List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1351099/publications.pdf Version: 2024-02-01

SHIL NAMIKI

#	Article	IF	CITATIONS
1	Ultrabroad-band Raman amplifiers pumped and gain-equalized by wavelength-division-multiplexed high-power laser diodes. IEEE Journal of Selected Topics in Quantum Electronics, 2001, 7, 3-16.	2.9	298
2	Ultra-compact 32 × 32 strictly-non-blocking Si-wire optical switch with fan-out LGA interposer. Optics Express, 2015, 23, 17599.	3.4	161
3	100 nm bandwidth flat-gain Raman amplifiers pumped and gain-equalised by 12-wavelength-channel WDM laser diode unit. Electronics Letters, 1999, 35, 1355.	1.0	138
4	Sub-200-fs pulsed erbium-doped fiber laser using a carbon nanotube-polyvinylalcohol mode locker. Applied Physics Letters, 2006, 88, 051118.	3.3	133
5	Self-switching of optical pulses in dispersion-imbalanced nonlinear loop mirrors. Optics Letters, 1997, 22, 1150.	3.3	123
6	Wide-Band and -Range Tunable Dispersion Compensation Through Parametric Wavelength Conversion and Dispersive Optical Fibers. Journal of Lightwave Technology, 2008, 26, 28-35.	4.6	107
7	Ultra-compact 8 × 8 strictly-non-blocking Si-wire PILOSS switch. Optics Express, 2014, 22, 3887.	3.4	105
8	Low-Insertion-Loss and Power-Efficient 32 × 32 Silicon Photonics Switch With Extremely High-Δ Silica PLC Connector. Journal of Lightwave Technology, 2019, 37, 116-122.	4.6	102
9	Noise of the stretched pulse fiber laser. I. Theory. IEEE Journal of Quantum Electronics, 1997, 33, 649-659.	1.9	94
10	Ultra-high-extinction-ratio 2 × 2 silicon optical switch with variable splitter. Optics Express, 2015, 23, 9086.	3.4	92
11	Ultrahigh-Definition Video Transmission and Extremely Green Optical Networks for Future. IEEE Journal of Selected Topics in Quantum Electronics, 2011, 17, 446-457.	2.9	88
12	Energy rate equations for mode-locked lasers. Journal of the Optical Society of America B: Optical Physics, 1997, 14, 2099.	2.1	87
13	Ultrafast all-optical logic gate using a nonlinear optical loop mirror based multi-periodic transfer function. Optics Express, 2008, 16, 2570.	3.4	73
14	Pulse compression techniques using highly nonlinear fibers. Laser and Photonics Reviews, 2008, 2, 83-99.	8.7	69
15	Carrier recovery for M-QAM signals based on a block estimation process with Kalman filter. Optics Express, 2014, 22, 15376.	3.4	63
16	All-optical demultiplexing of 160–10Gbitâ^•s signals with Mach-Zehnder interferometric switch utilizing intersubband transition in InGaAsâ^•AlAsâ^•AlAsSb quantum well. Applied Physics Letters, 2007, 91, 221115.	3.3	62
17	Broadband silicon photonics 8 × 8 switch based on double-Mach–Zehnder element switches. Optics Express, 2017, 25, 7538.	3.4	62
18	Broadband four-wave mixing generation in short optical fibres. Electronics Letters, 2000, 36, 709.	1.0	61

#	Article	IF	CITATIONS
19	Broadband lossless DCF using Raman amplification pumped by multichannel WDM laser diodes. Electronics Letters, 1998, 34, 2145.	1.0	58
20	Optical quantizing and coding for ultrafast A/D conversion using nonlinear fiber-optic switches based on Sagnac interferometer. Optics Express, 2005, 13, 4296.	3.4	52
21	Multiperiod PM-NOLM With Dynamic Counter-Propagating Effects Compensation for 5-Bit All-Optical Analog-to-Digital Conversion and Its Performance Evaluations. Journal of Lightwave Technology, 2010, 28, 415-422.	4.6	46
22	Design considerations of all-optical A/D conversion: nonlinear fiber-optic Sagnac-loop interferometer-based optical quantizing and coding. Journal of Lightwave Technology, 2006, 24, 2618-2628.	4.6	45
23	Low noise frequency comb carriers for 64-QAM via a Brillouin comb amplifier. Optics Express, 2017, 25, 17847.	3.4	42
24	Observation of nearly quantum-limited timing jitter in an all-fiber ring laser. Journal of the Optical Society of America B: Optical Physics, 1996, 13, 2817.	2.1	37
25	Optical pulse compression based on stationary rescaled pulse propagation in a comblike profiled fiber. Journal of Lightwave Technology, 2006, 24, 2510-2522.	4.6	37
26	Pattern-effect-free all-optical wavelength conversion using a hydrogenated amorphous silicon waveguide with ultra-fast carrier decay. Optics Letters, 2012, 37, 1382.	3.3	37
27	Low-Loss, Low-Crosstalk, and Large-Scale Optical Switch Based on Silicon Photonics. Journal of Lightwave Technology, 2020, 38, 233-239.	4.6	37
28	Challenges of Raman Amplification. Proceedings of the IEEE, 2006, 94, 1024-1035.	21.3	36
29	Nonduplicate Polarization-Diversity 32 × 32 Silicon Photonics Switch Based on a SiN/Si Double-Layer Platform. Journal of Lightwave Technology, 2020, 38, 226-232.	4.6	36
30	Optimized WDM Transmission Impairment Mitigation by Multiple Phase Conjugations. Journal of Lightwave Technology, 2016, 34, 431-440.	4.6	35
31	Noise of the stretched pulse fiber laser. II. Experiments. IEEE Journal of Quantum Electronics, 1997, 33, 660-668.	1.9	34
32	Comb-like profiled fibre for efficient generation of high quality 160â€GHz sub-picosecond soliton train. Electronics Letters, 2005, 41, 688.	1.0	34
33	Evolution of the gain extinction ratio in dual-pump phase sensitive amplification. Optics Letters, 2012, 37, 1439.	3.3	31
34	Non-duplicate polarization-diversity 8 × 8 Si-wire PILOSS switch integrated with polarization splitter-rotators. Optics Express, 2017, 25, 10885.	3.4	31
35	Generation of 1â€THz repetition rate, 97â€fs optical pulse train based on comb-like profiled fibre. Electronics Letters, 2005, 41, 1048.	1.0	30
36	On-chip Brillouin purification for frequency comb-based coherent optical communications. Optics Letters, 2017, 42, 5074.	3.3	30

#	Article	IF	CITATIONS
37	Broadband flat-gain and low-noise Raman amplifiers pumped by wavelength-multiplexed high-power laser diodes. Optical Fiber Technology, 2002, 8, 107-122.	2.7	27
38	Continuously tunable 22 ns delay for wideband optical signals using a parametric delay-dispersion tuner. Optics Letters, 2009, 34, 1441.	3.3	26
39	Transmission and pass-drop operations of mixed baudrate Nyquist OTDM-WDM signals for all-optical elastic network. Optics Express, 2013, 21, 20313.	3.4	26
40	Guard-Band-Less and Polarization-Insensitive Tunable Wavelength Converter for Phase-Modulated Signals: Demonstration and Signal Quality Analyses. Journal of Lightwave Technology, 2014, 32, 1981-1990.	4.6	26
41	0.98 mu m InGaAs-InGaAsP-InGaP GRIN-SCH SL-SQW lasers for coupling high optical power into single-mode fiber. IEEE Journal of Quantum Electronics, 1993, 29, 1932-1935.	1.9	25
42	Nearly exact optical beat-to-soliton train conversion based on comb-like profiled fiber emulating a polynomial dispersion decreasing profile. IEEE Photonics Technology Letters, 2005, 17, 1698-1700.	2.5	24
43	Relaxation oscillation behavior in polarization additive pulse mode″ocked fiber ring lasers. Applied Physics Letters, 1996, 69, 3969-3971.	3.3	23
44	Controlling Optical Signals Through Parametric Processes. IEEE Journal of Selected Topics in Quantum Electronics, 2012, 18, 717-725.	2.9	23
45	On the Cascadability of All-Optical Wavelength Converter for High-Order QAM Formats. Journal of Lightwave Technology, 2016, 34, 3194-3205.	4.6	23
46	SOA-Integrated Silicon Photonics Switch and Its Lossless Multistage Transmission of High-Capacity WDM Signals. Journal of Lightwave Technology, 2019, 37, 123-130.	4.6	23
47	Large-scale silicon photonics switch based on 45-nm CMOS technology. Optics Communications, 2020, 466, 125677.	2.1	22
48	SiN/Si double-layer platform for ultralow-crosstalk multiport optical switches. Optics Express, 2019, 27, 21130.	3.4	22
49	Simple and fully CMOS-compatible low-loss fiber coupling structure for a silicon photonics platform. Optics Letters, 2020, 45, 2095.	3.3	22
50	Energy consumption targets for network systems. , 2008, , .		21
51	Low Penalty Uniformly Tunable Wavelength Conversion Without Spectral Inversion Over 30 nm Using SBS-Suppressed Low-Dispersion-Slope Highly Nonlinear Fibers. IEEE Photonics Technology Letters, 2011, 23, 546-548.	2.5	21
52	No guard-band wavelength translation of Nyquist OTDM-WDM signal for spectral defragmentation in an elastic add–drop node. Optics Letters, 2013, 38, 3287.	3.3	21
53	Compact 2 × 2 polarization-diversity Si-wire switch. Optics Express, 2014, 22, 29818.	3.4	21
54	Demonstration of a 3-dB directional coupler with enhanced robustness to gap variations for silicon wire waveguides. Optics Express, 2014, 22, 2051.	3.4	21

#	Article	IF	CITATIONS
55	Enhanced Carrier to Noise Ratio by Brillouin Amplification for Optical Communications. Journal of Lightwave Technology, 2020, 38, 319-331.	4.6	21
56	Accelerating Switching Speed of Thermo-optic MZI Silicon-Photonic Switches with "Turbo Pulse―in PWM Control. , 2017, , .		21
57	Microsecond switching of parametric tunable dispersion compensator. Optics Letters, 2010, 35, 3039.	3.3	20
58	Wide range operation of regenerative optical parametric wavelength converter using ASE-degraded 43-Gb/s RZ-DPSK signals. Optics Express, 2011, 19, 23258.	3.4	20
59	Efficient phase regeneration of DPSK signal by sidebandâ€assisted dualâ€pump phaseâ€sensitive amplifier. Electronics Letters, 2013, 49, 140-141.	1.0	20
60	Nearly-Ideal Optical Phase Conjugation based Nonlinear Compensation System. , 2014, , .		20
61	Prototype Highly Integrated 8×48 Transponder Aggregator Based on Si Photonics for Multi-Degree Colorless, Directionless, Contentionless Reconfigurable Optical Add/Drop Multiplexer. IEICE Transactions on Electronics, 2013, E96.C, 966-973.	0.6	20
62	116-fs soliton source based on an Er-Yb codoped waveguide amplifier. IEEE Photonics Technology Letters, 1998, 10, 666-668.	2.5	19
63	Performance Evaluation of Resolution-Enhanced ADC Using Optical Multiperiod Transfer Functions of NOLMs. IEEE Journal of Selected Topics in Quantum Electronics, 2012, 18, 779-784.	2.9	18
64	First demonstration of ultra-low-energy hierarchical multi-granular optical path network dynamically controlled through NSI-CS for video related applications. , 2014, , .		18
65	Experimental Investigation of Gain Offset Behavior of Feedforward-Controlled WDM AGC EDFA Under Various Dynamic Wavelength Allocations. IEEE Photonics Journal, 2016, 8, 1-13.	2.0	18
66	Multi-Channel Cascadable Parametric Signal Processing for Wavelength Conversion and Nonlinearity Compensation. Journal of Lightwave Technology, 2017, 35, 815-823.	4.6	18
67	Ultra-compact silicon photonics switch with high-density thermo-optic heaters. Optics Express, 2019, 27, 10332.	3.4	18
68	Widely wavelength-tunable 40â€GHz femtosecond pulse source based on compression of externally-modulated pulse using 1.4â€km comb-like profiled fibre. Electronics Letters, 2005, 41, 797.	1.0	17
69	All-Optical Analog-to-Digital Conversion Using Split-and-Delay Technique. Journal of Lightwave Technology, 2007, 25, 1339-1347.	4.6	17
70	Energy consumption and traffic scaling of dynamic optical path networks. Proceedings of SPIE, 2012, , .	0.8	17
71	Phase regeneration of phase encoded signals by hybrid optical phase squeezer. Optics Express, 2014, 22, 12177.	3.4	17
72	Off-Chip Polarization-Diversity \$4 ,, imes ,, 4\$ Si-Wire Optical Switch With Digital DGD Compensation. IEEE Photonics Technology Letters, 2016, 28, 457-460.	2.5	17

#	Article	IF	CITATIONS
73	Analysis and Demonstration of Network Utilization Improvement Through Format-Agnostic Multi-Channel Wavelength Converters. Journal of Optical Communications and Networking, 2018, 10, A165.	4.8	17
74	32×32 Strictly Non-Blocking Si-Wire Optical Switch on Ultra-Small Die of 11×25 mm2. , 2015, , .		17
75	Adaptive adjustment of reference constellation for demodulating 16QAM signal with intrinsic distortion due to imperfect modulation. Optics Express, 2013, 21, 29120.	3.4	16
76	Optical network technologies for HPC: computer-architects point of view. IEICE Electronics Express, 2016, 13, 20152007-20152007.	0.8	16
77	Novel polarization diversity without switch duplication of a Si-wire PILOSS optical switch. Optics Express, 2016, 24, 6861.	3.4	15
78	Integrated silicon photonic wavelength-selective switch using wavefront control waveguides. Optics Express, 2018, 26, 13573.	3.4	15
79	On-chip bacterial foraging training in silicon photonic circuits for projection-enabled nonlinear classification. Nature Communications, 2022, 13, .	12.8	15
80	Photonic network R&D activities in Japan-current activities and future perspectives. Journal of Lightwave Technology, 2005, 23, 3404-3418.	4.6	14
81	External Synchronization of 160-GHz Optical Beat Signal by Optical Phase-Locked Loop Technique. IEEE Photonics Technology Letters, 2006, 18, 2457-2459.	2.5	14
82	Unifying Top-Down and Bottom-Up Approaches to Evaluate Network Energy Consumption. Journal of Lightwave Technology, 2015, 33, 4395-4405.	4.6	14
83	High-speed optical transmissions over a second- and third-order dispersion-managed DSF span with parametric tunable dispersion compensator. Optics Express, 2010, 18, 10594.	3.4	13
84	Wavelength-Division Demultiplexing Enhanced by Silicon-Photonic Tunable Filters in Ultra-Wideband Optical-Path Networks. Journal of Lightwave Technology, 2020, 38, 1002-1009.	4.6	13
85	Harmonic mode-locking using regenerative phase modulation. IEEE Photonics Technology Letters, 1998, 10, 337-339.	2.5	12
86	Wavelength-tunable optical parametric regenerator. Optics Letters, 2010, 35, 3468.	3.3	12
87	Optical Nyquist Filtering for Elastic OTDM Signals: Fundamentals and Demonstrations. Journal of Lightwave Technology, 2015, 33, 1014-1026.	4.6	12
88	Low Insertion Loss and Power Efficient 32 × 32 Silicon Photonics Switch with Extremely-High-Δ PLC Connector. , 2018, , .		12
89	Stationary rescaled pulse in alternately concatenated fibers withO(1)-accumulated nonlinear perturbations. Physical Review E, 2005, 72, 025601.	2.1	11
90	Demonstration of 172-Gb/s Optical Time Domain Multiplexing and Demultiplexing Using Integratable Semiconductor Devices. IEEE Photonics Technology Letters, 2010, 22, 1416-1418.	2.5	11

#	Article	IF	CITATIONS
91	Silicon Photonics Based Transponder Aggregator for Next Generation ROADM Systems. , 2012, , .		11
92	2.5-dB loss, 100-nm Operating Bandwidth, and Low Power Consumption Strictly-Non-Blocking 8 × 8 Si Switch. , 2017, , .		11
93	Low Noise Frequency Combs for Higher Order QAM Formats Through Cross-Phase Modulation of Modelocked Laser Pulses. IEEE Journal of Selected Topics in Quantum Electronics, 2018, 24, 1-12.	2.9	11
94	A Large-Scale Optical Circuit Switch Using Fast Wavelength-Tunable and Bandwidth-Variable Filters. IEEE Photonics Technology Letters, 2018, 30, 1439-1442.	2.5	11
95	High-Capacity Multi-Stage Operation of Polarization-Diversity Silicon Photonics 8 × 8 Optical Switch. Journal of Lightwave Technology, 2019, 37, 131-137.	4.6	11
96	Scalable and Fast Optical Circuit Switch Based on Colorless Coherent Detection: Design Principle and Experimental Demonstration. Journal of Lightwave Technology, 2021, 39, 2263-2274.	4.6	11
97	In-band amplified spontaneous emission noise filtering with a dispersion-imbalanced nonlinear loop mirror. Journal of Lightwave Technology, 1998, 16, 1768-1772.	4.6	10
98	Repetition rate variable and wavelength-tunable picosecond optical pulse source employing square-wave-driven intensity modulator and comb-like profiled fiber. IEEE Photonics Technology Letters, 2005, 17, 2736-2738.	2.5	10
99	Parametric tunable dispersion compensation for the transmission of sub-picosecond pulses. Optics Express, 2011, 19, 15549.	3.4	10
100	Signal power asymmetry tolerance of an optical phase conjugation-based nonlinear compensation system. , 2014, , .		9
101	Counter-Dithering Pump Scheme for Cascaded Degenerate FWM Based Wavelength Converter. , 2014, , .		9
102	Brillouin Amplifier Noise Characterization by a Coherent Receiver and Digital Signal Processing. Journal of Lightwave Technology, 2020, 38, 4221-4236.	4.6	9
103	Fast Frequency Tuning of Silicon-Photonic Thermo-optic MZI Filters using "Turbo Pulse―Method. , 2018, , .		9
104	Fast and Accurate Automatic Calibration of a 32 × 32 Silicon Photonic Strictly-Non-Blocking Switch. , 2017, , .		9
105	Dynamic Routing of Y-00 Quantum Stream Cipher in Field-Deployed Dynamic Optical Path Network. , 2018, , .		9
106	Dynamic Optical Path Switching in 172-Gb/s OTDM Transmissions of Ultra-High Definition Video Signals Using Fast Channel-Identifiable Clock Recovery and Integratable Devices. Journal of Lightwave Technology, 2013, 31, 594-601.	4.6	8
107	Polarization-Rotator-Free Polarization-Diversity 4 4 Si-Wire Optical Switch. IEEE Photonics Journal, 2016, 8, 1-7.	2.0	8
108	Optical Network Resource Management Supporting Physical Layer Reconfiguration. Journal of Lightwave Technology, 2019, 37, 5442-5454.	4.6	8

#	Article	IF	CITATIONS
109	Design and verification of a LO bank enabled by fixed-wavelength lasers and fast tunable silicon ring filters for creating large scale optical switches. Optics Express, 2021, 29, 39930.	3.4	8
110	1.48 mu m high-power GalnAsP-InP graded-index separate-confinement-heterostructure multiple-quantum-well laser diodes. IEEE Journal of Quantum Electronics, 1993, 29, 1924-1931.	1.9	7
111	Polarisation-insensitive parametric tunable dispersion compensator. Electronics Letters, 2011, 47, 123.	1.0	7
112	In-Line Polarization-Insensitive Parametric Tunable Dispersion Compensator for WDM Signals. Journal of Lightwave Technology, 2012, 30, 1750-1756.	4.6	7
113	Signal phase regeneration through multiple wave coherent addition enabled by hybrid optical phase squeezer. Optics Express, 2015, 23, 27920.	3.4	7
114	Wavelength Translation of Dual-Polarization Phase-Modulated Nyquist OTDM at Terabit/s. Journal of Lightwave Technology, 2016, 34, 633-642.	4.6	7
115	Signal-transparent wavelength conversion and light-speed back propagation through fiber. , 2016, , .		7
116	Design and Demonstration of 30-nm Tunable Guard-band-less All-Optical Wavelength Converter for WDM Signals. , 2017, , .		7
117	Quantum theory of local stopping power for fast channeled ions. Physical Review B, 1988, 37, 1448-1454.	3.2	6
118	Toward Tera-sample/s 5-bit All-optical Analog-to-digital Conversion. , 2009, , .		6
119	Baud-rate flexible clock recovery and channel identification in OTDM realized by pulse position modulation. Optics Express, 2013, 21, 4447.	3.4	6
120	Doubled transmission reach for DP-64QAM signal over field-deployed legacy fiber systems enabled by MSSI. , 2015, , .		6
121	Toward exa-scale optical circuit switch interconnect networks for future datacenter/HPC. , 2017, , .		6
122	Silicon photonics based 1 × 2 wavelength selective switch using fold-back arrayed-waveguide gratings. IEICE Electronics Express, 2018, 15, 20180532-20180532.	0.8	6
123	Gain-Integrated 8 × 8 Silicon Photonics Multicast Switch With On-Chip 2 × 4-ch. SOAs. Journal of Lightwave Technology, 2020, 38, 2930-2937.	4.6	6
124	Strictly Non-Blocking 8 × 8 Silicon Photonics Switch Operating in the O-Band. Journal of Lightwave Technology, 2021, 39, 1096-1101.	4.6	6
125	Pilot Tone Power Limits of Brillouin Amplified Carrier Recovery for Optical Communications. Journal of Lightwave Technology, 2021, 39, 960-976.	4.6	6
126	Wavelength Assignment Dependency of AGC EDFA Gain Offset under Dynamic Optical Circuit Switching. , 2014, , .		6

#	Article	lF	CITATIONS
127	A 300-mm-wafer silicon photonics technology for ultra-low-energy optical network systems. , 2017, , .		6
128	Optical signal processing for energy-efficient dynamic optical path networks. , 2010, , .		5
129	Field Demonstration of Parametric Tunable Dispersion Compensator Employing Polarization Diversity Scheme. IEEE Photonics Technology Letters, 2011, 23, 926-928.	2.5	5
130	Experimental investigation of transients in six cascaded AGC EDFAs and their suppression using a high-speed VOA. IEICE Communications Express, 2012, 1, 137-142.	0.4	5
131	Sub-millisecond timing-jitter-free tuning of parametric dispersion compensator. Optics Express, 2013, 21, 27169.	3.4	5
132	Ultralow-crosstalk and broadband multi-port optical switch using SiN/Si double-layer platform. , 2017, , .		5
133	Automatic Mapping Between Real Hardware Composition and ROADM Model for Agile Node Updates. Journal of Lightwave Technology, 2021, 39, 821-832.	4.6	5
134	Compensation of SOA-induced nonlinear phase distortions by optical phase conjugation. Optics Express, 2021, 29, 12252.	3.4	5
135	Silicon Based 1 × <i>M</i> Wavelength Selective Switch Using Arrayed Waveguide Gratings With Fold-Back Waveguides. Journal of Lightwave Technology, 2021, 39, 2413-2420.	4.6	5
136	Transmission Optimized Impairment Mitigation by 12 Stage Phase Conjugation of WDM 24×48 Gb/s DP-QPSK Signals. , 2015, , .		5
137	Topology Description Generation and Path Computation Framework for Dynamic Optical Path Network with Heterogeneous Switches. , 2018, , .		5
138	Comparison between quantum and classical diffusion functions for channeled particles. Physics Letters, Section A: General, Atomic and Solid State Physics, 1988, 128, 501-502.	2.1	4
139	Parametric Noise Amplification Inherent in the Coherence of Fundamental Optical Soliton Sequence Propagating in Fiber. IEEE Journal of Selected Topics in Quantum Electronics, 2004, 10, 900-905.	2.9	4
140	Wideband tunable dispersion compensation of 126 km zero-DSF using parametric processes. , 2008, , .		4
141	Fundamental Studies on Ultra-High-Speed Optical LAN Using Optical Circuit Switching. , 2008, , .		4
142	43-Gb/s Operation of Wavelength-Tunable Optical Parametric Regenerator. IEEE Photonics Technology Letters, 2011, 23, 718-720.	2.5	4
143	Optical-Time-Division Demultiplexing of 172 Gb/s to 43 Gb/s in a-Si:H Waveguides. IEEE Photonics Technology Letters, 2014, 26, 426-429.	2.5	4
144	Multiport optical switches integrated on Si photonics platform. IEICE Electronics Express, 2014, 11, 20142011-20142011.	0.8	4

#	Article	IF	CITATIONS
145	Quadrature Squeezing and IQ De-Multiplexing of QPSK Signals by Sideband-Assisted Dual-Pump Phase Sensitive Amplifiers. IEICE Transactions on Communications, 2015, E98.B, 2227-2237.	0.7	4
146	Dynamic Parametric Dispersion Compensation Using FPGA Pump Controller and Dispersion Monitor. , 2015, , .		4
147	Multi-tone counter dithering of terabit/s polarization multiplexed signals for enhanced FWM with a single pump. , 2015, , .		4
148	Experimental demonstration of 2,160×2,160 optical circuit switch for intra-datacenter networking. , 2016, , .		4
149	Fast Optical Circuit Switch for Intra-Datacenter Networking. IEICE Transactions on Communications, 2017, E100.B, 1740-1746.	0.7	4
150	Noise Characterization of Brillouin Amplified Narrowband Carriers for Coherent Communications. , 2018, , .		4
151	Frequency-Packed Multiband-Coherent Transceiver With Symbol Rate-Adaptive Nyquist WDM Signals. IEEE Photonics Technology Letters, 2021, 33, 1205-1208.	2.5	4
152	Efficient Quadrature Squeezing of QPSK Signals by Sideband-Assisted Dual-pump Phase Sensitive Amplifier. , 2013, , .		4
153	100nm bandwidth flat gain Raman amplifiers pumped and gain-equalized by 12-wavelength-channel WDM high power laser diodes. , 1999, , .		4
154	Fully-Loaded Operation of 0.29-pJ/bit Wall-plug Efficiency, 81.9-Tb/s Throughput 32 × 32 Silicon Photonics Switch. , 2021, , .		4
155	State of the art in diode pumped Raman amplifiers. , 2001, , .		4
156	Discrete Raman Amplifiers. , 2005, , 169-213.		4
157	$1 ilde{A}-2$ Silicon Wavelength Selective Switch Using Fold Back Arrayed-Waveguide Gratings. , 2017, , .		4
158	Polarization-Diversity 32 x 32 Si Photonics Switch with Non-Duplicate Diversity Circuit in Double-Layer Platform. , 2019, , .		4
159	Scalability of integer linear programming path computation for functional block-based disaggregation supporting a flexible grid mechanism [Invited]. Journal of Optical Communications and Networking, 2022, 14, A134.	4.8	4
160	Broadband Raman Amplifiers. Optics and Photonics News, 2002, 13, 52.	0.5	3
161	Highly nonlinear fiber devices for optical networks. , 2005, , .		3
162	17 ns tunable delay for picosecond pulses through simultaneous and independent control of delay		3

and dispersion using cascaded parametric processes. , 2008, , .

#	Article	IF	CITATIONS
163	Continuously tunable wavelength converter by four-wave mixing in SBS suppressed highly nonlinear fibre. Electronics Letters, 2009, 45, 1084.	1.0	3
164	Energy bottlenecks in future networks and optical signal processing. , 2009, , .		3
165	Optical LAN technologies for the ultra-high definition video era. Proceedings of SPIE, 2009, , .	0.8	3
166	Truly arbitrary wavelength conversion by cascaded four-wave mixing in low dispersion slope SBS suppressed highly nonlinear fibers. , 2010, , .		3
167	In-band clock distribution using signal phase for channel identifiable clock recovery in optical time-division multiplexing. Electronics Letters, 2012, 48, 863.	1.0	3
168	Parametric Tunable Dispersion Compensation With Spectrally Noninverting Wavelength Conversion Using Quasi-Phase-Matched Adhered Ridge Waveguide. IEEE Journal of Selected Topics in Quantum Electronics, 2012, 18, 593-599.	2.9	3
169	Fast Wavelength Switching of Fully Heater-tuned CSG-DR Lasers. , 2013, , .		3
170	All-optical Nyquist filtering for elastic OTDM signals and their spectral defragmentation for inter-datacenter networks. , 2014, , .		3
171	Tunable Optical Parametric Regenerator Assessment in a 43 Gb/s RZ-DPSK Signal Transmission Link. IEEE Photonics Technology Letters, 2014, 26, 629-632.	2.5	3
172	Evaluation of the phase error in Si-wire arrayed-waveguide gratings fabricated by ArF-immersion photolithography. IEICE Electronics Express, 2015, 12, 20150019-20150019.	0.8	3
173	Dispersion Pre-Compensation for PAM Transmission System Using 1-sample/symbol DAC and IQ Modulator. , 2015, , .		3
174	Highly cascadable all-optical wavelength conversions of DP-QPSK, DP-16QAM, and DP-64QAM signals. , 2015, , .		3
175	A 200-GHz spacing, 17-channel, 1×2 wavelength selective switch using a silicon arrayed-waveguide grating with loopback. , 2015, , .		3
176	Silicon photonics C-band tunable filter for large-scale optical circuit switches. , 2017, , .		3
177	Multi-granular Optical Path Computations based on Physical Network Topology Descriptions. , 2018, , .		3
178	Guest EditorialUltra Wideband WDM Systems. Journal of Lightwave Technology, 2020, 38, 998-1001.	4.6	3
179	Polarization-Insensitive Parametric Tunable Dispersion Compensation for Field Fiber Transmissions with Ultra-High-Definition Video Signals. , 2011, , .		3
180	Challenges and Impact of Dynamic Optical-Layer Switching –Ten years of VICTORIES and Beyond –. , 2017, , .		3

#	Article	IF	CITATIONS
181	Demonstration of Fast Cooperative Operations in Disaggregated Optical Node Systems. , 2017, , .		3
182	Pump Laser Diodes and WDM Pumping. , 2004, , 121-160.		3
183	Baud-Rate-Adaptive OLT Integrated-Coherent Transceiver for Nyquist Spectral Shaped/Channel Spaced WDM-PON. , 2020, , .		3
184	Experimental Demonstration of XOR Separation by On-chip Training a Linear Silicon Photonic Circuit. , 2021, , .		3
185	Recent Advances in Large-scale Optical Switches Based on Silicon Photonics. , 2022, , .		3
186	Brillouin Amplification for Enhanced Coherent Communication Applications. Journal of Lightwave Technology, 2022, 40, 3223-3242.	4.6	3
187	Wavelength-tunable semiconductor pump diode for reconfigurable Raman amplification. Applied Optics, 2003, 42, 1692.	2.1	2
188	Terahertz repetition rate optical pulse train generation based on comb-like profiled fiber. , 0, , .		2
189	Versatile all-optical logic gate using nonlinear optical loop mirror based multi-periodic transfer function. , 2006, , .		2
190	Tunable Dispersion Compensation Using Parametric Processes. , 2008, , .		2
191	Resolution-enhanced ultrafast ADC using optical multi-period transfer functions of NOLMs. , 2010, , .		2
192	172-Gbps cascaded OTDM MUX and DEMUX operations of 43G VSR transceivers using integratable semiconductor devices. , 2010, , .		2
193	Fundamental studies on ultra-high-speed optical LAN using optical circuit switching. Photonic Network Communications, 2010, 19, 32-41.	2.7	2
194	Development of highly cascadable wavelength converter for all-optical networks. , 2014, , .		2
195	In-band OSNR monitor based on 3 × 3 Si-wire MMI coupler. , 2015, , .		2
196	First Demonstration of Wavelength Translation for 1.376-Tbit/s DP-QPSK Nyquist OTDM Signal. , 2015, , .		2
197	4×4 Si-wire optical path switch with off-chip polarization diversity. , 2015, , .		2
198	Power-efficient Gray-scale Control of Silicon Thermo-optic Phase Shifters by Pulse Width Modulation Using Monolithically Integrated MOSFET. , 2015, , .		2

#	Article	IF	CITATIONS
199	Polarization-diversity 4 × 4 Si-wire optical switch. , 2015, , .		2
200	Phase regeneration of QPSK signals by hybrid optical phase squeezer. , 2015, , .		2
201	Silicon photonics based switching technology for telecom, datacom and computercom. , 2015, , .		2
202	Low Noise Degenerate FWM of 12×100 Gb/s DP-QPSK Signals with Counter-Dithering of Pump and Idler Waves. , 2015, , .		2
203	Distributed-like optical path switch control approach for interconnect networks. , 2016, , .		2
204	Demonstration of 720 $ ilde{A}$ —720 optical fast circuit switch for intra-datacenter networks. , 2016, , .		2
205	Efficient Path Calculation Scheme for Advance Reservation of Hierarchical Optical Path Network Using Continuous Variables to Represent Switch States. , 2018, , .		2
206	64-QAM Signal Carrier Recovery from Low Power Pilot Tone by Narrowband Brillouin Amplification before Coherent Detection. , 2018, , .		2
207	Low-Crosstalk Bandwidth Expansion in \$32imes 32\$ Silicon Optical Switch with Port-Exchanged Mach-Zehnder Switch. , 2019, , .		2
208	Low distortion amplification of 16 and 64QAM signals using SOA. Optics Communications, 2022, 502, 127331.	2.1	2
209	Large-Scale Optical Switches Based on Silicon Photonics. , 2021, , .		2
210	Simultaneous Dispersion Compensation of WDM Channels Using In-Line Parametric Tunable Dispersion Compensator. , 2011, , .		2
211	Pattern-Effect-Free Wavelength Conversion based on FWM in Hydrogenated Amorphous Silicon Waveguide. , 2011, , .		2
212	Regeneration of Noise Limited Frequency Comb Lines for 64-QAM by Brillouin Gain Seeded via SSB Modulation. , 2017, , .		2
213	Network Utilization Improvement Using Format-agnostic Multi-channel Wavelength Converters. , 2017, , .		2
214	Fully-Loaded and Cascaded Operation of Polarization-Diversity 8 × 8 Silicon Photonics Optical Switch with 11-ch × 32/44-Gbaud DP-16QAM WDM Transmission. , 2018, , .		2
215	Fast Optical Switch Utilizing Coherent Detection Enabled by Cooperative Filtering of Transmission Signal and Local Oscillator (LO) Wavelength Sourced from an LO Bank. , 2021, , .		2

216 Ultra-Compact 8 ${\rm \AA}-$ 8 Strictly Non-Blocking PILOSS Switch Based on Si-Wire. , 2014, , .

2

#	Article	IF	CITATIONS
217	Broadband Counter-Phase Dithering of Multi-Terabit/s DP-QPSK Signals for Low Noise FWM with a Single CW Pump. , 2015, , .		2
218	Next-Generation ROADM Employing Bandwidth-Adaptive Silicon-Photonic Filters for Flexible Drop Operation. , 2018, , .		2
219	Low-Loss, Low-Crosstalk, and Large-Scale Silicon Photonics Switch. , 2019, , .		2
220	Large-Scale and Fast Optical Circuit Switch for Coherent Detection Using Tunable Local Oscillators Formed with Wavelength Bank and Widely-Tunable Silicon Ring Filters. , 2020, , .		2
221	Scalable and Fast Optical Circuit Switch Created with Silicon-Photonic Tunable-Filter-based Local Oscillator Bank and Colorless Coherent Detection. , 2020, , .		2
222	Corrections To "Noise Of The Stretched Pulse Fiber Laser: Part I~theory". IEEE Journal of Quantum Electronics, 1997, 33, 1245-1245.	1.9	1
223	Application of Nonlinear Fitting for Etalon-Type Gain-Flattening Filter Design. Japanese Journal of Applied Physics, 2003, 42, 456-460.	1.5	1
224	Timing control and stabilization of an optical pulse source with IQ-modulator/demodulator for OTDM DEMUX channel selector. , 2005, , .		1
225	Photonic analog-to-digital conversion. , 0, , .		1
226	Timing Jitter Reduction of a Synchronized 160 GHz Optical Beat Signal by Using a Compact Optical Phase-Locked Loop Module. , 2006, , .		1
227	Nonlinear optical devices based on carbon nanotubes. , 2006, , .		1
228	1 μs tunable delay using para-metric mixing and optical phase conjugation†în Si waveguides: comment. Optics Express, 2009, 17, 16027.	3.4	1
229	Ultrafast all-optical A/D conversion using NOLMs with multi-period transfer functions. , 2009, , .		1
230	High-bit-rate optical switching based on XPM in silicon waveguides. , 2009, , .		1
231	Ultrafast all-optical A/D conversion using non-linear optical loop mirrors with multi-period transfer functions. , 2009, , .		1
232	1.8-ps RZ-Pulse 43-Gbps Transmissions over 126-km DSF with Parametric Tunable Dispersion Compensation. , 2010, , .		1
233	Parametric tunable dispersion compensator using cascaded sum- and difference-frequency generation of PPLN waveguide. , 2010, , .		1
234	Design of uniform power transfer functions for tunable optical parametric regenerator. , 2010, , .		1

#	Article	IF	CITATIONS
235	Parametric node devices for extremely low-energy networks. , 2010, , .		1
236	Recent Advances of Parametric Tunable Dispersion Compensators. , 2012, , .		1
237	Experimental study on parametric tunable dispersion compensation for WDM channels with mixed OOK and QPSK formats. Electronics Letters, 2013, 49, 401-402.	1.0	1
238	Field transmission of uncompressed ultra-high definition video signals through dynamic optical path network. , 2015, , .		1
239	First demonstration of wavelength conversion of DP-64QAM signal using an improved counter-dithering pump scheme. , 2015, , .		1
240	Implementing ideal nonlinear compensation through nonlinearity. , 2015, , .		1
241	What is the true value of dynamic optical path switching?. , 2015, , .		1
242	Autonomous Parametric Tunable Dispersion Compensation for Dynamic Optical Switching. IEEE Photonics Technology Letters, 2015, 27, 1589-1592.	2.5	1
243	Extremely high-capacity, low-energy, and low latency optical networking for future infrastructure. , 2015, , .		1
244	Toward exa-scale photonic switch system for the future datacenter (invited paper). , 2016, , .		1
245	Silicon photonic bandwidth-tunable filter based on 16-tap finite impulse response. , 2017, , .		1
246	On-chip Brillouin processing for coherent optical communications. , 2017, , .		1
247	Fast Optical Circuit Switch Using Monolithically Integrated Silicon-Photonic Space Switch and Wavelength-Tuneable Filter. , 2018, , .		1
248	Ultra-Compact Silicon Photonics Switch with Ultra-Dense Thermo-Optic MZI Matrix and Multi-Layer Wiring. , 2018, , .		1
249	Demonstration of Parametric Tunable Dispersion Compensation for WDM Channels with Mixed OOK and QPSK Formats. , 2013, , .		1
250	Silicon-Photonics Polarization-Insensitive Broadband Strictly-Non-Blocking 8 ${ m \AA}-$ 8 Blade Switch. , 2017, , .		1
251	Slope Compensating DCF for S-band Raman Amplifier. , 2001, , .		1
252	Demonstration of optical communication network for ultra high-definition image transmission. Synthesiology, 2011, 4, 100-110.	0.2	1

#	Article	IF	CITATIONS
253	Demonstration of optical communication network for ultra high-definition image transmission. Synthesiology, 2011, 4, 108-118.	0.2	1
254	Suppression of Transients in an EDFA Chain Using Feed-Forward Pump Control and a High-Speed VOA. , 2012, , .		1
255	Clock Distribution Scheme Using Signal Phase for Channel Identification in Optical Time Division Multiplexing. , 2012, , .		1
256	Sideband-Assisted Phase Sensitive Amplifiers with High Phase Sensitivity for Efficient Phase Regeneration. , 2012, , .		1
257	Guard-band-less Tunable Wavelength Conversion for Dual-Polarization Signal Based on Cascaded Single-Pump FWM Process. , 2013, , .		1
258	Phase Comparator using Phase Sensitive Amplifier for Phase Noise-Tolerant Carrier Phase Recovery of QPSK Signals. , 2013, , .		1
259	Reach Extension of 43-Gb/s RZ-DPSK Signal by Optical Parametric Regenerator. , 2013, , .		1
260	Ultrafast Optical Signal Processing Using Fiber Nonlinearities. , 2013, , .		1
261	Towards large-capacity, energy-efficient, and sustainable communication networks. Synthesiology, 2014, 7, 30-43.	0.2	1
262	Towards large-capacity, energy-efficient, and sustainable communication networks. Synthesiology, 2014, 7, 43-56.	0.2	1
263	Robust Design of 3-dB Directional Coupler with Weak Gap Sensitivity for Silicon Wire Waveguide. , 2014, , .		1
264	Multi-port Optical Switch Based on Silicon Photonics. , 2016, , .		1
265	Low Noise Frequency Comb for 64 QAM Based on Output Phase Stabilization of an Actively Mode-Locked Fiber Laser. , 2016, , .		1
266	Strictly Non-Blocking Silicon Photonics Switches. , 2016, , .		1
267	Fully Integrated Non-Duplicate Polarization-Diversity 8 $ ilde{A}$ — 8 Si-Wire PILOSS Switch. , 2017, , .		1
268	Real-time Path Monitoring of Optical Nodes. , 2017, , .		1
269	Carrier to Noise Ratio Improvement by Brillouin Amplification for 64-QAM Coherent Communications. , 2019, , .		1
270	Submilisecond Control/Monitoring of Disaggregated Optical Node through a Direct Memory Access based Architecture. , 2019, , .		1

Shu Ναμικι

#	Article	IF	CITATIONS
271	First Demonstration of Automated Updates of Disaggregate Blades in Multi-Domain/Layer Optical Path Network. , 2020, , .		1
272	O-Band Strictly Non-Blocking 8 $ ilde{A}$ — 8 Silicon-Photonics Switch. , 2020, , .		1
273	Demonstration of 8-Step Single-Photon Quantum Walk using 32 x 32 Reconfigurable Silicon Photonics Switch. , 2020, , .		1
274	Strictly Non-Blocking Silicon Photonics Switches. IEICE Transactions on Electronics, 2020, E103.C, 627-634.	0.6	1
275	Integration and Control of Heterogeneous Telecom and Data Center Optical Networks Aided by FBD and TAPI for Enhancing Large-scale Optical Path Services and Network Resiliency. , 2021, , .		1
276	Scalable and Fast Optical Circuit Switch Exploiting Colorless Coherent Detection. , 2022, , .		1
277	<title>Optical fiber amplifier technologies for next-generation WDM transmissions</title> ., 2001, , .		Ο
278	Raman amplifier for WDM communication. , 2002, 4870, 206.		0
279	Ultra short pulse generation and reshaping using highly nonlinear fibers. , 2005, 6019, 382.		Ο
280	Photonic network R and D activities in Japan. , 2005, , .		0
281	A wavelength-tunable, 10-GHz, sub-500-fs optical pulse source based on square-wave-driven LiNbO3 modulator and comb-like profiled fiber. , 0, , .		Ο
282	Ultra-short pulse sources for telecom and non-telecom applications. , 2005, , .		0
283	Repetition-rate and wavelength tunable optical short pulse source by using comb-like profiled fiber compression and supercontinuum generation. , 0, , .		Ο
284	Guest Editorial Special Issue on Optical Fibers. Journal of Lightwave Technology, 2005, 23, 3423-3425.	4.6	0
285	Challenges of Raman amplification. , 2006, , FWG4.		Ο
286	Continuously tuneable wavelength converter for arbitrary input and output signal wavelengths. , 2009, , .		0
287	Challenges for the future networks and enabling photonic technologies. , 2009, , .		0
288	Wideband and Reproducible Operations of Parametric Delay-Dispersion Tuner. , 2009, , .		0

#	Article	IF	CITATIONS
289	Four-wave mixing in hydrogenated amorphous silicon waveguides at 1.55 µm. , 2010, , .		Ο
290	Low-penalty uniformly tunable wavelength conversion over 30 nm using SBS-suppressed low dispersion slope highly nonlinear fibers. , 2010, , .		0
291	Parametric Tunable Dispersion Compensation for Sub-picosecond Optical Pulses. , 2011, , .		0
292	Wide-band Tunable SFG-DFG Wavelength Conversion in Efficient LN-QPM Adhered Ridge Waveguide. , 2011, , .		0
293	Parametric tunable dispersion compensator: distinctive features and practical issues. , 2011, , .		0
294	Entire C-band operation of parametric tunable dispersion compensator using zero-dispersion polarization-maintaining HNLF. , 2012, , .		0
295	Observation of spontaneous Raman scattering in hydrogenated amorphous silicon wire waveguide at 1.55 µm. Electronics Letters, 2013, 49, 610-612.	1.0	Ο
296	All-optical Wide-area Node Connections Assisted with Optical Parametric Regeneration and Wavelength Conversion. , 2013, , .		0
297	Stable Clock Recovery and Channel Identification in OTDM realized by In-band Clock distribution based on Pulse Position Modulation. , 2013, , .		Ο
298	Quadrature squeezing of phase modulated signals. , 2014, , .		0
299	Monolithically integrated MOSFET for controlling silicon optical switch: Is an on-chip transistor capable of driving a thermo-optic phase shifter?. , 2014, , .		0
300	Dynamic optical path network: A network beyond SDN and SDM. , 2014, , .		0
301	Sideband-Assisted Dual-Pump Phase Sensitive Amplifiers with Enhanced Phase Sensitivity. , 2014, , .		Ο
302	All-optical Nyquist Filtering for elastic OTDM signals and their spectral defragmentation through parametric processes. , 2014, , .		0
303	Performance of nonlinear amplitude regenerators in optical networks. , 2014, , .		Ο
304	Simultaneous Phase Regeneration of CoWDM BPSK Signals by Hybrid Optical Phase Squeezer. , 2014, , .		0
305	DSP-Implementable Block Processing of Carrier-Phase Recovery for M-QAM Signals. , 2014, , .		0
306	Autonomously controlled all-optical signal conditioning for dynamic optical path networks. , 2015, , .		0

#	Article	IF	CITATIONS
307	Field transmission of an uncompressed 8K ultra-high definition television optical signal with forward error correction codes. , 2015, , .		0
308	Wavelength conversion of PDM 16-QAM signals by four wave mixing with a co-phase dithered pump. , 2015, , .		0
309	Linearizing WDM transmission systems through optical phase conjugation. , 2015, , .		0
310	Phase noise squeezing without PM-to-AM conversion by hybrid optical phase squeezer. , 2015, , .		0
311	Novel PILOSS Port Assignment for Compact Polarization-Diversity Si-Wire Optical Switch. , 2016, , .		0
312	Raman scattering in hydrogenated amorphous silicon waveguides at telecommunication wavelengths. , 2016, , .		0
313	Guest Editorial OFC 2015 Special Issue. Journal of Lightwave Technology, 2016, 34, 3-5.	4.6	0
314	Silicon optical switch monolithically integrated with driver electronics and its power efficient driving. , 2016, , .		0
315	An efficient node architecture for flexibly sharing all-optical wavelength converters. , 2017, , .		0
316	Demonstration of real-time path monitoring in optical switches. , 2017, , .		0
317	Guest Editorial OFC 2017 Special Issue. Journal of Lightwave Technology, 2018, 36, 3-5.	4.6	0
318	Applications of Low Noise Brillouin Amplifiers for 64QAM Coherent Communications. , 2018, , .		0
319	Switching Devices and Systems Based on Advanced Silicon Photonics. , 2018, , .		0
320	Silicon Photonic Multiport Optical Switch and Its Control Electronics. , 2018, , .		0
321	A 300-mm-wafer silicon photonics technology for advanced information systems. , 2019, , .		0
322	Characteristics of $1\tilde{A}$ —2 Silicon Wavelength Selective Switch Using Arrayed - Waveguide Gratings with Fold-Back Waveguides. , 2019, , .		0
323	Fiber Raman Amplifiers The Review of Laser Engineering, 2001, 29, 594-598.	0.0	0
324	Trends in optical fiber Raman amplifiers for WDM transmission systems. The Review of Laser Engineering, 2001, 29, 187-188.	0.0	0

#	Article	IF	CITATIONS
325	Fiber Raman Amplifier. , 2003, , 377-446.		О
326	Multi-period PM-NOLM with Dynamic Counter-Propagating Effects Compensation for 5-bit All-optical Analog-to-digital Conversion. , 2009, , .		0
327	Wideband Parametric Delay Dispersion Tuner: A New Class of Devices for All Optical Networks. , 2009, ,		0
328	Parametric tunable dispersion compensator: distinctive features and practical issues. , 2011, , .		0
329	Wavelength-Tunable Optical Parametric Regeneration for 10.75-Gbit/s and 43-Gbit/s RZ Signals. , 2011, , .		0
330	Optical parametric node devices for energy efficient networks. , 2012, , .		0
331	Enabling Photonic Technologies for the Extremely Energy-Efficient High-Capacity Dynamic Optical Path Network. The Review of Laser Engineering, 2012, 40, 356.	0.0	Ο
332	Optically Resolution Enhanced ADC with Decoding Table Based on Maximum Likelihood Method. , 2012, , .		0
333	Enhancing the phase sensitivity of phase sensitive amplifiers for efficient phase regeneration. , 2012, , .		0
334	A Proposal of Cyclic Sleep Control Technique for Backup Resources in ROADM Systems to Reduce Power Consumption of Photonic Network. IEICE Transactions on Communications, 2014, E97.B, 2698-2705.	0.7	0
335	Approaching Complete Cancellation of Nonlinearity in WDM Transmission Through Optical Phase Conjugation. , 2015, , .		Ο
336	Hybrid Optical Phase Quantization for All-optical Signal Processing. , 2015, , .		0
337	Ultra-compact 32 $ ilde{A}$ — 32 strictly-non-blocking Si-wire PILOSS switch. , 2016, , .		Ο
338	Multi-Line Regeneration of Noise Limited Frequency Combs by Brillouin Amplification via a Self-Seeded Dispersed Pump. , 2017, , .		0
339	Performance-assured Network Function Virtualization for Open and Disaggregated Optical Transport Systems. , 2017, , .		0
340	1,024×1,024 Optical Circuit Switch Using Wavelength-Tunable and Bandwidth-Variable Silicon Photonic Filter. , 2018, , .		0
341	Stable operation of silicon photonic switches in field-deployed optical path network. IEICE Electronics Express, 2019, 16, 20181058-20181058.	0.8	0
342	Toward Automatized Handling of Future Agile Networks Employing Various Optical Switching Functionalities. , 2019, , .		0

#	Article	IF	CITATIONS
343	Narrowband and Low-Noise Brillouin Amplification for Coherent Communications. , 2020, , .		0
344	Silicon-photonic matrix switches and control technologies to accelerate switching speed. , 2020, , .		0
345	Enhanced Coherent Communications with Brillouin Amplifiers. , 2021, , .		0
346	Functional block-based disaggregation approach for optical network automation supporting diverse node structures. , 2022, , .		0
347	Polarization-Insensitive Local-Oscillator-Carrier Loopback Modulation for Cost-effective and High-port-count Wavelength Routing Optical Switch. Optics Letters, 0, , .	3.3	0