
Mikhail Shugay

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1353910/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Accounting for B-cell Behavior and Sampling Bias Predicts Anti–PD-L1 Response in Bladder Cancer. Cancer Immunology Research, 2022, 10, 343-353.	3.4	9
2	Subsequent malaria enhances virus-specific T cell immunity in SIV-infected Chinese rhesus macaques. Cell Communication and Signaling, 2022, 20, .	6.5	2
3	T-cell tracking, safety, and effect of low-dose donor memory T-cell infusions after $\hat{I} \pm \hat{I}^2$ T cell-depleted hematopoietic stem cell transplantation. Bone Marrow Transplantation, 2021, 56, 900-908.	2.4	8
4	Benchmarking of T cell receptor repertoire profiling methods reveals large systematic biases. Nature Biotechnology, 2021, 39, 236-245.	17.5	78
5	A TÂcell repertoire timestamp is at the core of responsiveness to CTLA-4 blockade. IScience, 2021, 24, 102100.	4.1	8
6	Distinct organization of adaptive immunity in the long-lived rodent Spalax galili. Nature Aging, 2021, 1, 179-189.	11.6	5
7	Diversity in immunogenomics: the value and the challenge. Nature Methods, 2021, 18, 588-591.	19.0	40
8	New Regions With Molecular Alterations in a Rare Case of Insulinomatosis: Case Report With Literature Review. Frontiers in Endocrinology, 2021, 12, 760154.	3.5	1
9	Ancestral diversity is limited in published T cell receptor sequencing studies. Immunity, 2021, 54, 2177-2179.	14.3	3
10	VDJdb in 2019: database extension, new analysis infrastructure and a T-cell receptor motif compendium. Nucleic Acids Research, 2020, 48, D1057-D1062.	14.5	268
11	Benchmarking immunoinformatic tools for the analysis of antibody repertoire sequences. Bioinformatics, 2020, 36, 1731-1739.	4.1	39
12	An overview of immunoinformatics approaches and databases linking T cell receptor repertoires to their antigen specificity. Immunogenetics, 2020, 72, 77-84.	2.4	25
13	CD4+ T Cells Recognize Conserved Influenza A Epitopes through Shared Patterns of V-Gene Usage and Complementary Biochemical Features. Cell Reports, 2020, 32, 107885.	6.4	11
14	SARS-CoV-2 Epitopes Are Recognized by a Public and Diverse Repertoire of Human T Cell Receptors. Immunity, 2020, 53, 1245-1257.e5.	14.3	194
15	MHC-II alleles shape the CDR3 repertoires of conventional and regulatory naÃ ⁻ ve CD4 ⁺ T cells. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 13659-13669.	7.1	28
16	The Interplay between CD27dull and CD27bright B Cells Ensures the Flexibility, Stability, and Resilience of Human B Cell Memory. Cell Reports, 2020, 30, 2963-2977.e6.	6.4	76
17	Comprehensive analysis of structural and sequencing data reveals almost unconstrained chain pairing in TCRαβ complex. PLoS Computational Biology, 2020, 16, e1007714.	3.2	13
18	Intratumoral immunoglobulin isotypes predict survival in lung adenocarcinoma subtypes. , 2019, 7, 279.		64

Intratumoral immunoglobulin isotypes predict survival in lung adenocarcinoma subtypes. , 2019, 7, 279. 18

MIKHAIL SHUGAY

#	Article	IF	CITATIONS
19	A Framework for Annotation of Antigen Specificities in High-Throughput T-Cell Repertoire Sequencing Studies. Frontiers in Immunology, 2019, 10, 2159.	4.8	36
20	Detecting T cell receptors involved in immune responses from single repertoire snapshots. PLoS Biology, 2019, 17, e3000314.	5.6	116
21	sumrep: A Summary Statistic Framework for Immune Receptor Repertoire Comparison and Model Validation. Frontiers in Immunology, 2019, 10, 2533.	4.8	22
22	CD8+ T cells with characteristic T cell receptor beta motif are detected in blood and expanded in synovial fluid of ankylosing spondylitis patients. Rheumatology, 2018, 57, 1097-1104.	1.9	41
23	VDJdb: a curated database of T-cell receptor sequences with known antigen specificity. Nucleic Acids Research, 2018, 46, D419-D427.	14.5	391
24	Comparative analysis of murine Tâ \in cell receptor repertoires. Immunology, 2018, 153, 133-144.	4.4	72
25	Comparative Analysis of B-Cell Receptor Repertoires Induced by Live Yellow Fever Vaccine in Young and Middle-Age Donors. Frontiers in Immunology, 2018, 9, 2309.	4.8	25
26	High-resolution repertoire analysis reveals a major bystander activation of Tfh and Tfr cells. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 9604-9609.	7.1	62
27	The Changing Landscape of Naive T Cell Receptor Repertoire With Human Aging. Frontiers in Immunology, 2018, 9, 1618.	4.8	87
28	Exploring the pre-immune landscape of antigen-specific T cells. Genome Medicine, 2018, 10, 68.	8.2	60
29	Antigen receptor repertoire profiling from RNA-seq data. Nature Biotechnology, 2017, 35, 908-911.	17.5	243
30	A high-throughput assay for quantitative measurement of PCR errors. Scientific Reports, 2017, 7, 2718.	3.3	27
31	Application of nonsense-mediated primer exclusion (NOPE) for preparation of unique molecular barcoded libraries. BMC Genomics, 2017, 18, 440.	2.8	2
32	Tracking T-cell immune reconstitution after TCRαβ/CD19-depleted hematopoietic cells transplantation in children. Leukemia, 2017, 31, 1145-1153.	7.2	44
33	MAGERI: Computational pipeline for molecular-barcoded targeted resequencing. PLoS Computational Biology, 2017, 13, e1005480.	3.2	37
34	Estimating the number of HIV-specific T-cells in healthy donors using high-throughput sequencing profiles of T-cell receptor repertoires. Bulletin of Russian State Medical University, 2017, , 75-80.	0.2	0
35	Single-cell analysis of glandular T cell receptors in Sjögren's syndrome. JCl Insight, 2016, 1, .	5.0	54
36	Dynamics of Individual T Cell Repertoires: From Cord Blood to Centenarians. Journal of Immunology, 2016, 196, 5005-5013.	0.8	160

3

MIKHAIL SHUGAY

#	Article	IF	CITATIONS
37	High-quality full-length immunoglobulin profiling with unique molecular barcoding. Nature Protocols, 2016, 11, 1599-1616.	12.0	179
38	VDJviz: a versatile browser for immunogenomics data. BMC Genomics, 2016, 17, 453.	2.8	35
39	TCR usage, gene expression and function of two distinct FOXP3 ⁺ Treg subsets within CD4 ⁺ CD25 ^{hi} T cells identified by expression of CD39 and CD45RO. Immunology and Cell Biology, 2016, 94, 293-305.	2.3	19
40	The Evidence for Increased L1 Activity in the Site of Human Adult Brain Neurogenesis. PLoS ONE, 2015, 10, e0117854.	2.5	41
41	P2RX7 Purinoceptor: A Therapeutic Target for Ameliorating the Symptoms of Duchenne Muscular Dystrophy. PLoS Medicine, 2015, 12, e1001888.	8.4	51
42	VDJtools: Unifying Post-analysis of T Cell Receptor Repertoires. PLoS Computational Biology, 2015, 11, e1004503.	3.2	528
43	MiXCR: software for comprehensive adaptive immunity profiling. Nature Methods, 2015, 12, 380-381.	19.0	1,323
44	Quantitative Profiling of Immune Repertoires for Minor Lymphocyte Counts Using Unique Molecular Identifiers. Journal of Immunology, 2015, 194, 6155-6163.	0.8	90
45	A mechanism for expansion of regulatory T-cell repertoire and its role in self-tolerance. Nature, 2015, 528, 132-136.	27.8	123
46	tcR: an R package for T cell receptor repertoire advanced data analysis. BMC Bioinformatics, 2015, 16, 175.	2.6	240
47	Sequencing rare T-cell populations. Oncotarget, 2015, 6, 39393-39394.	1.8	2
48	Age-Related Decrease in TCR Repertoire Diversity Measured with Deep and Normalized Sequence Profiling. Journal of Immunology, 2014, 192, 2689-2698.	0.8	396
49	Distinctive properties of identical twins' TCR repertoires revealed by high-throughput sequencing. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 5980-5985.	7.1	106
50	Towards error-free profiling of immune repertoires. Nature Methods, 2014, 11, 653-655.	19.0	411
51	MiTCR: software for T-cell receptor sequencing data analysis. Nature Methods, 2013, 10, 813-814.	19.0	176
52	Oncofuse: a computational framework for the prediction of the oncogenic potential of gene fusions. Bioinformatics, 2013, 29, 2539-2546.	4.1	87
53	Pairing of <scp>T</scp> â€eell receptor chains via emulsion <scp>PCR</scp> . European Journal of Immunology, 2013, 43, 2507-2515.	2.9	126
54	Huge Overlap of Individual TCR Beta Repertoires. Frontiers in Immunology, 2013, 4, 466.	4.8	56

#	Article	IF	CITATIONS
55	Mother and Child T Cell Receptor Repertoires: Deep Profiling Study. Frontiers in Immunology, 2013, 4, 463.	4.8	41
56	Genomic Hallmarks of Genes Involved in Chromosomal Translocations in Hematological Cancer. PLoS Computational Biology, 2012, 8, e1002797.	3.2	27
57	LIF, a Novel STAT5-Regulated Gene, Is Aberrantly Expressed in Myeloproliferative Neoplasms. Genes and Cancer, 2011, 2, 593-596.	1.9	8