Martin Bisaillon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1351620/publications.pdf

Version: 2024-02-01

414414 516710 1,107 38 16 32 citations h-index g-index papers 39 39 39 1414 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Reovirus $1\frac{1}{4}$ 2 protein modulates host cell alternative splicing by reducing protein levels of U5 snRNP core components. Nucleic Acids Research, 2022, 50, 5263-5281.	14.5	14
2	Cellulosic copper nanoparticles and a hydrogen peroxide–based disinfectant trigger rapid inactivation of pseudoviral particles expressing the Spike protein of SARS-CoV-2, SARS-CoV, and MERS-CoV. Metallomics, 2022, 14, .	2.4	2
3	How Many Mammalian Reovirus Proteins are involved in the Control of the Interferon Response?. Pathogens, 2019, 8, 83.	2.8	10
4	Viral modulation of cellular RNA alternative splicing: A new key player in virus–host interactions?. Wiley Interdisciplinary Reviews RNA, 2019, 10, e1543.	6.4	56
5	The Epstein-Barr virus EBNA1 protein modulates the alternative splicing of cellular genes. Virology Journal, 2019, 16, 29.	3.4	23
6	2'-O-methylation of the mRNA capÂprotects RNAs from decapping and degradation by DXO. PLoS ONE, 2018, 13, e0193804.	2. 5	42
7	Organization of the <i>Flavivirus</i> <scp>RNA</scp> replicase complex. Wiley Interdisciplinary Reviews RNA, 2017, 8, e1437.	6.4	45
8	Transcriptome-wide analysis of alternative RNA splicing events in Epstein-Barr virus-associated gastric carcinomas. PLoS ONE, 2017, 12, e0176880.	2.5	24
9	Global Profiling of the Cellular Alternative RNA Splicing Landscape during Virus-Host Interactions. PLoS ONE, 2016, 11, e0161914.	2.5	58
10	Global profiling of alternative RNA splicing events provides insights into molecular differences between various types of hepatocellular carcinoma. BMC Genomics, 2016, 17, 683.	2.8	47
11	Immunofluorescence to Monitor the Cellular Uptake of Human Lactoferrin and its Associated Antiviral Activity Against the Hepatitis C Virus. Journal of Visualized Experiments, 2015, , .	0.3	8
12	The intracellular inhibition of HCV replication represents a novel mechanism of action by the innate immune Lactoferrin protein. Antiviral Research, 2014, 111, 13-22.	4.1	16
13	The Immunosuppressive Agent Mizoribine Monophosphate Is an Inhibitor of the Human RNA Capping Enzyme. PLoS ONE, 2013, 8, e54621.	2.5	7
14	Enzymatic Synthesis of RNAs Capped with Nucleotide Analogues Reveals the Molecular Basis for Substrate Selectivity of RNA Capping Enzyme: Impacts on RNA Metabolism. PLoS ONE, 2013, 8, e75310.	2.5	16
15	A Novel Ribozyme-Based Prophylaxis Inhibits Influenza A Virus Replication and Protects from Severe Disease. PLoS ONE, 2011, 6, e27327.	2.5	17
16	The RNA capping machinery as an antiâ€infective target. Wiley Interdisciplinary Reviews RNA, 2011, 2, 184-192.	6.4	16
17	Virtual High-Throughput Screening Identifies Mycophenolic Acid as a Novel RNA Capping Inhibitor. PLoS ONE, 2011, 6, e24806.	2.5	6
18	Insights into the molecular determinants involved in cap recognition by the vaccinia virus D10 decapping enzyme. Nucleic Acids Research, 2010, 38, 7599-7610.	14.5	11

#	Article	IF	CITATIONS
19	Deciphering the molecular basis for nucleotide selection by the West Nile virus RNA helicase. Nucleic Acids Research, 2010, 38, 5493-5506.	14.5	8
20	Nucleotide analogs and molecular modeling studies reveal key interactions involved in substrate recognition by the yeast RNA triphosphatase. Nucleic Acids Research, 2009, 37, 3714-3722.	14.5	9
21	The flavivirus NS5 protein is a true RNA guanylyltransferase that catalyzes a two-step reaction to form the RNA cap structure. Rna, 2009, 15, 2340-2350.	3.5	208
22	Metal ion-binding studies highlight important differences between flaviviral RNA polymerases. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2009, 1794, 50-60.	2.3	6
23	Characterization of the vaccinia virus D10 decapping enzyme provides evidence for a two-metal-ion mechanism. Biochemical Journal, 2009, 420, 27-35.	3.7	12
24	Kinetic and Thermodynamic Characterization of the RNA Guanylyltransferase Reaction. Biochemistry, 2008, 47, 3863-3874.	2.5	15
25	Magnesium-binding studies reveal fundamental differences between closely related RNA triphosphatases. Nucleic Acids Research, 2008, 36, 451-461.	14.5	3
26	Characterization of the RNA binding energetics of the Candida albicans poly(A) polymerase. Yeast, 2007, 24, 431-446.	1.7	5
27	Energetics of RNA binding by the West Nile virus RNA triphosphatase. FEBS Letters, 2006, 580, 867-877.	2.8	12
28	Inhibition of a metal-dependent viral RNA triphosphatase by decavanadate. Biochemical Journal, 2006, 398, 557-567.	3.7	16
29	Effect of Metal Ion Binding on the Structural Stability of the Hepatitis C Virus RNA Polymerase. Journal of Biological Chemistry, 2004, 279, 49755-49761.	3.4	19
30	The Broad Spectrum Antiviral Nucleoside Ribavirin as a Substrate for a Viral RNA Capping Enzyme. Journal of Biological Chemistry, 2004, 279, 22124-22130.	3.4	63
31	Thermodynamics of ligand binding by the yeast mRNA-capping enzyme reveals different modes of binding. Biochemical Journal, 2004, 384, 411-420.	3.7	13
32	Characterization of the Metal Ion Binding Properties of the Hepatitis C Virus RNA Polymerase. Journal of Biological Chemistry, 2003, 278, 3868-3875.	3.4	42
33	Investigating the Role of Metal Ions in the Catalytic Mechanism of the Yeast RNA Triphosphatase. Journal of Biological Chemistry, 2003, 278, 33963-33971.	3.4	12
34	Functional Groups Required for the Stability of Yeast RNA Triphosphatase in Vitro and in Vivo. Journal of Biological Chemistry, 2001, 276, 30514-30520.	3.4	10
35	Structure-Function Analysis of the Active Site Tunnel of Yeast RNA Triphosphatase. Journal of Biological Chemistry, 2001, 276, 17261-17266.	3.4	42
36	Characterization of the Nucleoside Triphosphate Phosphohydrolase and Helicase Activities of the Reovirus λ1 Protein. Journal of Biological Chemistry, 1997, 272, 18298-18303.	3.4	69

#	Article	IF	CITATIONS
37	Characterization of the Reovirus λ1 Protein RNA 5′-Triphosphatase Activity. Journal of Biological Chemistry, 1997, 272, 29954-29957.	3.4	48
38	Viral and Cellular Enzymes Involved in Synthesis of mRNA Cap Structure. Virology, 1997, 236, 1-7.	2.4	72