
Israel E Wachs

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/135044/publications.pdf Version: 2024-02-01

ISDAFL F WACHS

#	Article	IF	CITATIONS
1	Molecular structure and catalytic promotional effect of Mn on supported Na2WO4/SiO2 catalysts for oxidative coupling of methane (OCM) reaction. Catalysis Today, 2023, 416, 113837.	2.2	10
2	Number of surface sites and turnover frequencies for oxide catalysts. Journal of Catalysis, 2022, 405, 462-472.	3.1	10
3	Induced activation of the commercial Cu/ZnO/Al2O3 catalyst for the steam reforming of methanol. Nature Catalysis, 2022, 5, 99-108.	16.1	155
4	The effect of non-redox promoters (AlOx, POx, SiOx and ZrOx) and surface sulfates on supported V2O5-WO3/TiO2 catalysts in selective catalytic reduction of NO with NH3. Applied Catalysis B: Environmental, 2022, 306, 121128.	10.8	3
5	Effect of redox promoters (CeOx and CuOx) and surface sulfates on the selective catalytic reduction (SCR) of NO with NH3 by supported V2O5-WO3/TiO2 catalysts. Applied Catalysis B: Environmental, 2022, 306, 121108.	10.8	12
6	Molecular Design of Supported MoO <i>_x</i> Catalysts with Surface TaO <i>_x</i> Promotion for Olefin Metathesis. ACS Catalysis, 2022, 12, 3226-3237.	5.5	13
7	Redox Dynamics of Active VO <i>_x</i> Sites Promoted by TiO <i>_x</i> during Oxidative Dehydrogenation of Ethanol Detected by <i>Operando</i> Quick XAS. Jacs Au, 2022, 2, 762-776.	3.6	14
8	Nature and Reactivity of Oxygen Species on/in Silver Catalysts during Ethylene Oxidation. ACS Catalysis, 2022, 12, 4375-4381.	5.5	17
9	Experimental methods in chemical engineering: Temperature programmed surface reaction spectroscopy— <scp>TPSR</scp> . Canadian Journal of Chemical Engineering, 2021, 99, 423-434.	0.9	7
10	Identifying the Catalytic Active Site for Propylene Metathesis by Supported ReO _{<i>x</i>} Catalysts. ACS Catalysis, 2021, 11, 1962-1976.	5.5	14
11	Tuning the Number of Active Sites and Turnover Frequencies by Surface Modification of Supported ReO ₄ /(SiO ₂ –Al ₂ O ₃) Catalysts for Olefin Metathesis. ACS Catalysis, 2021, 11, 2412-2421.	5.5	12
12	Role of chromium in Cr–Fe oxide catalysts for high temperature water-gas shift reaction – A DFT study. International Journal of Hydrogen Energy, 2021, 46, 17154-17162.	3.8	9
13	Impact of Hydration on Supported V2O5/TiO2 Catalysts as Explored by Magnetic Resonance Spectroscopy. Journal of Physical Chemistry C, 2021, 125, 16766-16775.	1.5	3
14	Elucidating the Effects of Mn Promotion on SiO ₂ -Supported Na-Promoted Tungsten Oxide Catalysts for Oxidative Coupling of Methane (OCM). ACS Catalysis, 2021, 11, 10131-10137.	5.5	23
15	New Mechanistic and Reaction Pathway Insights for Oxidative Coupling of Methane (OCM) over Supported Na ₂ WO ₄ /SiO ₂ Catalysts. Angewandte Chemie - International Edition, 2021, 60, 21502-21511.	7.2	45
16	New Mechanistic and Reaction Pathway Insights for Oxidative Coupling of Methane (OCM) over Supported Na 2 WO 4 /SiO 2 Catalysts. Angewandte Chemie, 2021, 133, 21672-21681.	1.6	3
17	Formation and influence of surface hydroxyls on product selectivity during CO2 hydrogenation by Ni/SiO2 catalysts. Journal of Catalysis, 2021, 400, 228-233.	3.1	27
18	Resolving the Types and Origin of Active Oxygen Species Present in Supported Mn-Na ₂ WO ₄ /SiO ₂ Catalysts for Oxidative Coupling of Methane. ACS Catalysis, 2021, 11, 10288-10293.	5.5	29

#	Article	IF	CITATIONS
19	Structure–Activity Relationships of Copper- and Potassium-Modified Iron Oxide Catalysts during Reverse Water–Gas Shift Reaction. ACS Catalysis, 2021, 11, 12609-12619.	5.5	48
20	Structure–Activity Relationships of Hydrothermally Aged Titania-Supported Vanadium–Tungsten Oxide Catalysts for SCR of NO _{<i>x</i>} Emissions with NH ₃ . ACS Catalysis, 2021, 11, 12096-12111.	5.5	20
21	Methane activation by ZSM-5-supported transition metal centers. Chemical Society Reviews, 2021, 50, 1251-1268.	18.7	77
22	A combined computational and experimental study of methane activation during oxidative coupling of methane (OCM) by surface metal oxide catalysts. Chemical Science, 2021, 12, 14143-14158.	3.7	5
23	Activation and deactivation of the commercialâ€ŧype CuO–Cr ₂ O ₃ –Fe ₂ O ₃ high temperature shift catalyst. AICHE Journal, 2020, 66, e16846.	1.8	14
24	Role of Local Structure on Catalytic Reactivity: Comparison of Methanol Oxidation by Aqueous Bioinorganic Enzyme Mimic (Vanadium Haloperoxidase) and Vanadia-Based Heterogeneous Catalyst (Supported VO4/SiO2). ACS Catalysis, 2020, 10, 1566-1574.	5.5	7
25	Initial Steps in the Selective Catalytic Reduction of NO with NH ₃ by TiO ₂ -Supported Vanadium Oxides. ACS Catalysis, 2020, 10, 13918-13931.	5.5	22
26	Nature of Reactive Oxygen Intermediates on Copper-Promoted Iron–Chromium Oxide Catalysts during CO ₂ Activation. ACS Catalysis, 2020, 10, 7857-7863.	5.5	44
27	Existence and Properties of Isolated Catalytic Sites on the Surface of I ² -Cristobalite-Supported, Doped Tungsten Oxide Catalysts (WO _{<i>x</i>} /Î ² -SiO ₂ ,) Tj ETQq1 1 0.784314 rgBT /Overlock Oxidative Coupling of Methane (OCM): A Combined Periodic DFT and Experimental Study. ACS Catalysis,	10 Tf 50 4 5.5	427 Td (Na-V 33
28	Probing the surface of promoted CuO-Cr2O3-Fe2O3 catalysts during CO2 activation. Applied Catalysis B: Environmental, 2020, 271, 118943.	10.8	24
29	Synthesis and molecular structure of model silica-supported tungsten oxide catalysts for oxidative coupling of methane (OCM). Catalysis Science and Technology, 2020, 10, 3334-3345.	2.1	35
30	Cr-Free, Cu Promoted Fe Oxide-Based Catalysts for High-Temperature Water-Gas Shift (HT-WGS) Reaction. Catalysts, 2020, 10, 305.	1.6	12
31	Molybdenum Oxide, Oxycarbide, and Carbide: Controlling the Dynamic Composition, Size, and Catalytic Activity of Zeolite-Supported Nanostructures. Journal of Physical Chemistry C, 2019, 123, 22281-22292.	1.5	46
32	Mechanism by which Tungsten Oxide Promotes the Activity of Supported V ₂ O ₅ /TiO ₂ Catalysts for NO _{<i>X</i>} Abatement: Structural Effects Revealed by ⁵¹ V MAS NMR Spectroscopy. Angewandte Chemie - International Edition, 2019, 58, 12609-12616.	7.2	96
33	Mechanism by which Tungsten Oxide Promotes the Activity of Supported V ₂ O ₅ /TiO ₂ Catalysts for NO _{<i>X</i>} Abatement: Structural Effects Revealed by ⁵¹ V MAS NMR Spectroscopy. Angewandte Chemie, 2019, 131, 12739-12746.	1.6	45
34	Overview of Selective Oxidation of Ethylene to Ethylene Oxide by Ag Catalysts. ACS Catalysis, 2019, 9, 10727-10750.	5.5	104
35	Innenrücktitelbild: Mechanism by which Tungsten Oxide Promotes the Activity of Supported V ₂ O ₅ /TiO ₂ Catalysts for NO _{<i>X</i>Structural Effects Revealed by ⁵¹V MAS NMR Spectroscopy (Angew. Chem. 36/2019). Angewandte Chemie, 2019, 131, 12847-12847.}	1.6	1
36	Oxidative Coupling of Methane (OCM) by SiO ₂ -Supported Tungsten Oxide Catalysts Promoted with Mn and Na. ACS Catalysis, 2019, 9, 5912-5928.	5.5	136

#	Article	IF	CITATIONS
37	Strong Metal–Support Interactions between Copper and Iron Oxide during the Highâ€Temperature Waterâ€Gas Shift Reaction. Angewandte Chemie - International Edition, 2019, 58, 9083-9087.	7.2	82
38	Strong Metal–Support Interactions between Copper and Iron Oxide during the Highâ€Temperature Waterâ€Gas Shift Reaction. Angewandte Chemie, 2019, 131, 9181-9185.	1.6	22
39	Activation Mechanism and Surface Intermediates during Olefin Metathesis by Supported MoO <i>_x</i> /Al ₂ O ₃ Catalysts. Journal of Physical Chemistry C, 2019, 123, 12367-12375.	1.5	16
40	Elucidation of the Reaction Mechanism for High-Temperature Water Gas Shift over an Industrial-Type Copper–Chromium–Iron Oxide Catalyst. Journal of the American Chemical Society, 2019, 141, 7990-7999.	6.6	60
41	Critical review on the active site structure of sulfated zirconia catalysts and prospects in fuel production. Applied Catalysis A: General, 2019, 572, 210-225.	2.2	69
42	Proof of Equivalent Catalytic Functionality upon Photonâ€Induced and Thermal Activation of Supported Isolated Vanadia Species in Methanol Oxidation. ChemCatChem, 2018, 10, 2360-2364.	1.8	12
43	Molecular Structure–Reactivity Relationships for Olefin Metathesis by Al ₂ O ₃ -Supported Surface MoO _{<i>x</i>} Sites. ACS Catalysis, 2018, 8, 949-959.	5.5	55
44	Molecular structure and sour gas surface chemistry of supported K2O/WO3/Al2O3 catalysts. Applied Catalysis B: Environmental, 2018, 232, 146-154.	10.8	19
45	Revealing structure-activity relationships in chromium free high temperature shift catalysts promoted by earth abundant elements. Applied Catalysis B: Environmental, 2018, 232, 205-212.	10.8	27
46	A perspective on chromium-Free iron oxide-based catalysts for high temperature water-gas shift reaction. Catalysis Today, 2018, 311, 2-7.	2.2	22
47	Nature of surface oxygen intermediates on TiO2 during photocatalytic splitting of water. Chinese Chemical Letters, 2018, 29, 769-772.	4.8	17
48	Formation of N2O greenhouse gas during SCR of NO with NH3 by supported vanadium oxide catalysts. Applied Catalysis B: Environmental, 2018, 224, 836-840.	10.8	72
49	Pyrolysis of the Cellulose Fraction of Biomass in the Presence of Solid Acid Catalysts: An Operando Spectroscopy and Theoretical Investigation. ChemSusChem, 2018, 11, 4044-4059.	3.6	7
50	Photocatalytic Methanol Oxidation by Supported Vanadium Oxide Species: Influence of Support and Degree of Oligomerization. European Journal of Inorganic Chemistry, 2018, 2018, 3725-3735.	1.0	12
51	A Perspective on the Selective Catalytic Reduction (SCR) of NO with NH ₃ by Supported V ₂ O ₅ –WO ₃ /TiO ₂ Catalysts. ACS Catalysis, 2018, 8, 6537-6551.	5.5	342
52	Proof of Equivalent Catalytic Functionality upon Photonâ€Induced and Thermal Activation of Supported Isolated Vanadia Species in Methanol Oxidation. ChemCatChem, 2018, 10, 2325-2325.	1.8	0
53	Anatomy of a Visible Light Activated Photocatalyst for Water Splitting. ACS Catalysis, 2018, 8, 6650-6658.	5.5	24
54	Investigation of Silica-Supported Vanadium Oxide Catalysts by High-Field ⁵¹ V Magic-Angle Spinning NMR. Journal of Physical Chemistry C, 2017, 121, 6246-6254.	1.5	39

#	Article	IF	CITATIONS
55	Nature of Catalytically Active Sites in the Supported WO ₃ /ZrO ₂ Solid Acid System: A Current Perspective. ACS Catalysis, 2017, 7, 2181-2198.	5.5	77
56	Catalyst Activation and Kinetics for Propylene Metathesis by Supported WO _{<i>x</i>} /SiO ₂ Catalysts. ACS Catalysis, 2017, 7, 573-580.	5.5	31
57	A decade+ of operando spectroscopy studies. Catalysis Today, 2017, 283, 27-53.	2.2	126
58	Nature of Active Sites and Surface Intermediates during SCR of NO with NH ₃ by Supported V ₂ O ₅ –WO ₃ /TiO ₂ Catalysts. Journal of the American Chemical Society, 2017, 139, 15624-15627.	6.6	266
59	Vibrational Spectroscopy of Oxide Overlayers. Topics in Catalysis, 2017, 60, 1577-1617.	1.3	41
60	Reaction Pathways and Kinetics for Selective Catalytic Reduction (SCR) of Acidic NO _{<i>x</i>} Emissions from Power Plants with NH ₃ . ACS Catalysis, 2017, 7, 8358-8361.	5.5	78
61	Analysis of corrosion layers in ancient Roman silver coins with high resolution surface spectroscopic techniques. Applied Surface Science, 2016, 376, 241-251.	3.1	17
62	Resolving the Reaction Mechanism for H ₂ Formation from High-Temperature Water–Gas Shift by Chromium–Iron Oxide Catalysts. ACS Catalysis, 2016, 6, 2827-2830.	5.5	48
63	Operando Molecular Spectroscopy During Ethylene Polymerization by Supported CrO x /SiO2 Catalysts: Active Sites, Reaction Intermediates, and Structure-Activity Relationship. Topics in Catalysis, 2016, 59, 725-739.	1.3	51
64	Nature of WO _{<i>x</i>} Sites on SiO ₂ and Their Molecular Structure–Reactivity/Selectivity Relationships for Propylene Metathesis. ACS Catalysis, 2016, 6, 3061-3071.	5.5	86
65	Influence of catalyst synthesis method on selective catalytic reduction (SCR) of NO by NH3 with V2O5-WO3/TiO2 catalysts. Applied Catalysis B: Environmental, 2016, 193, 141-150.	10.8	136
66	Catalysis by Mixed Oxides. Catalysis Today, 2016, 277, 201.	2.2	2
67	Surface Structure and Photocatalytic Properties of Bi ₂ WO ₆ Nanoplatelets Modified by Molybdena Islands from Chemical Vapor Deposition. Journal of Physical Chemistry C, 2016, 120, 18191-18200.	1.5	27
68	Promotion Mechanisms of Iron Oxide-Based High Temperature Water–Gas Shift Catalysts by Chromium and Copper. ACS Catalysis, 2016, 6, 4455-4464.	5.5	98
69	Dynamics of CrO ₃ –Fe ₂ O ₃ Catalysts during the High-Temperature Water-Gas Shift Reaction: Molecular Structures and Reactivity. ACS Catalysis, 2016, 6, 4786-4798.	5.5	68
70	Iron-Based Catalysts for the High-Temperature Water–Gas Shift (HT-WGS) Reaction: A Review. ACS Catalysis, 2016, 6, 722-732.	5.5	267
71	Reaction Mechanism and Kinetics of Olefin Metathesis by Supported ReOx/Al2O3Catalysts. ACS Catalysis, 2016, 6, 272-278.	5.5	19
72	Revisiting formic acid decomposition on metallic powder catalysts: Exploding the HCOOH decomposition volcano curve. Surface Science, 2016, 650, 103-110.	0.8	40

#	Article	IF	CITATIONS
73	Selective catalytic reduction of NO by NH3 with WO3-TiO2 catalysts: Influence of catalyst synthesis method. Applied Catalysis B: Environmental, 2016, 188, 123-133.	10.8	51
74	Determining Number of Active Sites and TOF for the High-Temperature Water Gas Shift Reaction by Iron Oxide-Based Catalysts. ACS Catalysis, 2016, 6, 1764-1767.	5.5	36
75	Surface ReO _{<i>x</i>} Sites on Al ₂ O ₃ and Their Molecular Structure–Reactivity Relationships for Olefin Metathesis. ACS Catalysis, 2015, 5, 1432-1444.	5.5	64
76	Spectroscopic and Computational Study of Cr Oxide Structures and Their Anchoring Sites on ZSM-5 Zeolites. ACS Catalysis, 2015, 5, 3078-3092.	5.5	68
77	The Nature of Surface CrOx Sites on SiO2 in Different Environments. Catalysis Letters, 2015, 145, 985-994.	1.4	36
78	Identification of molybdenum oxide nanostructures on zeolites for natural gas conversion. Science, 2015, 348, 686-690.	6.0	310
79	Activation of Surface ReO _{<i>x</i>} Sites on Al ₂ O ₃ Catalysts for Olefin Metathesis. ACS Catalysis, 2015, 5, 6807-6814.	5.5	26
80	Determination of Number of Activated Sites Present during Olefin Metathesis by Supported ReO _{<i>x</i>} /Al ₂ O ₃ Catalysts. ACS Catalysis, 2015, 5, 6823-6827.	5.5	10
81	<i>In Situ</i> and <i>Operando</i> Raman Spectroscopy of Oxidation Catalysts. , 2014, , 420-446.		3
82	Monitoring Solid Oxide CO ₂ Capture Sorbents in Action. ChemSusChem, 2014, 7, 3459-3466.	3.6	36
83	Olefin Metathesis by Supported Metal Oxide Catalysts. ACS Catalysis, 2014, 4, 2505-2520.	5.5	238
84	Critical Literature Review of the Kinetics for the Oxidative Dehydrogenation of Propane over Well-Defined Supported Vanadium Oxide Catalysts. ACS Catalysis, 2014, 4, 3357-3380.	5.5	453
85	Structure of Mo ₂ C _{<i>x</i>} and Mo ₄ C _{<i>x</i>} Molybdenum Carbide Nanoparticles and Their Anchoring Sites on ZSM-5 Zeolites. Journal of Physical Chemistry C, 2014, 118, 4670-4679.	1.5	88
86	How Strain Affects the Reactivity of Surface Metal Oxide Catalysts. Angewandte Chemie - International Edition, 2013, 52, 13553-13557.	7.2	124
87	Reporting of Reactivity for Heterogeneous Photocatalysis. ACS Catalysis, 2013, 3, 2606-2611.	5.5	48
88	Catalysis science of supported vanadium oxide catalysts. Dalton Transactions, 2013, 42, 11762.	1.6	324
89	Anomalous reactivity of supported V2O5 nanoparticles for propane oxidative dehydrogenation: influence of the vanadium oxide precursor. Dalton Transactions, 2013, 42, 12644.	1.6	88
90	Nature of Catalytic Active Sites Present on the Surface of Advanced Bulk Tantalum Mixed Oxide Photocatalysts. ACS Catalysis, 2013, 3, 2920-2929.	5.5	56

#	Article	IF	CITATIONS
91	Fundamental Bulk/Surface Structure–Photoactivity Relationships of Supported (Rh2–yCryO3)/GaN Photocatalysts. Journal of Physical Chemistry Letters, 2013, 4, 3719-3724.	2.1	32
92	Nanostructural and chemical characterization of supported metal oxide catalysts by aberration corrected analytical electron microscopy. Current Opinion in Solid State and Materials Science, 2012, 16, 10-22.	5.6	58
93	Spectroscopic Characterization of Mixed Fe–Ni Oxide Electrocatalysts for the Oxygen Evolution Reaction in Alkaline Electrolytes. ACS Catalysis, 2012, 2, 1793-1801.	5.5	423
94	Catalysis Science of Bulk Mixed Oxides. ACS Catalysis, 2012, 2, 1235-1246.	5.5	177
95	Catalysis Science of Methanol Oxidation over Iron Vanadate Catalysts: Nature of the Catalytic Active Sites. ACS Catalysis, 2011, 1, 54-66.	5.5	133
96	Aberrationâ€corrected Analytical Microscopy Characterization of Double‣upported WO ₃ /TiO ₂ /SiO ₂ Solid Acid Catalysts. ChemCatChem, 2011, 3, 1045-1050.	1.8	5
97	Dynamic Surface Structures and Reactivity of Vanadium-Containing Molybdophosphoric Acid (H _{3+<i>x</i>} PMo _{12–<i>x</i>} V _{<i>x</i>} O ₄₀) Keggin Catalysts during Methanol Oxidation and Dehydration. ACS Catalysis, 2011, 1, 1536-1548.	5.5	52
98	The generality of surface vanadium oxide phases in mixed oxide catalysts. Applied Catalysis A: General, 2011, 391, 36-42.	2.2	67
99	Origin of the synergistic interaction between MoO3 and iron molybdate for the selective oxidation of methanol to formaldehyde. Journal of Catalysis, 2010, 275, 84-98.	3.1	110
100	Anomalous Surface Compositions of Stoichiometric Mixed Oxide Compounds. Angewandte Chemie - International Edition, 2010, 49, 8037-8041.	7.2	41
101	Characterization of Hydrothermally Prepared Titanate Nanotube Powders by Ambient and In Situ Raman Spectroscopy. Journal of Physical Chemistry Letters, 2010, 1, 130-135.	2.1	71
102	Presence of Surface Vanadium Peroxo-oxo Umbrella Structures in Supported Vanadium Oxide Catalysts: Fact or Fiction?. Journal of the American Chemical Society, 2010, 132, 12559-12561.	6.6	57
103	Relating <i>n</i> -Pentane Isomerization Activity to the Tungsten Surface Density of WO _{<i>x</i>} /ZrO ₂ . Journal of the American Chemical Society, 2010, 132, 13462-13471.	6.6	94
104	Molecular Structural Determination of Molybdena in Different Environments: Aqueous Solutions, Bulk Mixed Oxides, and Supported MoO ₃ Catalysts. Journal of Physical Chemistry C, 2010, 114, 14110-14120.	1.5	146
105	Monitoring surface metal oxide catalytic active sites with Raman spectroscopy. Chemical Society Reviews, 2010, 39, 5002.	18.7	264
106	Tuning the Electronic and Molecular Structures of Catalytic Active Sites with Titania Nanoligands. Journal of the American Chemical Society, 2009, 131, 680-687.	6.6	48
107	Identification of active Zr–WOx clusters on a ZrO2 support for solid acid catalysts. Nature Chemistry, 2009, 1, 722-728.	6.6	150
108	Applications of High Sensitivity-Low Energy Ion Scattering (HS-LEIS) in heterogeneous catalysis. Catalysis Today, 2009, 140, 197-201.	2.2	79

#	Article	IF	CITATIONS
109	Insights into Oxygen Exchange Between Gaseous O ₂ and Supported Vanadium Oxide Catalysts via ¹⁷ O NMR. Chemistry of Materials, 2009, 21, 4127-4134.	3.2	15
110	Surface and Bulk Aspects of Mixed Oxide Catalytic Nanoparticles: Oxidation and Dehydration of CH ₃ OH by Polyoxometallates. Journal of the American Chemical Society, 2009, 131, 15544-15554.	6.6	87
111	Microstructural Development of Supported Pt/ZrO2/SiO2 Catalysts: The Effect of ZrO2 Nanoligands. Microscopy and Microanalysis, 2009, 15, 1414-1415.	0.2	0
112	Study on the Reaction Mechanism for Soot Oxidation Over TiO2 or ZrO2-supported Vanadium Oxide Catalysts by Means of In-situ UV-Raman. Catalysis Letters, 2008, 120, 148-153.	1.4	23
113	In-situ UV-Raman study on soot combustion over TiO2 or ZrO2-supported vanadium oxide catalysts. Science in China Series B: Chemistry, 2008, 51, 551-561.	0.8	10
114	CH3OH oxidation over well-defined supported V2O5/Al2O3 catalysts: Influence of vanadium oxide loading and surface vanadium–oxygen functionalities. Journal of Catalysis, 2008, 255, 197-205.	3.1	118
115	New insights into the nature of the acidic catalytic active sites present in ZrO2-supported tungsten oxide catalysts. Journal of Catalysis, 2008, 256, 108-125.	3.1	200
116	Is there a relationship between the MO bond length (strength) of bulk mixed metal oxides and their catalytic activity?. Journal of Catalysis, 2008, 256, 145-153.	3.1	42
117	Selective oxidation of propylene over model supported V2O5 catalysts: Influence of surface vanadia coverage and oxide support. Journal of Catalysis, 2008, 257, 181-189.	3.1	58
118	Surface chemistry and reactivity of well-defined multilayered supported M1Ox/M2Ox/SiO2 catalysts. Journal of Catalysis, 2008, 258, 103-110.	3.1	29
119	Structural Characterization of WO ₃ /ZrO ₂ Catalysts using HAADF Imaging. Microscopy and Microanalysis, 2008, 14, 1350-1351.	0.2	4
120	In Situ Raman Spectroscopy of SiO ₂ -Supported Transition Metal Oxide Catalysts:  An Isotopic ¹⁸ Oâ^' ¹⁶ O Exchange Study. Journal of Physical Chemistry C, 2008, 112, 6487-6498.	1.5	182
121	Influence of Vanadium Location in Titania Supported Vanadomolybdophosphoric Acid Catalysts and Its Effect on the Oxidation and Ammoxidation Functionalities. Journal of Physical Chemistry C, 2008, 112, 8294-8300.	1.5	34
122	Molecular Design and In Situ Spectroscopic Investigation of Multilayered Supported M ₁ 0x/M ₂ 0x/SiO ₂ Catalysts. Journal of Physical Chemistry C, 2008, 112, 20418-20428.	1.5	50
123	Probing Metalâ [^] Support Interactions under Oxidizing and Reducing Conditions:  In Situ Raman and Infrared Spectroscopic and Scanning Transmission Electron Microscopicâ [^] X-ray Energy-Dispersive Spectroscopic Investigation of Supported Platinum Catalysts. Journal of Physical Chemistry C, 2008, 112. 5942-5951.	1.5	118
124	An <i>Operando</i> Raman, IR, and TPSR Spectroscopic Investigation of the Selective Oxidation of Propylene to Acrolein over a Model Supported Vanadium Oxide Monolayer Catalyst. Journal of Physical Chemistry C, 2008, 112, 11363-11372.	1.5	53
125	Nature of Catalytic Active Sites for Sbâ^Vâ^O Mixed Metal Oxides. Journal of Physical Chemistry C, 2008, 112, 16858-16863.	1.5	19
126	In Situ Spectroscopic Investigation of the Molecular and Electronic Structures of SiO ₂ Supported Surface Metal Oxides. Journal of Physical Chemistry C, 2007, 111, 14410-14425.	1.5	284

#	Article	IF	CITATIONS
127	Structural Determination of Bulk and Surface Tungsten Oxides with UVâ^'vis Diffuse Reflectance Spectroscopy and Raman Spectroscopy. Journal of Physical Chemistry C, 2007, 111, 15089-15099.	1.5	358
128	Photocatalytic Activity of Vanadium-Substituted ETS-10. Journal of Physical Chemistry C, 2007, 111, 7029-7037.	1.5	42
129	Structural characteristics and reactivity properties of the tantalum modified mesoporous silicalite (MCM-41) catalysts. Microporous and Mesoporous Materials, 2007, 99, 299-307.	2.2	16
130	Molecular/electronic structure–surface acidity relationships of model-supported tungsten oxide catalysts. Journal of Catalysis, 2007, 246, 370-381.	3.1	177
131	Quantitative Determination of the Speciation of Surface Vanadium Oxides and Their Catalytic Activity. Journal of Physical Chemistry B, 2006, 110, 9593-9600.	1.2	216
132	Catalysis science of the solid acidity of model supported tungsten oxide catalysts. Catalysis Today, 2006, 116, 162-168.	2.2	154
133	Selective oxidation of propylene to acrolein over supported V2O5/Nb2O5 catalysts: An in situ Raman, IR, TPSR and kinetic study. Catalysis Today, 2006, 118, 332-343.	2.2	82
134	Effects of alkali metal cations on the structures, physico-chemical properties and catalytic behaviors of silica-supported vanadium oxide catalysts for the selective oxidation of ethane and the complete oxidation of diesel soot. Topics in Catalysis, 2006, 38, 309-325.	1.3	18
135	Oxidative dehydrogenation of ethane to ethylene over alumina-supported vanadium oxide catalysts: Relationship between molecular structures and chemical reactivity. Catalysis Today, 2006, 118, 279-287.	2.2	171
136	Promotion of the propane ODH reaction over supported V2O5/Al2O3 catalyst with secondary surface metal oxide additives. Journal of Catalysis, 2006, 240, 151-159.	3.1	54
137	Synthesis and characterization of Ni–Mo bimetallic nitride from the mixture of nitrogen and hydrogen. Materials Research Bulletin, 2006, 41, 2334-2340.	2.7	7
138	Comparison of alcohol and alkane oxidative dehydrogenation reactions over supported vanadium oxide catalysts: in situ infrared, Raman and UV–vis spectroscopic studies of surface alkoxide intermediates and of their surface chemistry. Catalysis Today, 2005, 99, 105-114.	2.2	55
139	Recent conceptual advances in the catalysis science of mixed metal oxide catalytic materials. Catalysis Today, 2005, 100, 79-94.	2.2	511
140	Oxidative dehydrogenation of propane over V/MCM-41 catalysts: comparison of O2 and N2O as oxidants. Journal of Catalysis, 2005, 234, 131-142.	3.1	151
141	Recent Conceptual Advances in the Catalysis Science of Mixed Metal Oxide Catalytic Materials. ChemInform, 2005, 36, no.	0.1	0
142	Determination of the Chemical Nature of Active Surface Sites Present on Bulk Mixed Metal Oxide Catalystsâ€. Journal of Physical Chemistry B, 2005, 109, 2275-2284.	1.2	113
143	Comparison of UV and Visible Raman Spectroscopy of Bulk Metal Molybdate and Metal Vanadate Catalysts. Journal of Physical Chemistry B, 2005, 109, 23491-23499.	1.2	143
144	Designing the activity/selectivity of surface acidic, basic and redox active sites in the supported KO?VO/AIO catalytic system. Catalysis Today, 2004, 96, 211-222.	2.2	49

#	Article	IF	CITATIONS
145	Methodical aspects in the surface analysis of supported molybdena catalysts. Surface and Interface Analysis, 2004, 36, 238-245.	0.8	22
146	Surface-Analytical Studies of Supported Vanadium Oxide Monolayer Catalysts. Journal of Physical Chemistry B, 2004, 108, 4823-4830.	1.2	52
147	In Situ UVâ^'Visâ^'NIR Diffuse Reflectance and Raman Spectroscopy and Catalytic Activity Studies of Propane Oxidative Dehydrogenation over Supported CrO3/ZrO2Catalysts. Langmuir, 2004, 20, 7159-7165.	1.6	45
148	Tantalum oxide-supported metal oxide (Re2O7, CrO3, MoO3, WO3, V2O5,Âand Nb2O5) catalysts: synthesis, Raman characterization andÂchemically probedÂby methanol oxidation. Journal of Catalysis, 2003, 217, 468-477.	3.1	49
149	Extending surface science studies to industrial reaction conditions: mechanism and kinetics of methanol oxidation over silver surfaces. Surface Science, 2003, 544, 1-4.	0.8	45
150	Catalytic synthesis of methanethiol from hydrogen sulfide and carbon monoxide over vanadium-based catalysts. Catalysis Today, 2003, 78, 327-337.	2.2	34
151	Molecular structure and reactivity of the Group V metal oxides. Catalysis Today, 2003, 78, 13-24.	2.2	182
152	Quantitative determination of the number of surface active sites and the turnover frequency for methanol oxidation over bulk metal vanadates. Catalysis Today, 2003, 78, 257-268.	2.2	100
153	International Congress on Operando Spectroscopy: Fundamental and technical aspects of spectroscopy of catalysts under working conditions Lunteren, The Netherlands (March 2–6, 2003). Catalysis Communications, 2003, 4, 567-570.	1.6	15
154	Comparative Study of Bulk and Supported Vâ^'Moâ^'Teâ^'Nbâ^'O Mixed Metal Oxide Catalysts for Oxidative Dehydrogenation of Propane to Propylene. Journal of Physical Chemistry B, 2003, 107, 6333-6342.	1.2	57
155	Supported Tantalum Oxide Catalysts:Â Synthesis, Physical Characterization, and Methanol Oxidation Chemical Probe Reaction. Journal of Physical Chemistry B, 2003, 107, 5243-5250.	1.2	93
156	Oxidative Dehydrogenation of Propane over Supported Chromia Catalysts: Influence of Oxide Supports and Chromia Loading. Journal of Catalysis, 2002, 211, 482-495.	3.1	114
157	Molecular structures of supported metal oxide catalysts under different environments. Journal of Raman Spectroscopy, 2002, 33, 359-380.	1.2	348
158	Converting waste gases from pulp mills into value-added chemicals. Environmental Progress, 2002, 21, 137-141.	0.8	16
159	Isopropanol oxidation by pure metal oxide catalysts: number of active surface sites and turnover frequencies. Applied Catalysis A: General, 2002, 237, 121-137.	2.2	167
160	In Situ UV–vis–NIR Diffuse Reflectance and Raman Spectroscopic Studies of Propane Oxidation over ZrO2-Supported Vanadium Oxide Catalysts. Journal of Catalysis, 2002, 209, 43-50.	3.1	139
161	Quantitative Determination of the Catalytic Activity of Bulk Metal Oxides for Formic Acid Oxidation. Journal of Catalysis, 2002, 210, 241-254.	3.1	34
162	Oxidative Dehydrogenation of Propane over Supported Chromia Catalysts: Influence of Oxide Supports and Chromia Loading. Journal of Catalysis, 2002, 211, 482-495.	3.1	79

#	Article	IF	CITATIONS
163	Molecular Engineering of Supported Vanadium Oxide Catalysts Through Support Modification. Topics in Catalysis, 2002, 18, 243-250.	1.3	53
164	Quantification of Active Sites for the Determination of Methanol Oxidation Turn-over Frequencies Using Methanol Chemisorption and in Situ Infrared Techniques. 1. Supported Metal Oxide Catalysts. Langmuir, 2001, 17, 6164-6174.	1.6	154
165	A Comparison of Ultraviolet and Visible Raman Spectra of Supported Metal Oxide Catalysts. Journal of Physical Chemistry B, 2001, 105, 8600-8606.	1.2	111
166	CATALYSIS BY SUPPORTED METAL OXIDES. , 2001, , 613-648.		13
167	Characterization of supported rhenium oxide catalysts: effect of loading, support and additives. Physical Chemistry Chemical Physics, 2001, 3, 1144-1152.	1.3	83
168	Quantification of Active Sites for the Determination of Methanol Oxidation Turn-over Frequencies Using Methanol Chemisorption and in Situ Infrared Techniques. 2. Bulk Metal Oxide Catalysts. Langmuir, 2001, 17, 6175-6184.	1.6	77
169	In situ studies of atomic, nano- and macroscale order during VOHPO4·0.5H2O transformation to (VO)2P2O7. Journal of Molecular Catalysis A, 2001, 172, 265-276.	4.8	50
170	Quantitative Determination of the Number of Surface Active Sites and the Turnover Frequencies for Methanol Oxidation over Metal Oxide Catalysts: Application to Bulk Metal Molybdates and Pure Metal Oxide Catalysts. Journal of Catalysis, 2001, 202, 268-278.	3.1	72
171	The Origin of the Ligand Effect in Metal Oxide Catalysts: Novel Fixed-Bed in Situ Infrared and Kinetic Studies during Methanol Oxidation. Journal of Catalysis, 2001, 203, 104-121.	3.1	96
172	Structural and Reactivity Properties of Nbî—,MCM-41: Comparison with That of Highly Dispersed Nb2O5/SiO2 Catalysts. Journal of Catalysis, 2001, 203, 18-24.	3.1	135
173	Methanol: A "Smart―Chemical Probe Molecule. Catalysis Letters, 2001, 75, 137-149.	1.4	247
174	Identification and roles of the different active sites in supported vanadia catalysts by in situ techniques. Studies in Surface Science and Catalysis, 2000, 130, 3125-3130.	1.5	35
175	Dynamic behavior of supported vanadia catalysts in the selective oxidation of ethane. Catalysis Today, 2000, 61, 295-301.	2.2	115
176	Molecular structure and reactivity of the group V metal oxides. Catalysis Today, 2000, 57, 323-330.	2.2	138
177	Quantitative determination of the number of active surface sites and the turnover frequencies for methanol oxidation over metal oxide catalysts. Catalysis Today, 2000, 62, 219-229.	2.2	95
178	Title is missing!. Topics in Catalysis, 2000, 10, 241-254.	1.3	73
179	Structural Characteristics and Reactivity Properties of Highly Dispersed Al2O3/SiO2 and V2O5/Al2O3/SiO2 Catalysts. Journal of Catalysis, 2000, 192, 18-28.	3.1	65
180	Title is missing!. Topics in Catalysis, 2000, 11/12, 85-100.	1.3	230

#	Article	IF	CITATIONS
181	Quantitative determination of the number of active surface sites and the turnover frequencies for methanol oxidation over metal oxide catalysts. Studies in Surface Science and Catalysis, 2000, 130, 305-310.	1.5	4
182	In Situ Raman Spectroscopy of Supported Transition Metal Oxide Catalysts:Â18O2â^'16O2Isotopic Labeling Studies. Journal of Physical Chemistry B, 2000, 104, 7382-7387.	1.2	131
183	Investigation of Surface Structures of Supported Vanadium Oxide Catalysts by UVâ^'visâ^'NIR Diffuse Reflectance Spectroscopy. Journal of Physical Chemistry B, 2000, 104, 1261-1268.	1.2	340
184	The origin of the support effect in supported metal oxide catalysts: in situ infrared and kinetic studies during methanol oxidation. Catalysis Today, 1999, 49, 467-484.	2.2	189
185	Titania–silica as catalysts: molecular structural characteristics and physico-chemical properties. Catalysis Today, 1999, 51, 233-254.	2.2	631
186	Oxidation of sulfur dioxide over supported vanadia catalysts: molecular structure – reactivity relationships and reaction kinetics. Catalysis Today, 1999, 51, 301-318.	2.2	126
187	Molecular structure–reactivity relationships for the oxidation of sulfur dioxide over supported metal oxide catalysts. Catalysis Today, 1999, 53, 543-556.	2.2	65
188	Oxidation of SO2over Supported Metal Oxide Catalysts. Journal of Catalysis, 1999, 181, 233-243.	3.1	107
189	The Oxygen Isotopic Exchange Reaction on Vanadium Oxide Catalysts. Journal of Catalysis, 1999, 185, 415-422.	3.1	33
190	Ethane and n-Butane Oxidation over Supported Vanadium Oxide Catalysts: An in Situ UV–Visible Diffuse Reflectance Spectroscopic Investigation. Journal of Catalysis, 1999, 188, 325-331.	3.1	124
191	Title is missing!. Catalysis Letters, 1999, 62, 87-91.	1.4	16
192	In situ Raman spectroscopy studies of catalysts. Topics in Catalysis, 1999, 8, 57-63.	1.3	111
193	The effect of metal oxide additives on the activity of V2O5/TiO2 catalysts for the selective catalytic reduction of nitric oxide by ammonia. Applied Catalysis B: Environmental, 1999, 20, 111-122.	10.8	187
194	Interaction of Polycrystalline Silver with Oxygen, Water, Carbon Dioxide, Ethylene, and Methanol:Â In Situ Raman and Catalytic Studies. Journal of Physical Chemistry B, 1999, 103, 5645-5656.	1.2	128
195	Structural Characteristics and Reactivity/Reducibility Properties of Dispersed and Bilayered V2O5/TiO2/SiO2 Catalysts. Journal of Physical Chemistry B, 1999, 103, 618-629.	1.2	117
196	Reaction-Induced Spreading of Metal Oxides onto Surfaces of Oxide Supports during Alcohol Oxidation:Â Phenomenon, Nature, and Mechanisms. Langmuir, 1999, 15, 1223-1235.	1.6	97
197	Structural Characteristics and Catalytic Properties of Highly Dispersed ZrO2/SiO2and V2O5/ZrO2/SiO2Catalysts. Langmuir, 1999, 15, 3169-3178.	1.6	100
198	In Situ Vibrational Spectroscopy Studies of Supported Niobium Oxide Catalysts. Journal of Physical Chemistry B, 1999, 103, 6015-6024.	1.2	145

#	Article	IF	CITATIONS
199	Selective Oxidation of 1-Butene over Silica-Supported Cr(VI), Mo(VI), and W(VI) Oxides. Journal of Catalysis, 1998, 176, 143-154.	3.1	38
200	Characterization of Vanadia Sites in V-Silicalite, Vanadia-Silica Cogel, and Silica-Supported Vanadia Catalysts: X-Ray Powder Diffraction, Raman Spectroscopy, Solid-State51V NMR, Temperature-Programmed Reduction, and Methanol Oxidation Studies. Journal of Catalysis, 1998, 178, 640-648.	3.1	85
201	Oxidation of sulfur dioxide to sulfur trioxide over supported vanadia catalysts. Applied Catalysis B: Environmental, 1998, 19, 103-117.	10.8	295
202	The influence of metal oxide additives on the molecular structures of surface tungsten oxide species on alumina: I. Ambient conditions. Journal of Molecular Catalysis A, 1998, 132, 43-57.	4.8	57
203	The influence of metal oxide additives on the molecular structures of surface tungsten oxide species on alumina. II. In situ conditions. Journal of Molecular Catalysis A, 1998, 132, 59-71.	4.8	38
204	Vibrational analysis of the two non-equivalent, tetrahedral tungstate (WO4) units in Ce2(WO4)3 and La2(WO4)3. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 1998, 54, 1355-1368.	2.0	88
205	Interactions between Surface Vanadate and Surface Sulfate Species on Metal Oxide Catalysts. Journal of Physical Chemistry B, 1998, 102, 6212-6218.	1.2	46
206	Preparation and in-Situ Spectroscopic Characterization of Molecularly Dispersed Titanium Oxide on Silica. Journal of Physical Chemistry B, 1998, 102, 5653-5666.	1.2	311
207	In Situ Spectroscopic Investigation of Molecular Structures of Highly Dispersed Vanadium Oxide on Silica under Various Conditions. Journal of Physical Chemistry B, 1998, 102, 10842-10852.	1.2	338
208	Partial oxidation of ethane over monolayers of vanadium oxide. effect of the support and surface coverage. Studies in Surface Science and Catalysis, 1997, , 295-304.	1.5	50
209	Methanol oxidation over supported vanadium oxide catalysts: New fundamental insights about oxidation reactions over metal oxide catalysts from transient and steady state kinetics. Studies in Surface Science and Catalysis, 1997, , 305-314.	1.5	31
210	Semiconductive and redox properties of V2O5/TiO2 catalysts. Journal of the Chemical Society, Faraday Transactions, 1997, 93, 1655-1660.	1.7	26
211	In Situ Raman Spectroscopy of Supported Chromium Oxide Catalysts:  18O2â~'16O2 Isotopic Labeling Studies. Journal of Physical Chemistry B, 1997, 101, 2793-2796.	1.2	64
212	Development of active oxide catalysts for the direct oxidation of methane to formaldehyde. Catalysis Today, 1997, 37, 1-14.	2.2	81
213	In SituRaman Spectroscopy during the Partial Oxidation of Methane to Formaldehyde over Supported Vanadium Oxide Catalysts. Journal of Catalysis, 1997, 165, 91-101.	3.1	78
214	Structure and reactivity of surface vanadium oxide species on oxide supports. Applied Catalysis A: General, 1997, 157, 67-90.	2.2	636
215	Fundamental Studies of Butane Oxidation over Model-Supported Vanadium Oxide Catalysts: Molecular Structure-Reactivity Relationships. Journal of Catalysis, 1997, 170, 75-88.	3.1	132
216	Surface Chemistry and Spectroscopy of Chromium in Inorganic Oxides. Chemical Reviews, 1996, 96, 3327-3350.	23.0	729

#	Article	IF	CITATIONS
217	In SituRaman Spectroscopy of Supported Chromium Oxide Catalysts:Â Reactivity Studies with Methanol and Butane. The Journal of Physical Chemistry, 1996, 100, 14437-14442.	2.9	105
218	Combined Raman and IR study of MOx–V2O5/Al2O3(MOx= MoO3, WO3, NiO, CoO) catalysts under dehydrated conditions. Journal of the Chemical Society, Faraday Transactions, 1996, 92, 3259-3265.	1.7	111
219	Raman spectroscopy of supported chromium oxide catalysts. Determination of chromium—oxygen bond distances and bond orders. Journal of the Chemical Society, Faraday Transactions, 1996, 92, 1969-1973.	1.7	61
220	Selective catalytic reduction of nitric oxide with ammonia on vanadia/alumina catalysts. Influence of vanadia loading and secondary metal oxide additives. Journal of the Chemical Society, Faraday Transactions, 1996, 92, 3267.	1.7	14
221	Direct conversion of methane to methanol and formaldehyde over a double-layered catalyst bed in the presence of steam. Chemical Communications, 1996, , 663.	2.2	16
222	Surface Aspects of Bismuth–Metal Oxide Catalysts. Journal of Catalysis, 1996, 159, 1-13.	3.1	70
223	Comparison of Silica-Supported MoO3and V2O5Catalysts in the Selective Partial Oxidation of Methane. Journal of Catalysis, 1996, 160, 214-221.	3.1	103
224	The Selective Catalytic Reduction of NOxwith NH3over Titania Supported Rhenium Oxide Catalysts. Journal of Catalysis, 1996, 160, 322-325.	3.1	30
225	Selective Catalytic Reduction of NO with NH3over Supported Vanadia Catalysts. Journal of Catalysis, 1996, 161, 211-221.	3.1	232
226	Reactivity of V2O5Catalysts for the Selective Catalytic Reduction of NO by NH3: Influence of Vanadia Loading, H2O, and SO2. Journal of Catalysis, 1996, 161, 247-253.	3.1	253
227	Raman and IR studies of surface metal oxide species on oxide supports: Supported metal oxide catalysts. Catalysis Today, 1996, 27, 437-455.	2.2	794
228	Oxidative dehydrogenation of propane over niobia supported vanadium oxide catalysts. Catalysis Today, 1996, 28, 139-145.	2.2	91
229	Redox properties of niobium oxide catalysts. Catalysis Today, 1996, 28, 199-205.	2.2	91
230	XAFS study of niobium oxide on alumina. Catalysis Today, 1996, 28, 71-78.	2.2	35
231	Surface structures of supported tungsten oxide catalysts under dehydrated conditions. Journal of Molecular Catalysis A, 1996, 106, 93-102.	4.8	147
232	Effect of water vapor on the molecular structures of supported vanadium oxide catalysts at elevated temperatures. Journal of Molecular Catalysis A, 1996, 110, 41-54.	4.8	140
233	The effect of the phase composition of model VPO catalysts for partial oxidation of n-butane. Catalysis Today, 1996, 28, 275-295.	2.2	169
234	The dynamic states of silica-supported metal oxide catalysts during methanol oxidation. Catalysis Today, 1996, 28, 335-350.	2.2	111

#	Article	IF	CITATIONS
235	In situ Raman spectroscopy studies of bulk and surface metal oxide phases during oxidation reactions. Catalysis Today, 1996, 32, 47-55.	2.2	98
236	Determination of the molecular structures of tungstates by Raman spectroscopy. Journal of Raman Spectroscopy, 1995, 26, 397-405.	1.2	137
237	Raman spectroscopy of bismuth tungstates. Journal of Raman Spectroscopy, 1995, 26, 407-412.	1.2	8
238	Infrared spectroscopy of supported metal oxide catalysts. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1995, 105, 143-149.	2.3	48
239	Genesis and Stability of Silicomolybdic Acid on Silica-Supported Molybdenum Oxide Catalysts: In-Situ Structural-Selectivity Study on Selective Oxidation Reactions. Journal of Catalysis, 1995, 155, 249-255.	3.1	63
240	Mechanism of surface spreading in vanadia-titania system. Catalysis Letters, 1995, 32, 101-114.	1.4	65
241	Evolution of the active surface of the vanadyl pyrophosphate catalysts. Catalysis Letters, 1995, 32, 379-386.	1.4	84
242	Preparation and characterization of WO3/SiO2 catalysts. Catalysis Letters, 1995, 33, 209-215.	1.4	70
243	Combined DRS–RS–EXAFS–XANES–TPR study of supported chromium catalysts. Journal of the Chemical Society, Faraday Transactions, 1995, 91, 3245-3253.	1.7	188
244	Vanadyl(IV) Phosphonates, VOCnH2n+1PO3.cntdot.xH2O (n = 0-4, x = 1 or 1.5), as Precursors of Vanadyl(IV) Pyrophosphate, (VO)2P2O7. Chemistry of Materials, 1995, 7, 1493-1498.	3.2	29
245	Catalytic Properties of Supported Molybdenum Oxide Catalysts: In Situ Raman and Methanol Oxidation Studies. The Journal of Physical Chemistry, 1995, 99, 10911-10922.	2.9	139
246	Surface chemistry of silica–titania-supported chromium oxide catalysts. Journal of the Chemical Society, Faraday Transactions, 1995, 91, 953-961.	1.7	54
247	Surface Structures of Supported Molybdenum Oxide Catalysts: Characterization by Raman and Mo L3-Edge XANES. The Journal of Physical Chemistry, 1995, 99, 10897-10910.	2.9	358
248	Spectroscopic characterization of supported Cr and Cr, Ti catalysts: Interaction with probe molecules. Studies in Surface Science and Catalysis, 1995, 91, 151-158.	1.5	18
249	Partial Oxidation of Methane by Molecular Oxygen Over Supported V2O5 Catalysts: A Catalytic and in situ Raman Spectroscopy Study. , 1995, , 219-226.		1
250	Reactivity of Supported Vanadium Oxide Catalysts: The Partial Oxidation of Methanol. Journal of Catalysis, 1994, 146, 323-334.	3.1	486
251	Effect of Additives on the Structure and Reactivity of the Surface Vanadium Oxide Phase in V2O5/TiO2 Catalysts. Journal of Catalysis, 1994, 146, 335-345.	3.1	181
252	Molecular Structures and Reactivity of Supported Molybdenum Oxide Catalysts. Journal of Catalysis, 1994, 149, 268-277.	3.1	127

#	Article	IF	CITATIONS
253	Alumina-Supported Manganese Oxide Catalysts. Journal of Catalysis, 1994, 150, 94-104.	3.1	403
254	Molybdena on Silica Catalysts: Role of Preparation Methods on the Structure-Selectivity Properties for the Oxidation of Methanol. Journal of Catalysis, 1994, 150, 407-420.	3.1	119
255	Effect of alkali metal cations on the structure of Mo(VI)/SiO2 catalysts and its relevance to the selective oxidation of methane and methanol. Journal of Catalysis, 1994, 146, 204-210.	3.1	61
256	1H MAS NMR Studies of Alumina-Supported Metal Oxide Catalysts. The Journal of Physical Chemistry, 1994, 98, 13621-13624.	2.9	37
257	Surface Rhenium Oxide-Support Interaction for Supported Re2O7 Catalysts. Journal of Catalysis, 1993, 141, 419-429.	3.1	53
258	Surface Chemistry of Supported Chromium Oxide Catalysts. Journal of Catalysis, 1993, 142, 166-171.	3.1	102
259	Raman characterization of alumina supported Moî—,Vî—,Fe catalysts: Influence of calcination temperature. Journal of Molecular Catalysis, 1993, 81, 63-75.	1.2	21
260	Molecular design of supported metal oxide catalysts: An initial step to theoretical models. Journal of Molecular Catalysis, 1993, 82, 443-455.	1.2	67
261	Characterization of CrO3/Al2O3 catalysts under ambient conditions: Influence of coverage and calcination temperature. Journal of Molecular Catalysis, 1993, 84, 193-205.	1.2	102
262	Characterization of chromium oxide supported on Al2O3, ZrO2, TiO2, and SiO2 under dehydrated conditions. Journal of Molecular Catalysis, 1993, 80, 209-227.	1.2	152
263	Characterization of titania silicalites. Zeolites, 1993, 13, 365-373.	0.9	177
264	Molecular design of supported niobium oxide catalysts. Catalysis Today, 1993, 16, 417-426.	2.2	63
265	Interactions in Alumina-Based Iron Oxide-Vanadium Oxide Catalysts under High Temperature Calcination and SO2 Oxidation Conditions. Journal of Catalysis, 1993, 139, 1-18.	3.1	15
266	Bonding states of surface vanadium(V) oxide phases on silica: structural characterization by vanadium-51 NMR and Raman spectroscopy. The Journal of Physical Chemistry, 1993, 97, 8240-8243.	2.9	274
267	Surface Oxide—Support Interactions in the Molecular Design of Supported Metal Oxide Selective Oxidation Catalysts. ACS Symposium Series, 1993, , 31-42.	0.5	3
268	Molecular Design of Supported Metal Oxide Catalysts. Studies in Surface Science and Catalysis, 1993, 75, 543-557.	1.5	17
269	In situ Raman spectroscopy of alumina-supported metal oxide catalysts. The Journal of Physical Chemistry, 1992, 96, 5008-5016.	2.9	362
270	Acidic properties of alumina-supported metal oxide catalysts: an infrared spectroscopy study. The Journal of Physical Chemistry, 1992, 96, 5000-5007.	2.9	295

#	Article	IF	CITATIONS
271	Surface modified niobium oxide catalyst: synthesis, characterization, and catalysis. Applied Catalysis A: General, 1992, 83, 179-200.	2.2	72
272	Physical and chemical characterization of surface vanadium oxide supported on titania: influence of the titania phase (anatase, rutile, brookite and B). Applied Catalysis A: General, 1992, 91, 27-42.	2.2	130
273	The molecular structure of bismuth oxide by Raman spectroscopy. Journal of Solid State Chemistry, 1992, 97, 319-331.	1.4	165
274	Structural determination of surface rhenium oxide on various oxide supports (Al2O3, ZrO2, TiO2 and) Tj ETQqO	0 0 rgBT /	Overlock 10 T
275	Raman spectroscopy of V2O5, MoO3, Fe2O3, MoO3-V2O5, and Fe2O3-V2O5 supported on alumina catalysts: Influence of coverage and dehydration. Journal of Molecular Catalysis, 1992, 77, 29-39.	1.2	41
276	Relationship between structure and point of zero surface charge for molybdenum and tungsten oxides supported on alumina. Catalysis Letters, 1992, 16, 231-239.	1.4	53
277	Monolayer dispersion of molybdenum on silica. Catalysis Letters, 1992, 16, 77-83.	1.4	54
278	The molecular structures and reactivity of V2O5/TiO2/SiO2 catalysts. Catalysis Letters, 1992, 13, 9-19.	1.4	45
279	Surface structures of supported molybdenum oxide catalysts under ambient conditions. Journal of Catalysis, 1992, 136, 539-553.	3.1	121
280	Surface structure and reactivity of CrO3/SiO2 catalysts. Journal of Catalysis, 1992, 136, 209-221.	3.1	98
281	Acidic properties of supported niobium oxide catalysts: An infrared spectroscopy investigation. Journal of Catalysis, 1992, 135, 186-199.	3.1	337
282	Molecular structure of molybdenum oxide in bismuth molybdates by Raman spectroscopy. The Journal of Physical Chemistry, 1991, 95, 10763-10772.	2.9	139
283	Determination of vanadium-oxygen bond distances and bond orders by Raman spectroscopy. The Journal of Physical Chemistry, 1991, 95, 5031-5041.	2.9	489
284	Structural chemistry and Raman spectra of niobium oxides. Chemistry of Materials, 1991, 3, 100-107.	3.2	598
285	Molecular structures of supported niobium oxide catalysts under in situ conditions. The Journal of Physical Chemistry, 1991, 95, 7373-7379.	2.9	112
286	Monolayer V2O5/TiO2 and MoO3/TiO2 catalysts prepared by different methods. Applied Catalysis, 1991, 70, 115-128.	1.1	150
287	Predicting molecular structures of surface metal oxide species on oxide supports under ambient conditions. The Journal of Physical Chemistry, 1991, 95, 5889-5895.	2.9	306
288	Structural determination of supported vanadium pentoxide-tungsten trioxide-titania catalysts by in situ Raman spectroscopy and x-ray photoelectron spectroscopy. The Journal of Physical Chemistry, 1991, 95, 9928-9937.	2.9	256

#	Article	IF	CITATIONS
289	Molecular Structure-Reactivity Relationships of Supported Vanadium Oxide Catalysts. Studies in Surface Science and Catalysis, 1991, 67, 13-20.	1.5	1
290	Determination of niobium-oxygen bond distances and bond orders by Raman spectroscopy. Solid State lonics, 1991, 45, 201-213.	1.3	141
291	Molecular structures of supported niobium oxide catalysts under ambient conditions. Journal of Molecular Catalysis, 1991, 67, 369-387.	1.2	71
292	Vanadium(V) environments in bismuth vanadates: A structural investigation using Raman spectroscopy and solid state 51V NMR. Journal of Solid State Chemistry, 1991, 90, 194-210.	1.4	116
293	Surface oxide-support interaction (SOSI) for surface redox sites. Journal of Catalysis, 1991, 129, 307-312.	3.1	123
294	The formation of titanium oxide monolayer coatings on silica surfaces. Journal of Catalysis, 1991, 131, 260-275.	3.1	100
295	Remarkable spreading behavior of molybdena on silica catalysts. Anin situ EXAFS-Raman study. Catalysis Letters, 1991, 11, 227-239.	1.4	125
296	Niobium oxide solution chemistry. Journal of Raman Spectroscopy, 1991, 22, 83-89.	1.2	82
297	A Raman and ultraviolet diffuse reflectance spectroscopic investigation of alumina-supported molybdenum oxide. The Journal of Physical Chemistry, 1991, 95, 8791-8797.	2.9	133
298	A Raman and ultraviolet diffuse reflectance spectroscopic investigation of silica-supported molybdenum oxide. The Journal of Physical Chemistry, 1991, 95, 8781-8791.	2.9	183
299	Molecular structures of surface vanadium oxide species on Titania supports. Journal of Catalysis, 1990, 124, 570-573.	3.1	66
300	Determination of molybdenum-oxygen bond distances and bond orders by Raman spectroscopy. Journal of Raman Spectroscopy, 1990, 21, 683-691.	1.2	303
301	Molecular engineering of supported metal oxide catalysts. Chemical Engineering Science, 1990, 45, 2561-2565.	1.9	45
302	The molecular structures and reactivity of supported niobium oxide catalysts. Catalysis Today, 1990, 8, 37-55.	2.2	151
303	Solid state 51V NMR structural studies of vanadium(V) oxide catalysts supported on TiO2(anatase) and TiO2(rutile). The influence of surface impurities on the vanadium(V) coordination. Colloids and Surfaces, 1990, 45, 347-359.	0.9	44
304	Raman Spectroscopy of Vanadium Oxide Supported on Alumina. ACS Symposium Series, 1990, , 317-328.	0.5	25
305	Niobium Oxalate. ACS Symposium Series, 1990, , 232-242.	0.5	7
306	Solid-state vanadium-51 NMR structural studies on supported vanadium(V) oxide catalysts: vanadium oxide surface layers on alumina and titania supports. The Journal of Physical Chemistry, 1989, 93, 6796-6805.	2.9	397

#	Article	IF	CITATIONS
307	Physicochemical properties of MoO3î—,TiO2 prepared by an equilibrium adsorption method. Journal of Catalysis, 1989, 120, 325-336.	3.1	90
308	The structure of surface rhenium oxide on alumina from laser raman spectroscopy and x-ray absorption near-edge spectroscopy. Journal of Molecular Catalysis, 1988, 46, 15-36.	1.2	106
309	Raman spectroscopy of chromium oxide supported on Al2O3, TiO2 and SiO2: a comparative study. Journal of Molecular Catalysis, 1988, 46, 173-186.	1.2	212
310	Characterization of Supported Metal Oxides by Laser Raman Spectroscopy: Supported Vanadium Oxide on Al ₂ O ₃ and TiO ₂ . Materials Research Society Symposia Proceedings, 1987, 111, 353.	0.1	10
311	Reaction network and kinetics of o-xylene oxidation to phthalic anhydride over V2O5/TiO2 (anatase) catalysts. Applied Catalysis, 1987, 31, 87-98.	1.1	65
312	In situ laser Raman spectroscopy of nickel oxide supported on \$gamma;-Al2O3. Journal of Catalysis, 1987, 103, 224-227.	3.1	86
313	Characterization of the WO3/Al2O3 system with low energy ion scattering spectroscopy. Journal of Catalysis, 1986, 100, 500-502.	3.1	12
314	The interaction of V2O5 with Ti02(anatase): Catalyst evolution with calcination temperature and O-xylene oxidation. Journal of Catalysis, 1986, 98, 102-114.	3.1	194
315	Photo-oxidation of methanol using : Catalyst structure and reaction selectivity. Journal of Catalysis, 1985, 94, 108-119.	3.1	122
316	Laser Raman characterization of tungsten oxide supported on alumina: Influence of calcination temperatures. Journal of Catalysis, 1985, 92, 1-10.	3.1	107
317	The interaction of V2O5 with TiO2(anatase) II. Comparison of fresh and used catalysts for o-xylene oxidation to phthalic anhydride. Journal of Catalysis, 1985, 91, 366-369.	3.1	33
318	Reduction of W03/A1203 and unsopported W03: A comparative ESCA study. Applied Catalysis, 1985, 13, 335-346.	1.1	58
319	The interaction of vanadium pentoxide with titania (anatase): Part I. Effect on o-xylene oxidation to phthalic anhydride. Applied Catalysis, 1985, 15, 339-352.	1.1	236
320	In situ characterization of small V2O5 crystallites supported on TiO2(anatase). Applications of Surface Science, 1984, 20, 181-185.	1.0	19
321	Relative raman cross-sections of tungsten oxides: 6WO3, Al2(WO4)3 and WO3/Al2O39. Journal of Catalysis, 1984, 90, 150-155.	3.1	90
322	Laser Raman Characterization Of Tungsten Oxide On Alumina. Studies in Surface Science and Catalysis, 1984, 19, 259-266.	1.5	7
323	Characterization of Fe, Fe-Cu, And Fe-Ag fischer-tropsch catalysts. Applied Catalysis, 1984, 12, 201-217.	1.1	59
324	The Interaction of V2O5 with TiO2(Anatase): The Active Site for the Oxidation of O-Xylene to Phthalic Anhydride. Studies in Surface Science and Catalysis, 1984, 19, 275-282.	1.5	6

#	Article	IF	CITATIONS
325	Research on gold in catalysis. Gold Bulletin, 1983, 16, 98-102.	3.2	27
326	Oxidation of CH3CN over silver: formation of surface compounds. Chemical Physics Letters, 1982, 88, 46-49.	1.2	0
327	Mechanism of the Interaction of Ethylene with Atomic Oxygen on A Silver Surface. Studies in Surface Science and Catalysis, 1981, , 682-697.	1.5	1
328	Comparison of the oxidation of ethylene, ethane, and acetylene by atomic oxygen on silver (110). Journal of Catalysis, 1981, 68, 213-217.	3.1	13
329	Postreactor reactions during ethylene oxidation over silver. Journal of Catalysis, 1981, 72, 160-165.	3.1	4
330	The interaction of ethylene with surface carbonate and hydroxide intermediates on silver. Journal of Catalysis, 1981, 71, 78-87.	3.1	27
331	The surface intermediate H2COO. Applications of Surface Science, 1980, 5, 426-428.	1.0	19
332	MBRS measurements of overlayer effects on surface lifetimes and reaction probabilities. Journal of Catalysis, 1980, 61, 310-315.	3.1	4
333	The oxidation of H2CO on a copper(110) surface. Surface Science, 1979, 84, 375-386.	0.8	124
334	The oxidation of ethanol on Cu(110) and Ag(110) catalysts. Applications of Surface Science, 1978, 1, 303-328.	1.0	144
335	The selective oxidation of CH3OH to H2CO on a copper(110) catalyst. Journal of Catalysis, 1978, 53, 208-227.	3.1	541
336	The oxidation of methanol on a silver (110) catalyst. Surface Science, 1978, 76, 531-558.	0.8	385
337	The kinetics and mechanism of catalytic reactions by molecular beam relaxation spectroscopy: HCOOH decomposition. Surface Science, 1977, 65, 287-313.	0.8	27
338	On the H2î—,D2 exchange on stepped platinum surfaces. Surface Science, 1976, 58, 590-596.	0.8	40
339	Applications of raman spectroscopy to heterogeneous catalysis. Catalysis, 0, , 102-153.	0.6	13
340	Oxidation Reactions over Supported Metal Oxide Catalysts: Molecular/Electronic Structure– Activity/Selectivity Relationships. , 0, , 487-498.		2
341	Molecular engineering of supported metal oxide catalysts: Oxidation reactions over supported vanadia catalysts. Catalysis, 0, , 37-54.	0.6	30