
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1351204/publications.pdf Version: 2024-02-01

KANC-LUN RAEC

#	Article	IF	CITATIONS
1	Multimodal Capturing of Polysulfides by Phosphorusâ€Doped Carbon Composites for Flexible Highâ€Energyâ€Density Lithium–Sulfur Batteries. Small, 2022, 18, e2200326.	10.0	28
2	Versatile Solution-Processed Reductive Interface Layer for Contact Engineering of Staggered Organic Field-Effect Transistors. ACS Applied Materials & Interfaces, 2022, 14, 13560-13571.	8.0	3
3	Flexible high-energy-density lithium-sulfur batteries using nanocarbon-embedded fibrous sulfur cathodes and membrane separators. NPG Asia Materials, 2021, 13, .	7.9	28
4	Versatile Solutionâ€Processed Organic–Inorganic Hybrid Superlattices for Ultraflexible and Transparent Highâ€Performance Optoelectronic Devices. Advanced Functional Materials, 2021, 31, 2103285.	14.9	19
5	Minimizing Temperature Gradient in Photonic Sintering for Defectâ€Free Highâ€Conductivity Cuâ€Based Printed Patterns by Bidirectional Irradiation. Advanced Materials Interfaces, 2021, 8, 2100769.	3.7	4
6	Air-stable ambipolarity of nanofibril polymer semiconductors in staggered organic field-effect transistors. Journal of the Korean Physical Society, 2021, 79, 468-476.	0.7	2
7	A Novel Strategy to Overcome the Hurdle for Commercial Allâ€Solidâ€State Batteries via Lowâ€Cost Synthesis of Sulfide Solid Electrolytes. Small Methods, 2021, 5, e2100793.	8.6	14
8	Solution-processed flexible nonvolatile organic field-effect transistor memory using polymer electret. Organic Electronics, 2021, 99, 106331.	2.6	9
9	A Novel Strategy to Overcome the Hurdle for Commercial Allâ€Solidâ€State Batteries via Lowâ€Cost Synthesis of Sulfide Solid Electrolytes (Small Methods 11/2021). Small Methods, 2021, 5, 2170058.	8.6	1
10	All-Printed Paper-Based Micro-supercapacitors Using Water-Based Additive-Free Oxidized Single-Walled Carbon Nanotube Pastes. ACS Applied Energy Materials, 2021, 4, 13666-13675.	5.1	16
11	Facile fabrication of solution-processed solid-electrolytes for high-energy-density all-solid-state-batteries by enhanced interfacial contact. Scientific Reports, 2020, 10, 11923.	3.3	29
12	Flexible Electronic Systems on Plastic Substrates and Textiles for Smart Wearable Technologies. Advanced Materials Technologies, 2020, 5, 2000071.	5.8	72
13	Low-voltage-operating complementary-like circuits using ambipolar organic-inorganic hybrid thin-film transistors with solid-state-electrolyte gate insulator. Organic Electronics, 2019, 75, 105358.	2.6	12
14	Solution-Processed Nonvolatile Organic Transistor Memory Based on Semiconductor Blends. ACS Applied Materials & Interfaces, 2019, 11, 8327-8336.	8.0	62
15	High Throughput Bar-Coating Processed Organic–Inorganic Hybrid Multi-Layers for Gas Barrier Thin-Films. Journal of Nanoscience and Nanotechnology, 2019, 19, 4299-4304.	0.9	3
16	Reduction Treatment of Molecular-Doped Polymer Semiconductors for High-Performance N-Channel Organic Field-Effect Transistors. Journal of the Korean Physical Society, 2019, 75, 821-826.	0.7	3
17	Tuning non-volatile memory characteristics via molecular doping of polymer semiconductors based on ambipolar organic field-effect transistors. Organic Electronics, 2018, 58, 12-17.	2.6	25
18	Optimized Activation of Solutionâ€Processed Amorphous Oxide Semiconductors for Flexible Transparent Conductive Electrodes. Advanced Electronic Materials, 2018, 4, 1700386.	5.1	12

#	Article	IF	CITATIONS
19	Simultaneous enhancement of charge density and molecular stacking order of polymer semiconductors by viologen dopants for high performance organic field-effect transistors. Journal of Materials Chemistry C, 2018, 6, 5497-5505.	5.5	23
20	Facile Preparation of Polyacrylic Acid-Bentonite Nanocomposite Inks for Gas Barrier Thin-Films with Ultrasonic Treatment. Journal of the Korean Physical Society, 2018, 73, 973-977.	0.7	1
21	Controlled ambipolar charge transport of polymer semiconductors by viologen-doping for complementary-like electronic circuits. Organic Electronics, 2018, 59, 224-229.	2.6	11
22	Enhanced ambipolar charge transport in staggered carbon nanotube field-effect transistors for printed complementary-like circuits. Current Applied Physics, 2017, 17, 541-547.	2.4	7
23	Polymeric P–N Heterointerface for Solutionâ€Processed Integrated Organic Optoelectronic Systems. Advanced Optical Materials, 2017, 5, 1700655.	7.3	16
24	Systematic Study of Widely Applicable Nâ€Doping Strategy for Highâ€Performance Solutionâ€Processed Fieldâ€Effect Transistors. Advanced Functional Materials, 2016, 26, 7886-7894.	14.9	53
25	Favorable Molecular Orientation Enhancement in Semiconducting Polymer Assisted by Conjugated Organic Small Molecules. Advanced Functional Materials, 2016, 26, 8527-8536.	14.9	18
26	Ultrafast Heating for Intrinsic Properties of Atomically Thin Two-Dimensional Materials on Plastic Substrates. ACS Applied Materials & Interfaces, 2016, 8, 31222-31230.	8.0	7
27	Large Enhancement of Carrier Transport in Solutionâ€Processed Fieldâ€Effect Transistors by Fluorinated Dielectric Engineering. Advanced Materials, 2016, 28, 518-526.	21.0	87
28	Organic nano-floating-gate transistor memory with metal nanoparticles. Nano Convergence, 2016, 3, 10.	12.1	46
29	Controlled aqueous synthesis of ultra-long copper nanowires for stretchable transparent conducting electrode. Journal of Materials Chemistry C, 2016, 4, 1441-1447.	5.5	78
30	Materials Design via Optimized Intramolecular Noncovalent Interactions for High-Performance Organic Semiconductors. Chemistry of Materials, 2016, 28, 2449-2460.	6.7	99
31	Synergistic High Charge-Storage Capacity for Multi-level Flexible Organic Flash Memory. Scientific Reports, 2015, 5, 12299.	3.3	50
32	Chemically doped three-dimensional porous graphene monoliths for high-performance flexible field emitters. Nanoscale, 2015, 7, 5495-5502.	5.6	11
33	Monolithic Graphene Trees as Anode Material for Lithium Ion Batteries with High Câ€Rates. Small, 2015, 11, 2774-2781.	10.0	19
34	Rearrangement of 1D Conducting Nanomaterials towards Highly Electrically Conducting Nanocomposite Fibres for Electronic Textiles. Scientific Reports, 2015, 5, 9300.	3.3	20
35	Multi-layered nanocomposite dielectrics for high density organic memory devices. Applied Physics Letters, 2015, 106, .	3.3	9
36	Diels-Alder Crosslinked Block-Copolymer Gate Dielectrics for Low Voltage Operated Top-Gate Organic Field-Effect Transistors. Molecular Crystals and Liquid Crystals, 2014, 598, 69-77.	0.9	1

#	Article	IF	CITATIONS
37	Oneâ€5tep Transfer and Integration of Multifunctionality in CVD Graphene by TiO ₂ /Graphene Oxide Hybrid Layer. Small, 2014, 10, 2057-2066.	10.0	15
38	Improved transfer of chemical-vapor-deposited graphene through modification of intermolecular interactions and solubility of poly(methylmethacrylate) layers. Carbon, 2014, 66, 612-618.	10.3	49
39	Chargeâ€Trap Flashâ€Memory Oxide Transistors Enabled by Copper–Zirconia Composites. Advanced Materials, 2014, 26, 7170-7177.	21.0	32
40	Stable charge storing in two-dimensional MoS ₂ nanoflake floating gates for multilevel organic flash memory. Nanoscale, 2014, 6, 12315-12323.	5.6	64
41	Flexible organic phototransistors based on a combination of printing methods. Organic Electronics, 2014, 15, 2677-2684.	2.6	46
42	Control of Ambipolar and Unipolar Transport in Organic Transistors by Selective Inkjetâ€Printed Chemical Doping for High Performance Complementary Circuits. Advanced Functional Materials, 2014, 24, 6252-6261.	14.9	116
43	Gradual Controlling the Work Function of Metal Electrodes by Solutionâ€Processed Mixed Interlayers for Ambipolar Polymer Fieldâ€Effect Transistors and Circuits. Advanced Functional Materials, 2014, 24, 6484-6491.	14.9	32
44	Regulating Charge Injection in Ambipolar Organic Field-Effect Transistors by Mixed Self-Assembled Monolayers. ACS Applied Materials & Interfaces, 2014, 6, 14493-14499.	8.0	27
45	Synthesis, Electronic Structure, and Charge Transport Characteristics of Naphthalenediimideâ€Based Coâ€Polymers with Different Oligothiophene Donor Units. Advanced Functional Materials, 2014, 24, 1151-1162.	14.9	65
46	Simultaneous Enhancement of Electron Injection and Air Stability in N-Type Organic Field-Effect Transistors by Water-Soluble Polyfluorene Interlayers. ACS Applied Materials & Interfaces, 2014, 6, 8108-8114.	8.0	18
47	Spray-printed organic field-effect transistors and complementary inverters. Journal of Materials Chemistry C, 2013, 1, 1500.	5.5	40
48	Organic Light Detectors: Photodiodes and Phototransistors. Advanced Materials, 2013, 25, 4267-4295.	21.0	1,088
49	Printed, Flexible, Organic Nanoâ€Floatingâ€Gate Memory: Effects of Metal Nanoparticles and Blocking Dielectrics on Memory Characteristics. Advanced Functional Materials, 2013, 23, 3503-3512.	14.9	200
50	Flexible Complementary Logic Gates Using Inkjet-Printed Polymer Field-Effect Transistors. IEEE Electron Device Letters, 2013, 34, 126-128.	3.9	44
51	Effect of gate electrode conductivity on operation frequency of inkjet-printed complementary polymer ring oscillators. Thin Solid Films, 2013, 546, 141-146.	1.8	4
52	Efficient Charge Injection in p-Type Polymer Field-Effect Transistors with Low-Cost Molybdenum Electrodes through V2O5 Interlayer. ACS Applied Materials & Interfaces, 2013, 5, 5804-5810.	8.0	33
53	Optimal Ambipolar Charge Transport of Thienylenevinylene-Based Polymer Semiconductors by Changes in Conformation for High-Performance Organic Thin Film Transistors and Inverters. Chemistry of Materials, 2013, 25, 1572-1583.	6.7	55
54	Low-voltage, high speed inkjet-printed flexible complementary polymer electronic circuits. Organic Electronics, 2013, 14, 1407-1418.	2.6	63

#	Article	IF	CITATIONS
55	Toward Printed Integrated Circuits based on Unipolar or Ambipolar Polymer Semiconductors. Advanced Materials, 2013, 25, 4210-4244.	21.0	473
56	Inkjet-Printing-Based Soft-Etching Technique for High-Speed Polymer Ambipolar Integrated Circuits. ACS Applied Materials & Interfaces, 2013, 5, 12579-12586.	8.0	12
57	High Performance and Stable N-Channel Organic Field-Effect Transistors by Patterned Solvent-Vapor Annealing. ACS Applied Materials & Interfaces, 2013, 5, 10745-10752.	8.0	60
58	Simple Barâ€Coating Process for Largeâ€Area, Highâ€Performance Organic Fieldâ€Effect Transistors and Ambipolar Complementary Integrated Circuits. Advanced Materials, 2013, 25, 4302-4308.	21.0	210
59	Nonvolatile Ferroelectric P(VDF-TrFE) Memory Transistors Based on Inkjet-Printed Organic Semiconductor. ETRI Journal, 2013, 35, 734-737.	2.0	11
60	Synthesis of Poly(p-phenylene-vinylene) Derivatives Containing an Oxadiazole Pendant Group and Their Applications to Organic Electronic Devices. Journal of Nanoscience and Nanotechnology, 2013, 13, 3321-3330.	0.9	4
61	Organic Electronics: Printed, Flexible, Organic Nanoâ€Floatingâ€Gate Memory: Effects of Metal Nanoparticles and Blocking Dielectrics on Memory Characteristics (Adv. Funct. Mater. 28/2013). Advanced Functional Materials, 2013, 23, 3482-3482.	14.9	4
62	Top-gate staggered poly(3,3″′-dialkyl-quarterthiophene) organic thin-film transistors with reverse-offset-printed silver source/drain electrodes. Applied Physics Letters, 2012, 101, 133306.	3.3	12
63	Mass Production of Polyfluorene Nanowires Using a Melt-Assisted Wetting Method. Journal of Nanoscience and Nanotechnology, 2012, 12, 1260-1264.	0.9	1
64	Effect of Curing Temperature on Nano-Silver Paste Ink for Organic Thin-Film Transistors. Journal of Nanoscience and Nanotechnology, 2012, 12, 3272-3275.	0.9	4
65	Organic Complementary Circuits: Remarkable Enhancement of Hole Transport in Top-Gated N-Type Polymer Field-Effect Transistors by a High-k Dielectric for Ambipolar Electronic Circuits (Adv. Mater.) Tj ETQq1 1	0.7 8110 14	rg&T /Overlo
66	Electron injection enhancement by a Cs-salt interlayer in ambipolar organic field-effect transistors and complementary circuits. Journal of Materials Chemistry, 2012, 22, 16979.	6.7	32
67	Effects of gate dielectrics and their solvents on characteristics of solution-processed N-channel polymer field-effect transistors. Journal of Materials Chemistry, 2012, 22, 21138.	6.7	46
68	Combining Electron-Neutral Building Blocks with Intramolecular "Conformational Locks―Affords Stable, High-Mobility P- and N-Channel Polymer Semiconductors. Journal of the American Chemical Society, 2012, 134, 10966-10973.	13.7	220
69	Controlled Charge Transport by Polymer Blend Dielectrics in Top-Gate Organic Field-Effect Transistors for Low-Voltage-Operating Complementary Circuits. ACS Applied Materials & Interfaces, 2012, 4, 6176-6184.	8.0	77
70	Highly stable printed polymer field-effect transistors and inverters via polyselenophene conjugated polymers. Journal of Materials Chemistry, 2012, 22, 12774.	6.7	31
71	Highâ€Performance Topâ€Gated Organic Fieldâ€Effect Transistor Memory using Electrets for Monolithic Printed Flexible NAND Flash Memory. Advanced Functional Materials, 2012, 22, 2915-2926.	14.9	184
72	Remarkable Enhancement of Hole Transport in Topâ€Gated Nâ€Type Polymer Fieldâ€Effect Transistors by a Highâ€k Dielectric for Ambipolar Electronic Circuits. Advanced Materials, 2012, 24, 5433-5439.	21.0	176

#	Article	IF	CITATIONS
73	Highly Soluble Poly(thienylenevinylene) Derivatives with Charge-Carrier Mobility Exceeding 1 cm2V–1s–1. Chemistry of Materials, 2011, 23, 4663-4665.	6.7	72
74	Synthesis and characterization of low-band-gap poly(thienylenevinylene) derivatives for polymer solar cells. Journal of Materials Chemistry, 2011, 21, 11822.	6.7	33
75	Bithiophene-Imide-Based Polymeric Semiconductors for Field-Effect Transistors: Synthesis, Structureâ`'Property Correlations, Charge Carrier Polarity, and Device Stability. Journal of the American Chemical Society, 2011, 133, 1405-1418.	13.7	231
76	Charge Injection Engineering of Ambipolar Field-Effect Transistors for High-Performance Organic Complementary Circuits. ACS Applied Materials & amp; Interfaces, 2011, 3, 3205-3214.	8.0	150
77	Polymer and Organic Nonvolatile Memory Devices. Chemistry of Materials, 2011, 23, 341-358.	6.7	506
78	Polymer Dielectrics and Orthogonal Solvent Effects for High-Performance Inkjet-Printed Top-Gated P-Channel Polymer Field-Effect Transistors. ETRI Journal, 2011, 33, 887-896.	2.0	29
79	Low-voltage-operated top-gate polymer thin-film transistors with high-capacitance P(VDF-TrFE)/PVDF-blended dielectrics. Current Applied Physics, 2011, 11, S213-S218.	2.4	32
80	High speeds complementary integrated circuits fabricated with allâ€printed polymeric semiconductors. Journal of Polymer Science, Part B: Polymer Physics, 2011, 49, 62-67.	2.1	102
81	Synthesis and Characterization of Poly(Dithieno[3,2â€ <i>b</i> :2′,3′â€ <i>d</i>]pyrrole) Derivatives Containing Thiophene Moieties and Their Application to Organic Devices. Macromolecular Chemistry and Physics, 2011, 212, 2308-2318.	2.2	12
82	Improved performance uniformity of inkjet printed n-channel organic field-effect transistors and complementary inverters. Organic Electronics, 2011, 12, 634-640.	2.6	65
83	Controllable Shifts in Threshold Voltage of Topâ€Gate Polymer Fieldâ€Effect Transistors for Applications in Organic Nano Floating Gate Memory. Advanced Functional Materials, 2010, 20, 224-230.	14.9	258
84	High mobility top-gated poly(3-hexylthiophene) field-effect transistors with high work-function Pt electrodes. Thin Solid Films, 2010, 518, 4024-4029.	1.8	51
85	Low-voltage-operated top-gate polymer thin-film transistors with high capacitance poly(vinylidene) Tj ETQq1 1 0. 108, .	784314 rg 2.5	gBT /Overlock 30
86	Organic Nano-Floating-Gate Memory with Polymer:[6,6]-Phenyl-C61Butyric Acid Methyl Ester Composite Films. Japanese Journal of Applied Physics, 2010, 49, 05EB01.	1.5	39
87	A New Poly(thienylenevinylene) Derivative with High Mobility and Oxidative Stability for Organic Thinâ€Film Transistors and Solar Cells. Advanced Materials, 2009, 21, 2808-2814.	21.0	118
88	Charge transfer and trapping properties in polymer gate dielectrics for non-volatile organic field-effect transistor memory applications. Solid-State Electronics, 2009, 53, 1165-1168.	1.4	22
89	A thermally resistant and air-stable n-type organic semiconductor: Naphthalene diimide of 3,5-bis-trifluoromethyl aniline. Synthetic Metals, 2009, 159, 2117-2121.	3.9	32
90	Templated assembly of metal nanoparticles in nanoimprinted patterns for metal nanowire fabrication. Nanotechnology, 2009, 20, 355302.	2.6	21

#	Article	IF	CITATIONS
91	Polarity Effects of Polymer Gate Electrets on Nonâ€Volatile Organic Fieldâ€Effect Transistor Memory. Advanced Functional Materials, 2008, 18, 3678-3685.	14.9	256
92	Effect of rubbed polyimide layer on the field-effect mobility in pentacene thin-film transistors. Applied Physics Letters, 2008, 92, 052107.	3.3	47
93	Effects of Copper Oxide/Gold Electrode as the Source-Drain Electrodes in Organic Thin-Film Transistors. Electrochemical and Solid-State Letters, 2007, 10, H340.	2.2	30
94	Effect of light irradiation on the characteristics of organic field-effect transistors. Journal of Applied Physics, 2006, 100, 094501.	2.5	65
95	Organic Non-Volatile Memory Based on Pentacene Field-Effect Transistors Using a Polymeric Gate Electret. Advanced Materials, 2006, 18, 3179-3183.	21.0	294
96	Perfluorocyclobutane containing polymeric gate dielectric for organic thin film transistors with high on/off ratio. Applied Physics Letters, 2006, 89, 202516.	3.3	18