List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1350390/publications.pdf Version: 2024-02-01

SEUL MORI

#	Article	IF	CITATIONS
1	Wherefore Art Thou Copper? Structures and Reaction Mechanisms of Organocuprate Clusters in Organic Chemistry. Angewandte Chemie - International Edition, 2000, 39, 3750-3771.	13.8	234
2	Facile Estimation of Catalytic Activity and Selectivities in Copolymerization of Propylene Oxide with Carbon Dioxide Mediated by Metal Complexes with Planar Tetradentate Ligand. Journal of the American Chemical Society, 2014, 136, 10728-10735.	13.7	103
3	Reaction Pathway of the Conjugate Addition of Lithium Organocuprate Clusters to Acrolein. Journal of the American Chemical Society, 1997, 119, 4900-4910.	13.7	102
4	Endohedral Homoconjugation in Cyclopentadiene Embedded in C60. Theoretical and Electrochemical Evidence. Journal of Organic Chemistry, 1997, 62, 7912-7913.	3.2	99
5	Mechanism of SN2 Alkylation Reactions of Lithium Organocuprate Clusters with Alkyl Halides and Epoxides. Solvent Effects, BF3Effects, and Trans-Diaxial Epoxide Opening. Journal of the American Chemical Society, 2000, 122, 7294-7307.	13.7	96
6	The First General Method forZ-Selective Olefination of Acylsilanes via Ynolate Anions Providing Multisubstituted Alkenes. Journal of the American Chemical Society, 2002, 124, 6840-6841.	13.7	89
7	Combined Theoretical and Experimental Studies of Nickel-Catalyzed Cross-Coupling of Methoxyarenes with Arylboronic Esters via C–O Bond Cleavage. Journal of the American Chemical Society, 2017, 139, 10347-10358.	13.7	87
8	Regioselective Synthesis of Heterocycles Containing Nitrogen Neighboring an Aromatic Ring by Reductive Ring Expansion Using Diisobutylaluminum Hydride and Studies on the Reaction Mechanism. Journal of Organic Chemistry, 2010, 75, 627-636.	3.2	77
9	Theoretical Studies on the Addition of Polymetallic Lithium Organocuprate Clusters to Acetylene. Cooperative Effects of Metals in a Trap-and-Bite Reaction Pathway. Journal of the American Chemical Society, 1997, 119, 4887-4899.	13.7	73
10	Density Functional Studies on Conjugate Addition of (Me2CuLi)2 to Cyclohexenone: Stereoselectivity and Rate-Determining Step. Chemistry - A European Journal, 1999, 5, 1534-1543.	3.3	70
11	Complexation of Lewis Acid with Trialkylcopper(III):Â On the Origin of BF3-Acceleration of Cuprate Conjugate Addition. Journal of the American Chemical Society, 2000, 122, 1826-1827.	13.7	67
12	Iron(III) Chloride-Catalyzed Convenient One-Pot Synthesis of Homoallyl Benzyl Ethers Starting from Aldehydes. Organic Letters, 2003, 5, 3045-3048.	4.6	58
13	Theoretical Studies on SN2-Reaction of MeBr with Me2CuLi·LiCl. Solvent and Cluster Effects on Oxidative Addition/Reductive Elimination Pathway. Journal of the American Chemical Society, 1998, 120, 8273-8274.	13.7	57
14	Elucidation of the Mechanism of the 1,6-Cuprate Addition to Acceptor-Substituted Enynes through13C Kinetic Isotope Effects: Experimental and Theoretical Studies. Angewandte Chemie - International Edition, 2005, 44, 4715-4719.	13.8	57
15	Correlation of Reactivities of Organocuprate(I) and Zincate(II) with d-Orbital Energies of Ate Complexes. Tetrahedron, 2000, 56, 2805-2809.	1.9	53
16	Theoretical Studies on Chelation-Controlled Carbonyl Addition. Me2Mg Addition to .alpha and .betaAlkoxy Ketones and Aldehydes. Journal of the American Chemical Society, 1995, 117, 5055-5065.	13.7	49
17	The Effect of Alkynyl Groups on Torquoselectivity. Highly Stereoselective Olefination of Alkynyl Ketones with Ynolates. Journal of the American Chemical Society, 2009, 131, 2092-2093.	13.7	49
18	Torquoselective Olefination of Carbonyl Compounds with Ynolates: Highly Efficient Stereoselective Synthesis of Tetrasubstituted Alkenes. Synlett, 2008, 2008, 2231-2243.	1.8	45

#	ARTICLE	IF	CITATIONS
19	Cooperative Catalysis of Metal and OHâ‹â‹O/sp ³ â€CHâ‹â‹â‹O Twoâ€Point Hydr Alcoholic Solvents: Cuâ€Catalyzed Enantioselective Direct Alkynylation of Aldehydes with Terminal Alkynes. Chemistry - A European Journal, 2013, 19, 13547-13553.	ogen Bond 3.3	s in 45
20	An Osmium(III)/Osmium(V) Redox Couple Generating Os ^V (O)(OH) Center for <i>cis</i> -1,2-Dihydroxylation of Alkenes with H ₂ O ₂ : Os Complex with a Nitrogen-Based Tetradentate Ligand. Journal of the American Chemical Society, 2012, 134, 19270-19280.	13.7	44
21	Enantiocontrol by assembled attractive interactions in copper-catalyzed asymmetric direct alkynylation of α-ketoesters with terminal alkynes: OH⋯O/sp ³ -CH⋯O two-point hydrogen bonding combined with dispersive attractions. Chemical Science, 2018, 9, 3484-3493.	7.4	43
22	Heteroatom-Guided Torquoselective Olefination of α-Oxy and α-Amino Ketones via Ynolates. Chemistry - A European Journal, 2006, 12, 524-536.	3.3	42
23	Hyperconjugative Effects in the Stereoselective Ring-Opening Reactions of Oxetenoxides. Organic Letters, 2004, 6, 3945-3948.	4.6	39
24	Olefin Carbometalation with (Alkoxy)allylic Lithium and Zinc Reagents. Four-Centered vs Six-Centered Mechanism of Allylmetalation Reaction. Journal of the American Chemical Society, 1998, 120, 13334-13341.	13.7	37
25	Asymmetric Synthesis of βâ€Lactams through Copperâ€Catalyzed Alkyne–Nitrone Coupling with a Prolinol–Phosphine Chiral Ligand. Chemistry - A European Journal, 2017, 23, 8400-8404.	3.3	35
26	Quantum Treatment of Hydrogen Nuclei in Primary Kinetic Isotope Effects in a Thermal [1,5]-Sigmatropic Hydrogen (or Deuterium) Shift from (Z)-1,3-Pentadiene. Journal of Physical Chemistry A, 2007, 111, 261-267.	2.5	33
27	Redox Chemistry of Nickel(II) Complexes Supported by a Series of Noninnocent β-Diketiminate Ligands. Inorganic Chemistry, 2014, 53, 6159-6169.	4.0	33
28	Correlation of coordination geometry of copper atom to reactivities of organocuprate. Molecular orbital analysis of dimethylcuprate anion. Tetrahedron Letters, 1999, 40, 5319-5322.	1.4	30
29	Transition States of Binap–Rhodium(I)-Catalyzed Asymmetric Hydrogenation: Theoretical Studies on the Origin of the Enantioselectivity. Chemistry - an Asian Journal, 2006, 1, 391-403.	3.3	29
30	Theoretical Studies of Rhodium-Catalyzed Borylation of Nitriles through Cleavage of Carbon–Cyano Bonds. Bulletin of the Chemical Society of Japan, 2014, 87, 655-669.	3.2	28
31	SN2 Substitution on sp2Nitrogen of Protonated Oxime. Chemistry Letters, 1998, 27, 111-112.	1.3	26
32	Mechanism of Addition of Organocuprates to Alkynyl Carbonyl Compounds. A Mechanistic Bridge between Carbocupration and Conjugate Addition. Organometallics, 2004, 23, 1081-1088.	2.3	26
33	Exploring the full catalytic cycle of rhodium(<scp>i</scp>)–BINAP-catalysed isomerisation of allylic amines: a graph theory approach for path optimisation. Chemical Science, 2017, 8, 4475-4488.	7.4	26
34	Mechanisms of Copper-mediated Addition and Substitution Reactions. , 0, , 315-346.		25
35	Investigation of substitution effect on fluorescence properties of Zn2+-selective ratiometric fluorescent compounds: 2-(2′-Hydroxyphenyl)benzimidazole derivatives. Talanta, 2016, 146, 575-584.	5.5	22
36	Vanadyl Species Catalyzed 1,2-Oxidative Trifluoromethylation of Unactivated Olefins. ACS Catalysis, 2020, 10, 3676-3683.	11.2	21

#	Article	IF	CITATIONS
37	Kinetic Reactivity of "Higher Order Cuprates―in SN2 Alkylation Reactions. Angewandte Chemie - International Edition, 2001, 40, 1935-1938.	13.8	20
38	Theoretical studies on ï€-complex formation of organocopper compounds with acetylene. The origin of nucleophilicity of organocuprates. Computational and Theoretical Chemistry, 1999, 461-462, 167-175.	1.5	19
39	Theoretical Study of the Cycloaddition Reaction of a Tungstenâ€Containing Carbonyl Ylide. Chemistry - A European Journal, 2009, 15, 12408-12416.	3.3	18
40	Density Functional Studies on Isomerization of Prostaglandinâ€H ₂ to Prostacyclin Catalyzed by Cytochrome P450. Chemistry - A European Journal, 2009, 15, 4464-4473.	3.3	16
41	Characterization of the one-electron oxidized Cu(II)-salen complexes with a side chain aromatic ring: the effect of the indole ring on the Cu(II)-phenoxyl radical species. Journal of Biological Inorganic Chemistry, 2018, 23, 51-59.	2.6	16
42	The effect of ï€â€"ï€ stacking interaction of the indole ring with the coordinated phenoxyl radical in a nickel(<scp>ii</scp>)-salen type complex. Comparison with the corresponding Cu(<scp>ii</scp>) complex. Dalton Transactions, 2019, 48, 12060-12069.	3.3	16
43	Copperâ€Catalyzed γâ€Selective and Stereospecific Allylic Crossâ€Coupling with Secondary Alkylboranes. Chemistry - A European Journal, 2015, 21, 9666-9670.	3.3	15
44	Cavity Closure of 2-Hydroxypropyl-β-Cyclodextrin: Replica Exchange Molecular Dynamics Simulations. Polymers, 2019, 11, 145.	4.5	15
45	Iridiumâ€Catalyzed Enantioselective Transfer Hydrogenation of Ketones Controlled by Alcohol Hydrogenâ€Bonding and sp 3 â^'H Noncovalent Interactions. Advanced Synthesis and Catalysis, 2020, 362, 4655-4661.	4.3	15
46	Copper-catalyzed enantioselective allylic cross-coupling with alkylboranes. Tetrahedron, 2015, 71, 6519-6533.	1.9	14
47	Toyquoselective Olefination with Ynolates. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2008, 66, 28-38.	0.1	13
48	Open Dimer Participation in Chelation Controlled Addition of Methyllithium Dimer toα-andβ-Alkoxy Aldehydes. Chemistry Letters, 1997, 26, 1079-1080.	1.3	12
49	Enantioselective Radical Type, 1,2-Oxytrifluoromethylation of Olefins Catalyzed by Chiral Vanadyl Complexes: Importance of Noncovalent Interactions. ACS Catalysis, 2021, 11, 7160-7175.	11.2	12
50	The effects of C–S and C–Se bonds on torquoselectivity: stereoselective olefination of α-thio and α-selenoketones with ynolates. Tetrahedron, 2009, 65, 8832-8838.	1.9	11
51	Skeletal Rearrangement of Cyano-Substituted Iminoisobenzofurans into Alkyl 2-Cyanobenzoates Catalyzed by B(C ₆ F ₅) ₃ . Organic Letters, 2014, 16, 5220-5223.	4.6	11
52	The origin of exo-selectivity in methyl cyanoformate addition onto the C bond of norbornene in Pd-catalyzed cyanoesterification. Dalton Transactions, 2014, 43, 9537-9548.	3.3	11
53	Experimental and Theoretical Studies on the Platinum-Mediated Selective C(sp)–Si Bond Cleavage of Alkynylsilanes. Organometallics, 2014, 33, 1878-1889.	2.3	11
54	Characterization of Group 10-Metal- <i>p</i> -Substituted Phenoxyl Radical Complexes with Schiff Base Ligands ChemistrySelect, 2017, 2, 10221-10231.	1.5	11

#	Article	IF	CITATIONS
55	Highly Modified Lanostane Triterpenes from the Wood-Rot Basidiomycete <i>Ganoderma colossus</i> : Comparative Chemical Investigations of Natural and Artificially Cultivated Fruiting Bodies and Mycelial Cultures. Journal of Natural Products, 2020, 83, 2066-2075.	3.0	11
56	Unusually Stable Organomercury Hydrides and Radicals. Angewandte Chemie International Edition in English, 1997, 36, 374-376.	4.4	10
57	Density Functional Studies on Thromboxane Biosynthesis: Mechanism and Role of the Hemeâ€Thiolate System. Chemistry - an Asian Journal, 2008, 3, 1900-1911.	3.3	10
58	π–π Stacking Interaction in an Oxidized Cu ^{II} –Salen Complex with a Sideâ€Chain Indole Ring: An Approach to the Function of the Tryptophan in the Active Site of Galactose Oxidase. Chemistry - A European Journal, 2019, 25, 7649-7658.	3.3	10
59	Equilibrium and ab initio computational studies on the adduct formation of 1,3-diketonato-lithium(I), -sodium(I) and -potassium(I) with 1,10-phenanthroline and its 2,9-dimethyl derivatives. Talanta, 2009, 78, 1272-1279.	5.5	9
60	The molecular mechanism of palladium-catalysed cyanoesterification of methyl cyanoformate onto norbornene. Dalton Transactions, 2016, 45, 7786-7793.	3.3	9
61	Benzophenone and chromone derivatives and their dimers from the scale-insect pathogenic fungus Orbiocrella petchii BCC 51377. Tetrahedron, 2019, 75, 130646.	1.9	9
62	Lanostane triterpenoids from cultivated fruiting bodies of basidiomycete Ganoderma mbrekobenum. Phytochemistry, 2022, 196, 113075.	2.9	9
63	Density Functional Studies on Kinetic Reactivity of "Higher Order―Lipshutz Cuprate in Addition Reaction to Acetylene. Bulletin of the Chemical Society of Japan, 2002, 75, 1815-1818.	3.2	7
64	UV resonance Raman studies on the activation mechanism of human hematopoietic prostaglandin D2 synthase by a divalent cation, Mg2+. Journal of Inorganic Biochemistry, 2010, 104, 331-340.	3.5	7
65	Quantum chemical studies on the role of water microsolvation in interactions between group 12 metal species (Hg2+, Cd2+, and Zn2+) and neutral and deprotonated cysteines. Theoretical Chemistry Accounts, 2011, 130, 279-297.	1.4	7
66	Combined Computational and Experimental Studies on the Asymmetric Michael Addition of α-Aminomaleimides to β-Nitrostyrenes Using an Organocatalyst Derived from <i>Cinchona</i> Alkaloid. Organic Letters, 2021, 23, 5714-5718.	4.6	7
67	Design and characterization of a 2-(2′-hydroxyphenyl)benzimidazole-based Sr2+-selective fluorescent probe in organic and micellar solution systems. Photochemical and Photobiological Sciences, 2019, 18, 2531-2538.	2.9	6
68	H/D Isotope Effects in Keto-Enol Tautomerism of β-Dicarbonyl Compounds —Importance of Nuclear Quantum Effects of Hydrogen Nuclei—. Bulletin of the Chemical Society of Japan, 2021, 94, 1954-1962.	3.2	6
69	Mechanistic insights into the catalytic reaction of plant allene oxide synthase (pAOS) via QM and QM/MM calculations. Journal of Molecular Graphics and Modelling, 2014, 52, 20-29.	2.4	5
70	Solid State Characterization of One―and Twoâ€Electron Oxidized Cu ^{II} â€salen Complexes with <i>para</i> â€substituents: Geometric Structureâ€Magnetic Property Relationship. European Journal of Inorganic Chemistry, 2021, 2021, 4133-4145.	2.0	5
71	Reaction Path Determination of Rhodium(I)-Catalyzed C–H Alkylation of <i>N</i> -8-Aminoquinolinyl Aromatic Amides with Maleimides. Journal of Organic Chemistry, 2022, 87, 737-743.	3.2	5
72	Non-innocent redox behavior of Cu ^{II} – <i>p</i> -dimethylaminophenolate complexes: formation and characterization of the Cu ^I –phenoxyl radical species. Chemical Communications, 2022, 58, 6401-6404.	4.1	5

#	Article	IF	CITATIONS
73	Iridium(III)-Catalyzed Asymmetric Site-Selective Carbene C–H Insertion during Late-Stage Transformation. Journal of Organic Chemistry, 2022, 87, 6769-6780.	3.2	5
74	Theoretical investigations of Rhâ€catalyzed asymmetric 1,4â€addition to enones using planarâ€chiral phosphineâ€olefin ligands. Journal of Computational Chemistry, 2019, 40, 113-118.	3.3	4
75	Combined MD and QM/MM Investigations of Hydride Reduction of 5α-Dihydrotestosterone Catalyzed by Human 3α-Hydroxysteroid Dehydrogenase Type 3: Importance of Noncovalent Interactions. Journal of Physical Chemistry B, 2021, 125, 4998-5008.	2.6	4
76	Mechanistic Studies on Organometallic Reactions with the Aid of High-precision Quantum Chemical Calculations Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2003, 61, 144-151.	0.1	3
77	Theoretical studies on model reaction pathways of prostaglandin H2 isomerization to prostaglandin D2/E2. Theoretical Chemistry Accounts, 2011, 128, 191-206.	1.4	3
78	QM/MM Investigation for Protonation States in a Bilin Reductase PcyAâ€Biliverdin IXÉ' Complex. ChemPhysChem, 2018, 19, 1809-1813.	2.1	3
79	Calculation of CYP450 protein–ligand binding and dissociation free energy paths. Journal of Chemical Physics, 2021, 155, 025101.	3.0	3
80	An Efficient Access to Aspermytin A and Oblongolide C through an Intramolecular Nitrile Oxide–Alkene [3+2] Cycloaddition. Synlett, 2012, 24, 61-64.	1.8	2
81	Density Functional Studies on Conjugate Addition of (Me2CuLi)2 to Cyclohexenone: Stereoselectivity and Rate-Determining Step. Chemistry - A European Journal, 1999, 5, 1534-1543.	3.3	2
82	Integrated Experimental and Computational Studies on the Organocatalytic Kinetic Resolution of β-Unfunctionalized Primary Alcohols Using a Chiral 1,2-Diamine: The Importance of Noncovalent Interactions. Journal of Organic Chemistry, 2022, 87, 4468-4475.	3.2	2
83	Frontispiece: π–π Stacking Interaction in an Oxidized Cu ^{II} –Salen Complex with a Sideâ€Chain Indole Ring: An Approach to the Function of the Tryptophan in the Active Site of Galactose Oxidase. Chemistry - A European Journal, 2019, 25, .	3.3	1
84	Mechanistic Studies on Organometallic Reactions with the Aid of High-Precision Quantum Chemical Calculations. ChemInform, 2003, 34, no.	0.0	0
85	Iron(III) Chloride-Catalyzed Convenient One-Pot Synthesis of Homoallyl Benzyl Ethers Starting from Aldehydes ChemInform, 2003, 34, no.	0.0	0
86	Recent Advances for Reaction Mechanisms of Metal-Catalyzed Activations of Carbon-Containing Bonds with the Aid of Density Functional Calculations. Bulletin of Japan Society of Coordination Chemistry, 2018, 72, 15-29.	0.2	0
87	Computational Modelling Study on the Pseudoazurin TypeÂ1 Cu Site. , 2019, , .		0