Franz W Badeck

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1351517/publications.pdf

Version: 2024-02-01

66343 54911 7,478 92 42 84 citations h-index g-index papers 95 95 95 9523 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Nitrate and ammonium differ in their impact on $\hat{l}' < \sup > 13 < \sup > C$ of plant metabolites and respired CO $ < \sup > 2 < \sup > F$ from tobacco leaves. Isotopes in Environmental and Health Studies, 2021, 57, 11-34.	1.0	4
2	Extensive allele mining discovers novel genetic diversity in the loci controlling frost tolerance in barley. Theoretical and Applied Genetics, $2021, 1.$	3.6	9
3	Genetic variation in eggplant for Nitrogen Use Efficiency under contrasting NO ₃ ^{â€} supply. Journal of Integrative Plant Biology, 2020, 62, 487-508.	8.5	28
4	Elevated CO2 has concurrent effects on leaf and grain metabolism but minimal effects on yield in wheat. Journal of Experimental Botany, 2020, 71, 5990-6003.	4.8	27
5	Elevated CO ₂ Impact on Common Wheat (<i>Triticum aestivum</i> L.) Yield, Wholemeal Quality, and Sanitary Risk. Journal of Agricultural and Food Chemistry, 2020, 68, 10574-10585.	5.2	16
6	Characterization of Celiac Disease-Related Epitopes and Gluten Fractions, and Identification of Associated Loci in Durum Wheat. Agronomy, 2020, 10, 1231.	3.0	6
7	Narrowing uncertainties in the effects of elevated CO2 on crops. Nature Food, 2020, 1, 775-782.	14.0	67
8	Description and evaluation of the process-based forest model 4C v2.2 at four European forest sites. Geoscientific Model Development, 2020, 13 , $5311-5343$.	3.6	12
9	Changes in yield components, morphological, physiological and fruit quality traits in processing tomato cultivated in Italy since the 1930's. Scientia Horticulturae, 2019, 257, 108726.	3.6	32
10	Application of water-saving treatments reveals different adaptation strategies in three Iranian melon genotypes. Scientia Horticulturae, 2019, 256, 108518.	3.6	8
11	Stomatal and non-stomatal limitations are responsible in down-regulation of photosynthesis in melon plants grown under the saline condition: Application of carbon isotope discrimination as a reliable proxy. Plant Physiology and Biochemistry, 2019, 141, 1-19.	5.8	55
12	Metabolomic responses triggered by arbuscular mycorrhiza enhance tolerance to water stress in wheat cultivars. Plant Physiology and Biochemistry, 2019, 137, 203-212.	5.8	102
13	Interaction of Tomato Genotypes and Arbuscular Mycorrhizal Fungi under Reduced Irrigation. Horticulturae, 2019, 5, 79.	2.8	13
14	Physiological responses to chilling in cultivars of processing tomato released and cultivated over the past decades in Southern Europe. Scientia Horticulturae, 2018, 231, 118-125.	3.6	26
15	UAV-based high-throughput phenotyping to discriminate barley vigour with visible and near-infrared vegetation indices. International Journal of Remote Sensing, 2018, 39, 5330-5344.	2.9	42
16	Relationship between taproot morphological traits, carbon isotope composition and grain yield in safflower. Arid Land Research and Management, 2018, 32, 471-486.	1.6	0
17	Agrobiodiversity for Adaptive and Yield Traits in Romanian and Italian Barley Cultivars across Four Continental Environments. Agronomy, 2018, 8, 79.	3.0	2
18	Proteomic insight into the mitigation of wheat root drought stress by arbuscular mycorrhizae. Journal of Proteomics, 2017, 169, 21-32.	2.4	75

#	Article	IF	CITATIONS
19	Elevated field atmospheric CO2 concentrations affect the characteristics of winter wheat (cv.) Tj ETQq1 1 0.7843	14 rgBT / 1.5	Overlock 101
20	Carbon Isotope Fractionation in Plant Respiration. Advances in Photosynthesis and Respiration, 2017, , 43-68.	1.0	11
21	Unambiguous evidence of old soil carbon in grass biosilica particles. Biogeosciences, 2016, 13, 1269-1286.	3.3	33
22	Occurrence of Fusarium langsethiae and T-2 and HT-2 Toxins in Italian Malting Barley. Toxins, 2016, 8, 247.	3.4	50
23	Increasing atmospheric CO 2 modifies durum wheat grain quality and pasta cooking quality. Journal of Cereal Science, 2016, 69, 245-251.	3.7	10
24	Simulation of forest tree species' bud burst dates for different climate scenarios: chilling requirements and photo-period may limit bud burst advancement. International Journal of Biometeorology, 2016, 60, 1711-1726.	3.0	13
25	Population structure and genome-wide association analysis for frost tolerance in oat using continuous SNP array signal intensity ratios. Theoretical and Applied Genetics, 2016, 129, 1711-1724.	3.6	48
26	Association between the allele compositions of major plant developmental genes and frost tolerance in barley (Hordeum vulgare L.) germplasm of different origin. Molecular Breeding, 2016, 36, 1.	2.1	24
27	Intraspecific variability of carbon isotope discrimination and its correlation with grain yield in safflower: prospects for selection in a Mediterranean climate. Isotopes in Environmental and Health Studies, 2016, 52, 577-591.	1.0	3
28	Changes and their possible causes in \hat{l} (sup>13C of dark-respired CO ₂ and its putative bulk and soluble sources during maize ontogeny. Journal of Experimental Botany, 2016, 67, 2603-2615.	4.8	7
29	A Combined Field/Laboratory Method for Assessment of Frost Tolerance with Freezing Tests and Chlorophyll Fluorescence. Agronomy, 2015, 5, 71-88.	3.0	14
30	Changes in $\langle i \rangle \hat{i}' \langle i \rangle \langle sup \rangle 13 \langle sup \rangle C$ of dark respired CO $\langle sub \rangle 2 \langle sub \rangle and organic matter of different organs during early ontogeny in peanut plants. Isotopes in Environmental and Health Studies, 2015, 51, 93-108.$	1.0	9
31	Using ecological and life-history characteristics for projecting species' responses to climate change. Frontiers of Biogeography, $2014, 6, .$	1.8	1
32	Opposite carbon isotope discrimination during dark respiration in leaves versus roots – a review. New Phytologist, 2014, 201, 751-769.	7.3	80
33	Using ecological and life-history characteristics for projecting species' responses to climate change. Frontiers of Biogeography, 2014, 6, .	1.8	1
34	The plant phenological online database (PPODB): an online database for long-term phenological data. International Journal of Biometeorology, 2013, 57, 805-812.	3.0	14
35	13C-labelling of leaf photoassimilates to study the source–sink relationship in two Iranian melon cultivars. Scientia Horticulturae, 2013, 151, 157-164.	3.6	14

Comparing solar radiation interception and use efficiency for the energy crops giant reed (Arundo) Tj ETQq $0\ 0\ 0\ rg_{5.1}^{BT}$ /Overlock 10 Tf 50 Cmparing solar radiation interception and use efficiency for the energy crops giant reed (Arundo) Tj ETQq $0\ 0\ 0\ rg_{5.1}^{BT}$ /Overlock 10 Tf 50 Cmparing solar radiation interception and use efficiency for the energy crops giant reed (Arundo) Tj ETQq $0\ 0\ 0\ rg_{5.1}^{BT}$ /Overlock 10 Tf 50 Cmparing solar radiation interception and use efficiency for the energy crops giant reed (Arundo) Tj ETQq $0\ 0\ 0\ rg_{5.1}^{BT}$ /Overlock 10 Tf 50 Cmparing solar radiation interception and use efficiency for the energy crops giant reed (Arundo) Tj ETQq $0\ 0\ 0\ rg_{5.1}^{BT}$ /Overlock 10 Tf 50 Cmparing solar radiation interception and use efficiency for the energy crops giant reed (Arundo) Tj ETQq $0\ 0\ 0\ rg_{5.1}^{BT}$ /Overlock 10 Tf 50 Cmparing solar radiation interception and use efficiency for the energy crops giant reed (Arundo) Tj ETQq $0\ 0\ 0\ rg_{5.1}^{BT}$ /Overlock 10 Tf 50 Cmparing solar radiation interception and use efficiency for the energy crops giant reed (Arundo) Tj ETQq $0\ 0\ 0\ rg_{5.1}^{BT}$ /Overlock 10 Tf 50 Cmparing solar radiation interception and use efficiency for the energy crops giant reed (Arundo) Tj ETQq $0\ 0\ 0\ rg_{5.1}^{BT}$ /Overlock 10 Tf 50 Cmparing solar radiation interception and use efficiency for the energy crops giant reed (Arundo) Tj ETQq $0\ 0\ 0\ rg_{5.1}^{BT}$ /Overlock 10 Tf 50 Cmparing solar radiation interception and use efficiency for the energy crops giant reed (Arundo) Tj ETQq $0\ 0\ 0\ rg_{5.1}^{BT}$ /Overlock 10 Tf 50 Cmparing solar radiation interception and use efficiency for the energy crops giant reed (Arundo) Tj ETQq $0\ 0\ 0\ rg_{5.1}^{BT}$

#	Article	IF	Citations
37	Harden the chloroplast to protect the plant. Physiologia Plantarum, 2013, 147, 55-63.	5.2	99
38	Determinants of barley grain yield in drought-prone Mediterranean environments. Italian Journal of Agronomy, 2013, 8, 1.	1.0	17
39	Progress and challenges in using stable isotopes to trace plant carbon and water relations across scales. Biogeosciences, 2012, 9, 3083-3111.	3.3	138
40	Constitutive differences in water use efficiency between two durum wheat cultivars. Field Crops Research, 2012, 125, 49-60.	5.1	56
41	Determinants of barley grain yield in a wide range of Mediterranean environments. Field Crops Research, 2011, 120, 169-178.	5.1	73
42	Carbon allocation and carbon isotope fluxes in the plant-soil-atmosphere continuum: a review. Biogeosciences, 2011, 8, 3457-3489.	3.3	289
43	Sensitivity of Portuguese forest fires to climatic, human, and landscape variables: subnational differences between fire drivers in extreme fire years and decadal averages. Regional Environmental Change, 2011, 11, 543-551.	2.9	59
44	Diversity in the Response to Low Temperature in Representative Barley Genotypes Cultivated in Europe. Crop Science, 2011, 51, 2759-2779.	1.8	42
45	Investigating habitat-specific plant species pools under climate change. Basic and Applied Ecology, 2010, 11, 603-611.	2.7	23
46	On the ¹³ C/ ¹² C isotopic signal of day and night respiration at the mesocosm level. Plant, Cell and Environment, 2010, 33, 900-913.	5.7	56
47	Estimation of the extinction risk for high-montane species as a consequence of global warming and assessment of their suitability as cross-taxon indicators. Ecological Indicators, 2010, 10, 341-352.	6.3	61
48	Combining Messy Phenological Time Series. , 2010, , 147-158.		7
49	Preface. Isotopes in Environmental and Health Studies, 2009, 45, 273-274.	1.0	О
50	European winegrowers' perceptions of climate change impact and options for adaptation. Regional Environmental Change, 2009, 9, 61-73.	2.9	120
51	Consistent patterns in leaf lamina and leaf vein carbon isotope composition across ten herbs and tree species. Rapid Communications in Mass Spectrometry, 2009, 23, 2455-2460.	1.5	15
52	Foreword. Rapid Communications in Mass Spectrometry, 2009, 23, 2389-2389.	1.5	0
53	Influence of heterogeneous landscapes on computed green-up dates based on daily AVHRR NDVI observations. Remote Sensing of Environment, 2009, 113, 2618-2632.	11.0	48
54	Estimating decomposition rate constants for European tree species from literature sources. European Journal of Forest Research, 2008, 127, 301-313.	2.5	71

#	Article	IF	CITATIONS
55	Divergence in $\hat{\Gamma}$ ¹³ C of dark respired CO ₂ and bulk organic matter occurs during the transition between heterotrophy and autotrophy in <i>Phaseolus vulgaris</i> plants. New Phytologist, 2008, 177, 406-418.	7.3	89
56	Modelling leaf mass per area in forest canopy as affected by prevailing radiation conditions. Ecological Modelling, 2008, 211, 339-349.	2.5	36
57	Climate and land use change impacts on plant distributions in Germany. Biology Letters, 2008, 4, 564-567.	2.3	138
58	Drought tolerance improvement in crop plants: An integrated view from breeding to genomics. Field Crops Research, 2008, 105, 1-14.	5.1	1,122
59	Does conversion of even-aged, secondary coniferous forests affect carbon sequestration? A simulation study under changing environmental conditions. Silva Fennica, 2008, 42, .	1.3	38
60	Hydrological impact assessment of afforestation and change in tree-species composition – A regional case study for the Federal State of Brandenburg (Germany). Journal of Hydrology, 2007, 346, 1-17.	5.4	43
61	Multiple-use forest management in consideration of climate change and the interests of stakeholder groups. European Journal of Forest Research, 2007, 126, 225-239.	2.5	80
62	Relationships between leaf conductance to CO2 diffusion and photosynthesis in micropropagated grapevine plants, before and after ex vitro acclimatization. Journal of Experimental Botany, 2006, 57, 2687-2695.	4.8	34
63	A simplified approach to implement forest eco-hydrological properties in regional hydrological modelling. Ecological Modelling, 2005, 187, 40-59.	2.5	34
64	Plant phenology in Germany over the 20th century. Regional Environmental Change, 2005, 5, 37-46.	2.9	54
65	Post-photosynthetic fractionation of stable carbon isotopes between plant organs—a widespread phenomenon. Rapid Communications in Mass Spectrometry, 2005, 19, 1381-1391.	1.5	390
66	Model-based analysis of management alternatives at stand and regional level in Brandenburg (Germany). Forest Ecology and Management, 2005, 207, 59-74.	3.2	110
67	Theoretical considerations about carbon isotope distribution in glucose of C3 plants. Functional Plant Biology, 2004, 31, 857.	2.1	135
68	Responses of spring phenology to climate change. New Phytologist, 2004, 162, 295-309.	7.3	761
69	Use of a Water Stress Index to Identify Barley Genotypes Adapted to Rainfed and Irrigated Conditions. Crop Science, 2004, 44, 2127-2137.	1.8	125
70	Carbon isotope fractionation during dark respiration and photorespiration in C3 plants. Phytochemistry Reviews, 2003, 2, 145-161.	6. 5	217
71	Physiology-based phenology models for forest tree species in Germany. International Journal of Biometeorology, 2003, 47, 193-201.	3.0	166
72	Metabolic Origin of Carbon Isotope Composition of Leaf Dark-Respired CO2 in French Bean. Plant Physiology, 2003, 131, 237-244.	4.8	248

#	Article	IF	CITATIONS
73	Evaluation of methods for the combination of phenological time series and outlier detection. Tree Physiology, 2002, 22, 973-982.	3.1	59
74	Estimating Canopy Light Interception and Absorption Using Leaf Mass Per Unit Leaf Area in Solanum melongena. Annals of Botany, 2001, 88, 101-109.	2.9	39
75	$\hat{1}$ 13C of CO2respired in the dark in relation to $\hat{1}$ 13C of leaf metabolites: comparison between Nicotiana sylvestris and Helianthus annuus under drought. Plant, Cell and Environment, 2001, 24, 505-515.	5.7	181
76	Aboveground Growth and Competition in Forest Gap Models: An Analysis for Studies of Climatic Change. Climatic Change, 2001, 51, 415-447.	3.6	48
77	Title is missing!. Climatic Change, 2001, 51, 307-347.	3.6	67
78	Leaf photosynthetic characteristics of beech (Fagus sylvatica) saplings during three years of exposure to elevated CO2 concentration. Tree Physiology, 2000, 20, 239-247.	3.1	31
79	Î 13C of CO2respired in the dark in relation tol 13C of leaf carbohydrates in Phaseolus vulgaris L. under progressive drought. Plant, Cell and Environment, 1999, 22, 515-523.	5.7	172
80	Effects of elevated [CO2] on photosynthesis in European forest species: a meta-analysis of model parameters. Plant, Cell and Environment, 1999, 22, 1475-1495.	5.7	415
81	CO2 Diffusion Inside Leaf Mesophyll of Ligneous Plants. , 1998, , 3961-3966.		16
82	The Effect of Dehydration on Leaf Photosynthesis Depends on Leaf Temperatures., 1998,, 2545-2548.		0
83	Carbon 13 exchanges between the atmosphere and biosphere. Global Biogeochemical Cycles, 1997, 11, 507-533.	4.9	206
84	Sweet Chestnut and Beech Saplings under Elevated CO2. Forestry Sciences, 1997, , 15-25.	0.4	5
85	On the Significance of Internal Resistance in Tree Leaves for Gas Exchange under Elevated CO2. Forestry Sciences, 1997, , 35-39.	0.4	1
86	Interannual variation of carbon exchange fluxes in terrestrial ecosystems. Global Biogeochemical Cycles, 1996, 10, 737-755.	4.9	120
87	Responses in NPP and carbon stores of the northern biomes to a CO2-induced climatic change, as evaluated by the Frankfurt biosphere model (FBM). Tellus, Series B: Chemical and Physical Meteorology, 1995, 47, 191-205.	1.6	12
88	Effects of the age class distributions of the temperate and boreal forests on the global CO2 source-sink function. Tellus, Series B: Chemical and Physical Meteorology, 1995, 47, 212-231.	1.6	13
89	The Frankfurt Biosphere Model: a global process-oriented model of seasonal and long-term CO2 exchange between terrestrial ecosystems and the atmosphere. I. Model description and illustrative results for cold deciduous and boreal forests. Climate Research, 1994, 4, 143-166.	1.1	91
90	Structure of a global and seasonal carbon exchange model for the terrestrial biosphere the frankfurt biosphere model (FBM). Water, Air, and Soil Pollution, 1993, 70, 675-684.	2.4	23

#	Article	IF	CITATIONS
91	Modelling ventilation efficiency of teleost fish gills for pollutants with high affinity to plasma proteins. Ecological Modelling, 1991, 57, 237-262.	2.5	14
92	Carbon sequestration and forest management CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources, 0, , .	1.0	31