
Eric Jenczewski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1351346/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Homoeologous exchanges in allopolyploids: how Brassica napus established selfâ€control!. New Phytologist, 2021, 229, 3041-3043.	7.3	7
2	Moving to and fro between Arabidopsis and its crop relatives confirms the role of chromosome remodelling on meiotic recombination. Journal of Experimental Botany, 2021, 72, 2811-2813.	4.8	0
3	Identifying and Isolating Meiotic Mutants in a Polyploid Brassica Crop. Methods in Molecular Biology, 2020, 2061, 303-318.	0.9	0
4	Modelling Sex-Specific Crossover Patterning in <i>Arabidopsis</i> . Genetics, 2019, 211, 847-859.	2.9	22
5	Reducing MSH4 copy number prevents meiotic crossovers between non-homologous chromosomes in Brassica napus. Nature Communications, 2019, 10, 2354.	12.8	58
6	Assessing the Response of Small RNA Populations to Allopolyploidy Using Resynthesized Brassica napus Allotetraploids. Molecular Biology and Evolution, 2019, 36, 709-726.	8.9	22
7	Homoeologous exchanges cause extensive dosageâ€dependent gene expression changes in an allopolyploid crop. New Phytologist, 2018, 217, 367-377.	7.3	87
8	Cytogenetics, a Science Linking Genomics and Breeding: The Brassica Model. Compendium of Plant Genomes, 2018, , 21-39.	0.5	4
9	FANCM Limits Meiotic Crossovers in Brassica Crops. Frontiers in Plant Science, 2018, 9, 368.	3.6	41
10	Gene Introgression in Weeds Depends on Initial Gene Location in the Crop: <i>Brassica napus</i> – <i>Raphanus raphanistrum</i> Model. Genetics, 2017, 206, 1361-1372.	2.9	9
11	The Molecular Biology of Meiosis in Plants. Annual Review of Plant Biology, 2015, 66, 297-327.	18.7	494
12	Polyploidy and genome evolution. Annals of Botany, 2014, 113, vii-viii.	2.9	1
13	Crossover rate between homologous chromosomes and interference are regulated by the addition of specific unpaired chromosomes in <i><scp>B</scp>rassica</i> . New Phytologist, 2014, 201, 645-656.	7.3	45
14	Homoeologous Chromosome Sorting and Progression of Meiotic Recombination in <i>Brassica napus</i> : Ploidy Does Matter!. Plant Cell, 2014, 26, 1448-1463.	6.6	72
15	Meiotic Gene Evolution: Can You Teach a New Dog New Tricks?. Molecular Biology and Evolution, 2014, 31, 1724-1727.	8.9	71
16	Evolution: He Who Grabs Too MuchÂLoses All. Current Biology, 2013, 23, R961-R963.	3.9	2
17	Meiosis: Recombination and the Control of Cell Division. , 2013, , 121-136.		1
18	Nonâ€random distribution of extensive chromosome rearrangements in <i>Brassica napus</i> depends on genome organization. Plant Journal, 2012, 70, 691-703.	5.7	43

Eric Jenczewski

#	Article	IF	CITATIONS
19	Polyploid formation pathways have an impact on genetic rearrangements in resynthesized <i>Brassica napus</i> . New Phytologist, 2011, 191, 884-894.	7.3	96
20	Trigenomic Bridges for <i>Brassica</i> Improvement. Critical Reviews in Plant Sciences, 2011, 30, 524-547.	5.7	83
21	Genetic regulation of meiosis in polyploid species: new insights into an old question. New Phytologist, 2010, 186, 29-36.	7.3	146
22	The first meiosis of resynthesized <i>Brassica napus</i> , a genome blender. New Phytologist, 2010, 186, 102-112.	7.3	267
23	Focus on polyploidy. New Phytologist, 2010, 186, 1-4.	7.3	60
24	Crossovers Get a Boost in <i>Brassica</i> Allotriploid and Allotetraploid Hybrids. Plant Cell, 2010, 22, 2253-2264.	6.6	67
25	Repeated Polyploidy Drove Different Levels of Crossover Suppression between Homoeologous Chromosomes in <i>Brassica napus</i> Allohaploids Â. Plant Cell, 2010, 22, 2265-2276.	6.6	68
26	Genetic Regulation of Meiotic Cross-Overs between Related Genomes in <i>Brassica napus</i> Haploids and Hybrids Â. Plant Cell, 2009, 21, 373-385.	6.6	106
27	Repetitive sequence-derived markers tag centromeres and telomeres and provide insights into chromosome evolution in Brassica napus. Chromosome Research, 2008, 16, 683-700.	2.2	19
28	Brassica oleracea displays a high level of DNA methylation polymorphism. Plant Science, 2008, 174, 61-70.	3.6	137
29	Mutations in AtPS1 (Arabidopsis thaliana Parallel Spindle 1) Lead to the Production of Diploid Pollen Grains. PLoS Genetics, 2008, 4, e1000274.	3.5	125
30	Homeologous Recombination Plays a Major Role in Chromosome Rearrangements That Occur During Meiosis of <i>Brassica napus</i> Haploids. Genetics, 2007, 175, 487-503.	2.9	122
31	Morphologic and Agronomic Diversity of Wild Genetic Resources of Medicago sativa L. Collected in Spain. Genetic Resources and Crop Evolution, 2006, 53, 843-856.	1.6	35
32	Pairing and recombination at meiosis of Brassica rapa (AA) × Brassica napus (AACC) hybrids. Theoretical and Applied Genetics, 2006, 113, 1467-1480.	3.6	133
33	Mapping <i>PrBn</i> and Other Quantitative Trait Loci Responsible for the Control of Homeologous Chromosome Pairing in Oilseed Rape (<i>Brassica napus</i> L.) Haploids. Genetics, 2006, 174, 1583-1596.	2.9	70
34	Autopolyploidy in cabbage (Brassica oleracea L.) does not alter significantly the proteomes of green tissues. Proteomics, 2005, 5, 2131-2139.	2.2	78
35	From Diploids to Allopolyploids: The Emergence of Efficient Pairing Control Genes in Plants. Critical Reviews in Plant Sciences, 2004, 23, 21-45.	5.7	96
36	Crop-to-wild gene flow, introgression and possible fitness effects of transgenes. Environmental Biosafety Research, 2003, 2, 9-24.	1.1	99

Eric Jenczewski

#	Article	IF	CITATIONS
37	Gene Flow from Oilseed Rape to Weedy Species. Acta Agriculturae Scandinavica - Section B Soil and Plant Science, 2003, 53, 22-25.	0.6	5
38	<i>PrBn</i> , a Major Gene Controlling Homeologous Pairing in Oilseed Rape (<i>Brassica napus</i>) Haploids. Genetics, 2003, 164, 645-653.	2.9	164
39	Evidence for gene flow between wild and cultivated Medicago sativa (Leguminosae)based on allozyme markers andquantitative traits. American Journal of Botany, 1999, 86, 677-687.	1.7	66
40	Differentiation between natural and cultivated populations of Medicago sativa (Leguminosae) from Spain: analysis with random amplified polymorphic DNA (RAPD) markers and comparison to allozymes. Molecular Ecology, 1999, 8, 1317-1330.	3.9	65
41	Contrasting patterns of genetic diversity in neutral markers and agromorphological traits in wild and cultivated populations of Medicago sativa L. from Spain. Genetics Selection Evolution, 1998, 30, 1.	3.0	9
42	Analysis of Population Structure in Autotetraploid Species. Genetics, 1998, 150, 921-930.	2.9	161
43	Insight on segregation distortions in two intraspecific crosses between annual species of Medicago (Leguminosae). Theoretical and Applied Genetics, 1997, 94, 682-691.	3.6	145