Priyamvada Rai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1351935/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	OGG1 co-inhibition antagonizes the tumor-inhibitory effects of targeting MTH1. Redox Biology, 2021, 40, 101848.	9.0	6
2	NMNAT promotes glioma growth through regulating post-translational modifications of P53 to inhibit apoptosis. ELife, 2021, 10, .	6.0	13
3	The Existence of MTH1-independent 8-oxodGTPase Activity in Cancer Cells as a Compensatory Mechanism against On-target Effects of MTH1 Inhibitors. Molecular Cancer Therapeutics, 2020, 19, 432-446.	4.1	11
4	Increased MTH1-specific 8-oxodGTPase activity is a hallmark of cancer in colon, lung and pancreatic tissue. DNA Repair, 2019, 83, 102644.	2.8	18
5	Mechanisms of MTH1 inhibition-induced DNA strand breaks: The slippery slope from the oxidized nucleotide pool to genotoxic damage. DNA Repair, 2019, 77, 18-26.	2.8	21
6	Subcellular compartmentalization of NAD+ and its role in cancer: A sereNADe of metabolic melodies. , 2019, 200, 27-41.		53
7	Exposure of Barrett's and esophageal adenocarcinoma cells to bile acids activates EGFR–STAT3 signaling axis via induction of APE1. Oncogene, 2018, 37, 6011-6024.	5.9	38
8	Inverse Correlation of STAT3 and MEK Signaling Mediates Resistance to RAS Pathway Inhibition in Pancreatic Cancer. Cancer Research, 2018, 78, 6235-6246.	0.9	61
9	Thioredoxin-1 protects against androgen receptor-induced redox vulnerability in castration-resistant prostate cancer. Nature Communications, 2017, 8, 1204.	12.8	40
10	Inhibition of WNT signaling attenuates self-renewal of SHH-subgroup medulloblastoma. Oncogene, 2017, 36, 6306-6314.	5.9	19
11	MTH1 as a Chemotherapeutic Target: The Elephant in the Room. Cancers, 2017, 9, 47.	3.7	52
12	Cellular and Molecular Aging. , 2017, , 39-52.		0
13	Arsenic Attenuates GLI Signaling, Increasing or Decreasing its Transcriptional Program in a Context-Dependent Manner. Molecular Pharmacology, 2016, 89, 226-232.	2.3	8
14	The microRNA-23b/-27b cluster suppresses prostate cancer metastasis via Huntingtin-interacting protein 1-related. Oncogene, 2016, 35, 4752-4761.	5.9	36
15	¹ H NMR studies distinguish the water soluble metabolomic profiles of untransformed and RAS-transformed cells. PeerJ, 2016, 4, e2104.	2.0	5
16	MTH1 expression is required for effective transformation by oncogenic HRAS. Oncotarget, 2015, 6, 11519-11529.	1.8	38
17	MTH1 counteracts oncogenic oxidative stress. Oncoscience, 2015, 2, 785-786.	2.2	16
18	MutT Homolog 1 (MTH1) maintains multiple KRAS-driven pro-malignant pathways. Oncogene, 2015, 34,	5.9	73

⁸ 2586-2596.

Priyamvada Rai

#	Article	IF	CITATIONS
19	Mcl-1 protects prostate cancer cells from cell death mediated by chemotherapy-induced DNA damage. Oncoscience, 2015, 2, 703-715.	2.2	34
20	Abstract B14: Human Mut T homolog 1 (MTH1) as a novel facilitator of KRAS-driven lung cancer. , 2014, ,		0
21	Androgen Deprivation-Induced Senescence Promotes Outgrowth of Androgen-Refractory Prostate Cancer Cells. PLoS ONE, 2013, 8, e68003.	2.5	49
22	Human Mut T homolog 1 (MTH1). Small GTPases, 2012, 3, 120-125.	1.6	37
23	Creation and validation of a ligation-independent cloning (LIC) retroviral vector for stable gene transduction in mammalian cells. BMC Biotechnology, 2012, 12, 3.	3.3	9
24	Enhanced elimination of oxidized guanine nucleotides inhibits oncogenic RAS-induced DNA damage and premature senescence. Oncogene, 2011, 30, 1489-1496.	5.9	112
25	Cell and Molecular Aging. , 2011, , 5-37.		0
26	NF-κB activation enhances cell death by antimitotic drugs in human prostate cancer cells. Molecular Cancer, 2010, 9, 182.	19.2	53
27	Suppression of thioredoxin-1 induces premature senescence in normal human fibroblasts. Biochemical and Biophysical Research Communications, 2010, 392, 363-368.	2.1	28
28	Oxidation in the nucleotide pool, the DNA damage response and cellular senescence: Defective bricks build a defective house. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2010, 703, 71-81.	1.7	50
29	Continuous elimination of oxidized nucleotides is necessary to prevent rapid onset of cellular senescence. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 169-174.	7.1	153
30	Efforts toward Expansion of the Genetic Alphabet:Â Structure and Replication of Unnatural Base Pairs. Journal of the American Chemical Society, 2007, 129, 10466-10473.	13.7	90
31	Preferential binding and structural distortion by Fe2+ at RGCG-containing DNA sequences correlates with enhanced oxidative cleavage at such sequences. Nucleic Acids Research, 2005, 33, 497-510.	14.5	34
32	Steady-state and time-resolved fluorescence studies indicate an unusual conformation of 2-aminopurine within ATAT and TATA duplex DNA sequences. Nucleic Acids Research, 2003, 31, 2323-2332.	14.5	43
33	Localization of Fe2+ at an RTGR sequence within a DNA duplex explains preferential cleavage by Fe2+ and H2O211Edited by M. F. Summers. Journal of Molecular Biology, 2001, 312, 1089-1101.	4.2	67
34	Sequence-specific DNA Cleavage by Fe2+-mediated Fenton Reactions Has Possible Biological Implications. Journal of Biological Chemistry, 1999, 274, 962-971.	3.4	304