neuroscience, 2015, 37, 289-304.	2.0	35
32	Microglia-Mediated Neurodegeneration in Perinatal Brain Injuries. Biomolecules, 2021, 11, 99.	4.0	32
33	Cortical Gray Matter Injury in Encephalopathy of Prematurity: Link to Neurodevelopmental Disorders. Frontiers in Neurology, 2020, 11, 575.	2.4	31
34	Isoflurane Exposure Induces Cell Death, Microglial Activation and Modifies the Expression of Genes Supporting Neurodevelopment and Cognitive Function in the Male Newborn Piglet Brain. PLoS ONE, 2016, 11, e0166784.	2.5	31
35	Long-Term Neuropathological Changes Associated with Cerebral Palsy in a Nonhuman Primate Model of Hypoxic-Ischemic Encephalopathy. Developmental Neuroscience, 2017, 39, 124-140.	2.0	30
36	High-Dose Melatonin and Ethanol Excipient Combined with Therapeutic Hypothermia in a Newborn Piglet Asphyxia Model. Scientific Reports, 2020, 10, 3898.	3.3	30

3

#	Article	IF	CITATIONS
37	HIP/PAP prevents excitotoxic neuronal death and promotes plasticity. Annals of Clinical and Translational Neurology, 2014, 1, 739-754.	3.7	29
38	Contribution of mast cells to injury mechanisms in a mouse model of pediatric traumatic brain injury. Journal of Neuroscience Research, 2016, 94, 1546-1560.	2.9	25
39	Myelination induction by a histamine H3 receptor antagonist in a mouse model of preterm white matter injury. Brain, Behavior, and Immunity, 2018, 74, 265-276.	4.1	25
40	Immediate remote ischemic postconditioning after hypoxia ischemia in piglets protects cerebral white matter but not grey matter. Journal of Cerebral Blood Flow and Metabolism, 2016, 36, 1396-1411.	4.3	24
41	Dexmedetomidine Combined with Therapeutic Hypothermia Is Associated with Cardiovascular Instability and Neurotoxicity in a Piglet Model of Perinatal Asphyxia. Developmental Neuroscience, 2017, 39, 156-170.	2.0	23
42	Behavioural Effects of Near-Term Acute Fetal Hypoxia in a Small Precocial Animal, the Spiny Mouse <i>(i) (Acomys cahirinus) < ii>(i) Neonatology, 2010, 97, 45-51.</i>	2.0	19
43	Persistently Altered Metabolic Phenotype following Perinatal Excitotoxic Brain Injury. Developmental Neuroscience, 2017, 39, 182-191.	2.0	19
44	The Cerebrospinal Fluid Inflammatory Response to Preterm Birth. Frontiers in Physiology, 2018, 9, 1299.	2.8	19
45	Effects of birth asphyxia on neonatal hippocampal structure and function in the spiny mouse. International Journal of Developmental Neuroscience, 2011, 29, 757-766.	1.6	18
46	Pro-epileptogenic effects of viral-like inflammation in both mature and immature brains. Journal of Neuroinflammation, 2016, 13, 307.	7.2	18
47	Neuroprotection of the preterm brain. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2019, 162, 315-328.	1.8	18
48	Brain volumetry in fetuses that deliver very preterm: An MRI pilot study. NeuroImage: Clinical, 2021, 30, 102650.	2.7	17
49	Surgery increases cell death and induces changes in gene expression compared with anesthesia alone in the developing piglet brain. PLoS ONE, 2017, 12, e0173413.	2.5	16
50	Bench to Cribside: the Path for Developing a Neuroprotectant. Translational Stroke Research, 2013, 4, 258-277.	4.2	15
51	Midkine: The Who, What, Where, and When of a Promising Neurotrophic Therapy for Perinatal Brain Injury. Frontiers in Neurology, 2020, 11, 568814.	2.4	13
52	Revisiting thyroid hormone treatment to prevent brain damage of prematurity. Journal of Neuroscience Research, 2014, 92, 1609-1610.	2.9	12
53	Effect of maternal administration of allopregnanolone before birth asphyxia on neonatal hippocampal function in the spiny mouse. Brain Research, 2012, 1433, 9-19.	2.2	11
54	Therapeutic potential of stem cells for preterm infant brain damage: Can we move from the heterogeneity of preclinical and clinical studies to established therapeutics?. Biochemical Pharmacology, 2021, 186, 114461.	4.4	11

BOBBI FLEISS

#	Article	IF	CITATION
55	The Anti-Inflammatory Effects of the Small Molecule Pifithrin-µ on BV2 Microglia. Developmental Neuroscience, 2015, 37, 363-375.	2.0	10
56	Hypothermia is not therapeutic in a neonatal piglet model of inflammation-sensitized hypoxia–ischemia. Pediatric Research, 2022, 91, 1416-1427.	2.3	9
57	Early origins of neuropsychiatric disorders. Pediatric Research, 2019, 85, 113-114.	2.3	6
58	Serial blood cytokine and chemokine mRNA and microRNA over 48 h are insult specific in a piglet model of inflammation-sensitized hypoxia–ischaemia. Pediatric Research, 2021, 89, 464-475.	2.3	4
59	Brain Edema in Developing Brain Diseases. , 2017, , 393-429.		1