
Se Hyun Kim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1349768/publications.pdf Version: 2024-02-01

SE HVUN KIM

#	Article	IF	CITATIONS
1	Electrohydrodynamicâ€Printed Polyvinyl Alcoholâ€Based Gate Insulators for Organic Integrated Devices. Advanced Engineering Materials, 2022, 24, 2100900.	3.5	4
2	Multicolor, dual-image, printed electrochromic displays based on tandem configuration. Chemical Engineering Journal, 2022, 429, 132319.	12.7	28
3	The Hidden Potential of Polysilsesquioxane for Highâ€ <i>k</i> : Analysis of the Origin of its Dielectric Nature and Practical Lowâ€Voltageâ€Operating Applications beyond the Unit Device. Advanced Functional Materials, 2022, 32, 2104030.	14.9	13
4	Tunable electrochromic behavior of biphenyl poly(viologen)-based ion gels in all-in-one devices. Organic Electronics, 2022, 100, 106395.	2.6	12
5	Electrohydrodynamic-Jet-Printed Phthalimide-Derived Conjugated Polymers for Organic Field-Effect Transistors and Logic Gates. ACS Applied Materials & Interfaces, 2022, 14, 7073-7081.	8.0	12
6	Isomeric effects of poly-viologens on electrochromic performance and applications in low-power electrochemical devices. Solar Energy Materials and Solar Cells, 2022, 240, 111734.	6.2	10
7	Electrohydrodynamic jet printing of small-molecule semiconductor crystals on chemically patterned surface for high-performance organic field-effect transistors. Materials Chemistry and Physics, 2022, 285, 126165.	4.0	9
8	Screen printing of silver nanoparticles on the source/drain electrodes of organic thin-film transistors. Organic Electronics, 2022, 106, 106524.	2.6	7
9	Molecular Engineering of Printed Semiconducting Blends to Develop Organic Integrated Circuits: Crystallization, Charge Transport, and Device Application Analyses. ACS Applied Materials & Interfaces, 2022, 14, 23678-23691.	8.0	4
10	Screen printing of graphene-based nanocomposite inks for flexible organic integrated circuits. Organic Electronics, 2022, 108, 106603.	2.6	3
11	Printable Ultraâ€Flexible Fluorinated Organic–Inorganic Nanohybrid Sol–Gel Derived Gate Dielectrics for Highly Stable Organic Thinâ€Film Transistors and Other Practical Applications. Advanced Functional Materials, 2021, 31, 2009539.	14.9	27
12	Newly Synthesized Nonvacuum Processed Highâ€k Polymeric Dielectrics with Carboxyl Functionality for Highly Stable Operating Printed Transistor Applications. Advanced Functional Materials, 2021, 31, 2007304.	14.9	23
13	Overview of recent progress in electrohydrodynamic jet printing in practical printed electronics: focus on the variety of printable materials for each component. Materials Advances, 2021, 2, 5593-5615.	5.4	42
14	Engineering Aggregationâ€Resistant MXene Nanosheets As Highly Conductive and Stable Inks for Allâ€Printed Electronics. Advanced Functional Materials, 2021, 31, 2010897.	14.9	35
15	Facile and reliable route to ensure chemical-environmental stability of pen-printed organic transistors with blended polymer Semiconductor–Insulator. Materials Chemistry and Physics, 2021, 263, 124346.	4.0	1
16	Advanced Side-Impermeability Characteristics of Fluorinated Organic-Inorganic Nanohybrid Materials for Thin Film Encapsulation. Macromolecular Research, 2021, 29, 313-320.	2.4	3
17	Novel triphenylamine containing poly-viologen for voltage-tunable multi-color electrochromic device. Dyes and Pigments, 2021, 190, 109321.	3.7	15
18	Inkjet Printing of Few‣ayer Enriched Black Phosphorus Nanosheets for Electronic Devices. Advanced Electronic Materials, 2021, 7, 2100577.	5.1	12

#	Article	IF	CITATIONS
19	Strategy for Selective Printing of Gate Insulators Customized for Practical Application in Organic Integrated Devices. ACS Applied Materials & Interfaces, 2021, 13, 1043-1056.	8.0	20
20	"Dragging mode―electrohydrodynamic jet printing of polymer-wrapped semiconducting single-walled carbon nanotubes for NO gas-sensing field-effect transistors. Journal of Materials Chemistry C, 2021, 9, 15804-15812.	5.5	8
21	Electrohydrodynamic-Jet-Printed Cinnamate-Fluorinated Cross-Linked Polymeric Dielectrics for Flexible and Electrically Stable Operating Organic Thin-Film Transistors and Integrated Devices. ACS Applied Materials & Interfaces, 2021, 13, 50149-50162.	8.0	6
22	Mass-Synthesized Solution-Processable Polyimide Gate Dielectrics for Electrically Stable Operating OFETs and Integrated Circuits. Polymers, 2021, 13, 3715.	4.5	1
23	Directionally Patterned Large-Area Poly(3-hexylthiophene) Field-Effect Transistors via Flow-Blade Printing Method Using Coffee-Ring Effect: Uniform Performance Regardless of Pattern Fabrication Condition and Applications. ACS Applied Electronic Materials, 2021, 3, 385-394.	4.3	4
24	Comparison of semiconductor growth and charge transport on hydrophobic polymer dielectrics of organic field-effect transistors: Cytop vs. polystyrene. Organic Electronics, 2020, 77, 105485.	2.6	19
25	Voltage-Tunable Dual Image of Electrostatic Force-Assisted Dispensing Printed, Tungsten Trioxide-Based Electrochromic Devices with a Symmetric Configuration. ACS Applied Materials & Interfaces, 2020, 12, 4022-4030.	8.0	27
26	Mulberry paper-based graphene strain sensor for wearable electronics with high mechanical strength. Sensors and Actuators A: Physical, 2020, 301, 111697.	4.1	48
27	Direct Patterned Zinc-Tin-Oxide for Solution-Processed Thin-Film Transistors and Complementary Inverter through Electrohydrodynamic Jet Printing. Nanomaterials, 2020, 10, 1304.	4.1	7
28	Extremely fast electrochromic supercapacitors based on mesoporous WO3 prepared by an evaporation-induced self-assembly. NPG Asia Materials, 2020, 12, .	7.9	76
29	Parylene-based polymeric dielectric top-gate organic field-effect transistors exposed to a UV/ozone environment. Organic Electronics, 2020, 87, 105942.	2.6	6
30	Ultra-Low Power Electrochromic Heat Shutters Through Tailoring Diffusion-Controlled Behaviors. ACS Applied Materials & Interfaces, 2020, 12, 30635-30642.	8.0	55
31	Facile Photo-cross-linking System for Polymeric Gate Dielectric Materials toward Solution-Processed Organic Field-Effect Transistors: Role of a Cross-linker in Various Polymer Types. ACS Applied Materials & Interfaces, 2020, 12, 30600-30615.	8.0	33
32	Work Function Engineering of Electrohydrodynamic-Jet-Printed PEDOT:PSS Electrodes for High-Performance Printed Electronics. ACS Applied Materials & Interfaces, 2020, 12, 17799-17805.	8.0	30
33	Non-lithographic direct patterning of carbon nanomaterial electrodes via electrohydrodynamic-printed wettability patterns by polymer brush for fabrication of organic field-effect transistor. Applied Surface Science, 2020, 515, 145989.	6.1	24
34	Slot-die coating of sol–gel-based organic–inorganic nanohybrid dielectric layers for flexible and large-area organic thin film transistors. Applied Surface Science, 2020, 529, 147198.	6.1	17
35	Direct Printing of Asymmetric Electrodes for Improving Charge Injection/Extraction in Organic Electronics. ACS Applied Materials & amp; Interfaces, 2020, 12, 33999-34010.	8.0	13
36	Direct-patterned copper/poly(ethylene oxide) composite electrodes for organic thin-film transistors through cone-jet mode by electrohydrodynamic jet printing. Journal of Industrial and Engineering Chemistry, 2020, 85, 269-275.	5.8	19

#	Article	IF	CITATIONS
37	Various Coating Methodologies of WO3 According to the Purpose for Electrochromic Devices. Nanomaterials, 2020, 10, 821.	4.1	18
38	Solution-Processed Flexible Gas Barrier Films for Organic Field-Effect Transistors. Macromolecular Research, 2020, 28, 782-788.	2.4	5
39	A novel design of donor–acceptor polymer semiconductors for printed electronics: application to transistors and gas sensors. Journal of Materials Chemistry C, 2020, 8, 8410-8419.	5.5	27
40	Printed Water-Based ITO Nanoparticle via Electrohydrodynamic (EHD) Jet Printing and Its Application of ZnO Transistors. Electronic Materials Letters, 2019, 15, 595-604.	2.2	14
41	Highly stable flexible organic field-effect transistors with Parylene-C gate dielectrics on a flexible substrate. Organic Electronics, 2019, 75, 105391.	2.6	17
42	Tetrathiafulvalene: effective organic anodic materials for WO ₃ -based electrochromic devices. RSC Advances, 2019, 9, 19450-19456.	3.6	15
43	Electrohydrodynamic (EHD) jet printing of carbon-black composites for solution-processed organic field-effect transistors. Organic Electronics, 2019, 73, 279-285.	2.6	24
44	Programmed Design of Highly Crystalline Organic Semiconductor Patterns with Uniaxial Alignment via Blade Coating for High-Performance Organic Field-Effect Transistors. ACS Applied Materials & Interfaces, 2019, 11, 42403-42411.	8.0	27
45	Electrohydrodynamic-Jet (EHD)-Printed Diketopyrrolopyroole-Based Copolymer for OFETs and Circuit Applications. Polymers, 2019, 11, 1759.	4.5	6
46	A critical role of amphiphilic polymers in organic–inorganic hybrid sol–gel derived gate dielectrics for flexible organic thin-film transistors. Journal of Materials Chemistry C, 2019, 7, 11612-11620.	5.5	14
47	Sol–Gel-Processed Organic–Inorganic Hybrid for Flexible Conductive Substrates Based on Gravure-Printed Silver Nanowires and Graphene. Polymers, 2019, 11, 158.	4.5	8
48	Advanced thin gas barriers film incorporating alternating structure of PEALD-based Al2O3/organic-inorganic nanohybrid layers. Applied Surface Science, 2019, 475, 926-933.	6.1	17
49	Boosting the ambipolar field-effect transistor performance of a DPP-based copolymer via electrohydrodynamic-jet direct writing. Journal of Industrial and Engineering Chemistry, 2019, 78, 172-177.	5.8	9
50	A highly sensitive and stress-direction-recognizing asterisk-shaped carbon nanotube strain sensor. Journal of Materials Chemistry C, 2019, 7, 9504-9512.	5.5	26
51	Effect of lateral confinement on crystallization behavior of a small-molecule semiconductor during capillary force lithography for use in high-performance OFETs. Journal of Industrial and Engineering Chemistry, 2019, 75, 187-193.	5.8	19
52	Facile and Microcontrolled Blade Coating of Organic Semiconductor Blends for Uniaxial Crystal Alignment and Reliable Flexible Organic Field-Effect Transistors. ACS Applied Materials & Interfaces, 2019, 11, 13481-13490.	8.0	38
53	Cone-jet printing of aligned silver nanowire/poly(ethylene oxide) composite electrodes for organic thin-film transistors. Organic Electronics, 2019, 69, 190-199.	2.6	32
54	Surface treatment of Parylene-C gate dielectric for highly stable organic field-effect transistors. Organic Electronics, 2019, 69, 128-134.	2.6	5

#	Article	IF	CITATIONS
55	A New Architecture for Fibrous Organic Transistors Based on a Double‧tranded Assembly of Electrode Microfibers for Electronic Textile Applications. Advanced Materials, 2019, 31, e1900564.	21.0	36
56	Engineering Asymmetric Charge Injection/Extraction to Optimize Organic Transistor Performances. ACS Applied Materials & Interfaces, 2019, 11, 10108-10117.	8.0	21
57	High-efficiency nitrene-based crosslinking agent for robust dielectric layers and high-performance solution-processed organic field-effect transistors. Applied Surface Science, 2019, 479, 280-286.	6.1	11
58	Enhanced solvent resistance and electrical performance of electrohydrodynamic jet printed PEDOT:PSS composite patterns: effects of hardeners on the performance of organic thin-film transistors. Physical Chemistry Chemical Physics, 2019, 21, 25690-25699.	2.8	16
59	An experimental study on the thermal performance of cellulose-graphene-based thermal interface materials. International Journal of Heat and Mass Transfer, 2019, 132, 944-951.	4.8	29
60	Non-volatile, Li-doped ion gel electrolytes for flexible WO3-based electrochromic devices. Materials and Design, 2019, 162, 45-51.	7.0	53
61	Photocrosslinkable zinc diacrylate-based gate insulators for reliable operation of organic thin film transistors. Organic Electronics, 2018, 59, 49-55.	2.6	3
62	Printed ion-gel transistor using electrohydrodynamic (EHD) jet printing process. Organic Electronics, 2018, 52, 123-129.	2.6	38
63	Organic thin-film transistors with sub-10-micrometer channel length with printed polymer/carbon nanotube electrodes. Organic Electronics, 2018, 52, 165-171.	2.6	14
64	Novel Ecoâ€Friendly Starch Paper for Use in Flexible, Transparent, and Disposable Organic Electronics. Advanced Functional Materials, 2018, 28, 1704433.	14.9	87
65	The effect of surfactants on electrohydrodynamic jet printing and the performance of organic field-effect transistors. Physical Chemistry Chemical Physics, 2018, 20, 1210-1220.	2.8	27
66	Direct printing of soluble acene crystal stripes by a programmed dip-coating process for organic field-effect transistor applications. Journal of Materials Chemistry C, 2018, 6, 799-807.	5.5	21
67	Dual-Function Electrochromic Supercapacitors Displaying Real-Time Capacity in Color. ACS Applied Materials & Interfaces, 2018, 10, 43993-43999.	8.0	82
68	Spray-coated transparent hybrid electrodes for high-performance electrochromic devices on plastic. Organic Electronics, 2018, 62, 151-156.	2.6	20
69	Colloidally stable organic–inorganic hybrid nanoparticles prepared using alkoxysilane-functionalized amphiphilic polymer precursors and mechanical properties of their cured coating film. Journal of Industrial and Engineering Chemistry, 2018, 68, 209-219.	5.8	12
70	Direct writing of silver nanowire electrodes via dragging mode electrohydrodynamic jet printing for organic thin film transistors. Organic Electronics, 2018, 62, 357-365.	2.6	33
71	High resolution patterning of Ag nanowire flexible transparent electrode via electrohydrodynamic jet printing of acrylic polymer-silicate nanoparticle composite overcoating layer. Organic Electronics, 2018, 62, 400-406.	2.6	37
72	Patterned transparent electrode with a continuous distribution of silver nanowires produced by an etching-free patterning method. Scientific Reports, 2017, 7, 40087.	3.3	26

#	Article	IF	CITATIONS
73	Effect of carbon nanotube addition on mechanical reliability of Ag nanowire network. Materials Letters, 2017, 198, 202-205.	2.6	10
74	Reduced water vapor transmission rates of low-temperature solution-processed metal oxide barrier films via ultraviolet annealing. Applied Surface Science, 2017, 414, 262-269.	6.1	2
75	Facile method for enhancing conductivity of printed carbon nanotubes electrode via simple rinsing process. Organic Electronics, 2017, 47, 174-180.	2.6	9
76	Electrostatic-Force-Assisted Dispensing Printing of Electrochromic Gels for Low-Voltage Displays. ACS Applied Materials & Interfaces, 2017, 9, 18994-19000.	8.0	57
77	Scalable high-performance graphene paper with enhanced electrical and mechanical properties. Thin Solid Films, 2017, 632, 50-54.	1.8	12
78	Effects of polymer properties on jetting performance of electrohydrodynamic printing. Journal of Applied Polymer Science, 2017, 134, 45044.	2.6	28
79	Photoinduced Recovery of Organic Transistor Memories with Photoactive Floating-Gate Interlayers. ACS Applied Materials & Interfaces, 2017, 9, 11759-11769.	8.0	80
80	Tuning the Work Function of Printed Polymer Electrodes by Introducing a Fluorinated Polymer To Enhance the Operational Stability in Bottom-Contact Organic Field-Effect Transistors. ACS Applied Materials & Interfaces, 2017, 9, 12637-12646.	8.0	15
81	Room-Temperature-Processable Wire-Templated Nanoelectrodes for Flexible and Transparent All-Wire Electronics. ACS Nano, 2017, 11, 3681-3689.	14.6	52
82	Direct Writing and Aligning of Small-Molecule Organic Semiconductor Crystals via "Dragging Mode― Electrohydrodynamic Jet Printing for Flexible Organic Field-Effect Transistor Arrays. Journal of Physical Chemistry Letters, 2017, 8, 5492-5500.	4.6	54
83	Optimized low-temperature fabrication of WO ₃ films for electrochromic devices. Journal Physics D: Applied Physics, 2017, 50, 465105.	2.8	24
84	Directionally Aligned Amorphous Polymer Chains via Electrohydrodynamic-Jet Printing: Analysis of Morphology and Polymer Field-Effect Transistor Characteristics. ACS Applied Materials & Interfaces, 2017, 9, 39493-39501.	8.0	17
85	Anomalous Ambipolar Transport of Organic Semiconducting Crystals via Control of Molecular Packing Structures. ACS Applied Materials & Interfaces, 2017, 9, 27839-27846.	8.0	10
86	Highly-impermeable Al2O3/HfO2 moisture barrier films grown by low-temperature plasma-enhanced atomic layer deposition. Organic Electronics, 2017, 50, 296-303.	2.6	29
87	Exploring the ultrasonic nozzle spray-coating technique for the fabrication of solution-processed organic electronics. Organic Electronics, 2017, 49, 212-217.	2.6	11
88	Effects of Bending Stress on 6,13-Bis(triisopropylsilylethynyl) Pentacene (TIPS-PEN)-Based Organic Thin-Film Transistors. Science of Advanced Materials, 2017, 9, 2234-2239.	0.7	1
89	Photo-enhanced polymer memory device based on polyimide containing spiropyran. Electronic Materials Letters, 2016, 12, 537-544.	2.2	9
90	A Latticeâ€Strained Organic Singleâ€Crystal Nanowire Array Fabricated via Solutionâ€Phase Nanogratingâ€Assisted Pattern Transfer for Use in Highâ€Mobility Organic Fieldâ€Effect Transistors. Advanced Materials, 2016, 28, 3209-3215.	21.0	49

#	Article	IF	CITATIONS
91	Nanowires: A Lattice-Strained Organic Single-Crystal Nanowire Array Fabricated via Solution-Phase Nanograting-Assisted Pattern Transfer for Use in High-Mobility Organic Field-Effect Transistors (Adv.) Tj ETQq1	1 0. 28.4 31	4 rgBT /Overl
92	Self-Supporting Ion Gels for Electrochemiluminescent Sticker-Type Optoelectronic Devices. Scientific Reports, 2016, 6, 29805.	3.3	49
93	Accelerated lifetime test based on general electrical principles for light-emitting electrochemical cells. Organic Electronics, 2016, 34, 50-56.	2.6	9
94	Direct patterning of conductive carbon nanotube/polystyrene sulfonate composites via electrohydrodynamic jet printing for use in organic field-effect transistors. Journal of Materials Chemistry C, 2016, 4, 4912-4919.	5.5	49
95	Electrohydrodynamic printing for scalable MoS ₂ flake coating: application to gas sensing device. Nanotechnology, 2016, 27, 435501.	2.6	20
96	Optimization of electrohydrodynamic-printed organic electrodes for bottom-contact organic thin film transistors. Organic Electronics, 2016, 38, 48-54.	2.6	23
97	Unified film patterning and annealing of an organic semiconductor with micro-grooved wet stamps. Journal of Materials Chemistry C, 2016, 4, 6996-7003.	5.5	24
98	Dense Assembly of Soluble Acene Crystal Ribbons and Its Application to Organic Transistors. ACS Applied Materials & Interfaces, 2016, 8, 24753-24760.	8.0	11
99	Spin Selfâ€Assembled Clay Nanocomposite Passivation Layers Made from a Photocrosslinkable Poly(vinyl) Tj ET Thinâ€Film Transistors. Chinese Journal of Chemistry, 2016, 34, 1103-1108.	Qq1 1 0.7 4.9	84314 rgBT /(4
100	Hybrid flexible ambipolar thin-film transistors based on pentacene and ZnO capable of low-voltage operation. Chinese Journal of Physics, 2016, 54, 471-474.	3.9	8
101	Directly drawn ZnO semiconductors and MWCNT/PSS electrodes via electrohydrodynamic jet printing for use in thin-film transistors: The ideal combination for reliable device performances. Organic Electronics, 2016, 39, 272-278.	2.6	25
102	Low-voltage, simple WO ₃ -based electrochromic devices by directly incorporating an anodic species into the electrolyte. Journal of Materials Chemistry C, 2016, 4, 10887-10892.	5.5	64
103	Light-responsive spiropyran based polymer thin films for use in organic field-effect transistor memories. Journal of Materials Chemistry C, 2016, 4, 5398-5406.	5.5	45
104	Maintaining effective mobility and enhancing reliability by using a blend system in solution-processed organic field-effect transistors. Chinese Journal of Physics, 2016, 54, 347-351.	3.9	0
105	Al2O3/TiO2 nanolaminate gate dielectric films with enhanced electrical performances for organic field-effect transistors. Organic Electronics, 2016, 28, 139-146.	2.6	41
106	Optimization of Al ₂ O ₃ /TiO ₂ nanolaminate thin films prepared with different oxide ratios, for use in organic light-emitting diode encapsulation, via plasma-enhanced atomic layer deposition. Physical Chemistry Chemical Physics, 2016, 18, 1042-1049.	2.8	38
107	(Poly(3,4-ethylenedioxythiophene):Polystyrene Sulfonate):Polytetrafluoroethylene for Use in High-Performance and Stable Bottom-Contact Organic Field-Effect Transistors. Journal of Physical Chemistry C, 2016, 120, 956-962.	3.1	12
108	Engineering the morphologies and charge transport properties of newly synthesized dibenzochrysene-based small molecules by attaching various side groups. Dyes and Pigments, 2016, 130, 176-182.	3.7	4

#	Article	IF	CITATIONS
109	Photo-Patternable ZnO Thin Films Based on Cross-Linked Zinc Acrylate for Organic/Inorganic Hybrid Complementary Inverters. ACS Applied Materials & Interfaces, 2016, 8, 5499-5508.	8.0	45
110	Photo-Cross-Linkable Organic–Inorganic Hybrid Gate Dielectric for High Performance Organic Thin Film Transistors. Journal of Physical Chemistry C, 2016, 120, 5790-5796.	3.1	33
111	Electrohydrodynamic printing of poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) electrodes with ratio-optimized surfactant. RSC Advances, 2016, 6, 2004-2010.	3.6	37
112	New dithienophosphole-based donor–acceptor alternating copolymers: Synthesis and structure property relationships in OFET. Dyes and Pigments, 2016, 125, 316-322.	3.7	9
113	Organic Semiconductors: Layerâ€byâ€Layer Conjugated Extension of a Semiconducting Polymer for Highâ€Performance Organic Fieldâ€Effect Transistor (Adv. Funct. Mater. 25/2015). Advanced Functional Materials, 2015, 25, 3832-3832.	14.9	0
114	Impact of Energetically Engineered Dielectrics on Charge Transport in Vacuum-Deposited Bis(triisopropylsilylethynyl)pentacene. Journal of Physical Chemistry C, 2015, 119, 28819-28827.	3.1	15
115	Effect of solvent on electrical conductivity and gas sensitivity of PEDOT: PSS polymer composite films. Journal of Applied Polymer Science, 2015, 132, .	2.6	16
116	Layerâ€by‣ayer Conjugated Extension of a Semiconducting Polymer for Highâ€Performance Organic Fieldâ€Effect Transistor. Advanced Functional Materials, 2015, 25, 3833-3839.	14.9	28
117	Fluorinated polymer-grafted organic dielectrics for organic field-effect transistors with low-voltage and electrical stability. Physical Chemistry Chemical Physics, 2015, 17, 16791-16797.	2.8	16
118	Solution-processed n-type fullerene field-effect transistors prepared using CVD-grown graphene electrodes: improving performance with thermal annealing. Physical Chemistry Chemical Physics, 2015, 17, 6635-6643.	2.8	11
119	3D Hollow Framework Silver Nanowire Electrodes for High-Performance Bottom-Contact Organic Transistors. ACS Applied Materials & Interfaces, 2015, 7, 14272-14278.	8.0	19
120	Branched Segments in Polymer Gate Dielectric as Intrinsic Charge Trap Sites in Organic Transistors. Journal of Physical Chemistry C, 2015, 119, 7670-7677.	3.1	12
121	Realization of electrically stable organic field-effect transistors using simple polymer blended dielectrics. Organic Electronics, 2015, 21, 111-116.	2.6	19
122	Gate-Bias Stability Behavior Tailored by Dielectric Polymer Stereostructure in Organic Transistors. ACS Applied Materials & Interfaces, 2015, 7, 25045-25052.	8.0	10
123	Optimization of nanocomposite gate insulators for organic thin film transistors. Organic Electronics, 2015, 17, 144-150.	2.6	13
124	Dielectric surface-polarity tuning and enhanced operation stability of solution-processed organic field-effect transistors. Organic Electronics, 2015, 17, 87-93.	2.6	14
125	Solvent boiling point affects the crystalline properties and performances of anthradithiophene-based devices. Dyes and Pigments, 2015, 114, 60-68.	3.7	11
126	Gastric liposarcoma presenting as a huge pedunculated polyp. Endoscopy, 2014, 46, E441-E442.	1.8	5

#	Article	IF	CITATIONS
127	Charge transport and morphology of pentacene films confined in nano-patterned region. NPG Asia Materials, 2014, 6, e91-e91.	7.9	12
128	Organic Fieldâ€Effect Transistors: The Origin of Excellent Gateâ€Bias Stress Stability in Organic Fieldâ€Effect Transistors Employing Fluorinatedâ€Polymer Gate Dielectrics (Adv. Mater. 42/2014). Advanced Materials, 2014, 26, 7280-7280.	21.0	0
129	Aerosol Jet Printed, Subâ€2 V Complementary Circuits Constructed from <i>P</i> ―and <i>N</i> â€Ţype Electrolyte Gated Transistors. Advanced Materials, 2014, 26, 7032-7037.	21.0	90
130	Effects of semiconductor/dielectric interfacial properties on the electrical performance of top-gate organic transistors. Organic Electronics, 2014, 15, 1299-1305.	2.6	26
131	Grafting Fluorinated Polymer Nanolayer for Advancing the Electrical Stability of Organic Field-Effect Transistors. Chemistry of Materials, 2014, 26, 6467-6476.	6.7	34
132	Aerosol Jet Printed p- and n-type Electrolyte-Gated Transistors with a Variety of Electrode Materials: Exploring Practical Routes to Printed Electronics. ACS Applied Materials & Interfaces, 2014, 6, 18704-18711.	8.0	73
133	Fluorinated Polyimide Gate Dielectrics for the Advancing the Electrical Stability of Organic Field-Effect Transistors. ACS Applied Materials & Interfaces, 2014, 6, 15209-15216.	8.0	47
134	Al ₂ O ₃ /TiO ₂ Nanolaminate Thin Film Encapsulation for Organic Thin Film Transistors via Plasma-Enhanced Atomic Layer Deposition. ACS Applied Materials & Interfaces, 2014, 6, 6731-6738.	8.0	180
135	The Origin of Excellent Gateâ€Bias Stress Stability in Organic Fieldâ€Effect Transistors Employing Fluorinatedâ€Polymer Gate Dielectrics. Advanced Materials, 2014, 26, 7241-7246.	21.0	68
136	Critical Factors to Achieve Low Voltage―and Capacitanceâ€Based Organic Fieldâ€Effect Transistors. Advanced Materials, 2014, 26, 288-292.	21.0	39
137	Organic Field-Effect Transistors: Critical Factors to Achieve Low Voltage- and Capacitance-Based Organic Field-Effect Transistors (Adv. Mater. 2/2014). Advanced Materials, 2014, 26, 194-194.	21.0	0
138	Facile method for the environmentally friendly fabrication of reduced graphene oxide films assisted by a metal substrate and saline solution. RSC Advances, 2013, 3, 14286.	3.6	3
139	Highâ€Performance nâ€Channel Thinâ€Film Fieldâ€Effect Transistors Based on a Nanowireâ€Forming Polymer. Advanced Functional Materials, 2013, 23, 2060-2071.	14.9	44
140	Highly stable fluorine-rich polymer treated dielectric surface for the preparation of solution-processed organic field-effect transistors. Journal of Materials Chemistry C, 2013, 1, 1272-1278.	5.5	36
141	Inorganic/organic multilayer passivation incorporating alternating stacks of organic/inorganic multilayers for long-term air-stable organic light-emitting diodes. Organic Electronics, 2013, 14, 3385-3391.	2.6	36
142	Electrolyteâ€Gated Transistors for Organic and Printed Electronics. Advanced Materials, 2013, 25, 1822-1846.	21.0	797
143	Performance and Stability of Aerosol-Jet-Printed Electrolyte-Gated Transistors Based on Poly(3-hexylthiophene). ACS Applied Materials & Interfaces, 2013, 5, 6580-6585.	8.0	116
144	Printed, subâ€2V ZnO Electrolyte Gated Transistors and Inverters on Plastic. Advanced Materials, 2013, 25, 3413-3418.	21.0	140

9

#	Article	IF	CITATIONS
145	Complementary photo and temperature cured polymer dielectrics with high-quality dielectric properties for organic semiconductors. Journal of Materials Chemistry, 2012, 22, 19940.	6.7	15
146	Damage-free hybrid encapsulation of organic field-effect transistors to reduce environmental instability. Journal of Materials Chemistry, 2012, 22, 7731.	6.7	33
147	High-Performance Triisopropylsilylethynyl Pentacene Transistors via Spin Coating with a Crystallization-Assisting Layer. ACS Applied Materials & Interfaces, 2012, 4, 117-122.	8.0	49
148	Vertical Conducting Nanodomains Self-Assembled from Poly(3-hexyl thiophene)-Based Diblock Copolymer Thin Films. Journal of Physical Chemistry C, 2011, 115, 4228-4234.	3.1	31
149	Multiwall Carbon Nanotube and Poly(3,4-ethylenedioxythiophene): Polystyrene Sulfonate (PEDOT:PSS) Composite Films for Transistor and Inverter Devices. ACS Applied Materials & Interfaces, 2011, 3, 43-49.	8.0	105
150	Photopatternable Poly(4-styrene sulfonic acid)-Wrapped MWNT Thin-Film Source/Drain Electrodes for Use in Organic Field-Effect Transistors. ACS Applied Materials & Interfaces, 2011, 3, 74-79.	8.0	30
151	Physicochemically Stable Polymerâ€Coupled Oxide Dielectrics for Multipurpose Organic Electronic Applications. Advanced Functional Materials, 2011, 21, 2198-2207.	14.9	97
152	ORGANIC FIELD-EFFECT TRANSISTORS: Physicochemically Stable Polymer-Coupled Oxide Dielectrics for Multipurpose Organic Electronic Applications (Adv. Funct. Mater. 12/2011). Advanced Functional Materials, 2011, 21, 2197-2197.	14.9	1
153	Ambipolar thin-film transistors and an inverter based on pentacene/self-assembled monolayer modified ZnO hybrid structures for balanced hole and electron mobilities. Organic Electronics, 2011, 12, 411-418.	2.6	28
154	Photopatternable, highly conductive and low work function polymer electrodes for high-performance n-type bottom contact organic transistors. Organic Electronics, 2011, 12, 516-519.	2.6	24
155	High <i>T</i> _g Cyclic Olefin Copolymer Gate Dielectrics for <i>N</i> , <i>N</i> ′â€Ditridecyl Perylene Diimide Based Fieldâ€Effect Transistors: Improving Performance and Stability with Thermal Treatment. Advanced Functional Materials, 2010, 20, 2611-2618.	14.9	69
156	Photoâ€Curable Polymer Blend Dielectrics for Advancing Organic Fieldâ€Effect Transistor Applications. Advanced Materials, 2010, 22, 4809-4813.	21.0	24
157	Effects of Poor Solvent for Solution-Processing Passivation of Organic Field Effect Transistors. Journal of the Electrochemical Society, 2010, 157, H90.	2.9	32
158	Improved n-type bottom-contact organic transistors by introducing a poly(3,4-ethylenedioxythiophene):poly(4-styrene sulfonate) coating on the source/drain electrodes. Applied Physics Letters, 2010, 97, 103304.	3.3	20
159	Hysteresis behaviour of low-voltage organic field-effect transistors employing high dielectric constant polymer gate dielectrics. Journal Physics D: Applied Physics, 2010, 43, 465102.	2.8	57
160	Direct Observation of Interfacial Morphology in Poly(3-hexylthiophene) Transistors: Relationship between Grain Boundary and Field-Effect Mobility. ACS Applied Materials & Interfaces, 2010, 2, 48-53.	8.0	37
161	Dependence of Pentacene Crystal Growth on Dielectric Roughness for Fabrication of Flexible Field-Effect Transistors. ACS Applied Materials & Interfaces, 2010, 2, 391-396.	8.0	50
162	Effect of pentacene–dielectric affinity on pentacene thin film growth morphology in organic field-effect transistors. Journal of Materials Chemistry, 2010, 20, 5612.	6.7	60

#	Article	IF	CITATIONS
163	All-organic solution-processed two-terminal transistors fabricated using the photoinduced p-channels. Applied Physics Letters, 2009, 94, 043303.	3.3	16
164	Effect of the hydrophobicity and thickness of polymer gate dielectrics on the hysteresis behavior of pentacene-based field-effect transistors. Journal of Applied Physics, 2009, 105, .	2.5	69
165	Photopatternable ultrathin gate dielectrics for low-voltage-operating organic circuits. Applied Physics Letters, 2009, 95, .	3.3	24
166	Solution-processed organic field-effect transistors composed of poly(4-styrene sulfonate) wrapped multiwalled carbon nanotube source/drain electrodes. Organic Electronics, 2009, 10, 363-367.	2.6	22
167	An inkjet-printed passivation layer based on a photocrosslinkable polymer for long-term stable pentacene field-effect transistors. Organic Electronics, 2009, 10, 67-72.	2.6	27
168	Photopatternable Source/Drain Electrodes using Multiwalled Carbon Nanotube/Polymer Nanocomposites for Organic Field-Effect Transistors. ACS Applied Materials & Interfaces, 2009, 1, 2332-2337.	8.0	16
169	Reducing the contact resistance in organic thin-film transistors by introducing a PEDOT:PSS hole-injection layer. Organic Electronics, 2008, 9, 864-868.	2.6	79
170	Lower hole-injection barrier between pentacene and a 1-hexadecanethiol-modified gold substrate with a lowered work function. Organic Electronics, 2008, 9, 21-29.	2.6	44
171	Effect of water in ambient air on hysteresis in pentacene field-effect transistors containing gate dielectrics coated with polymers with different functional groups. Organic Electronics, 2008, 9, 673-677.	2.6	85
172	High-performance solution-processed triisopropylsilylethynyl pentacene transistors and inverters fabricated by using the selective self-organization technique. Applied Physics Letters, 2008, 93, .	3.3	41
173	Hysteresis-free pentacene field-effect transistors and inverters containing poly(4-vinyl) Tj ETQq1 1 0.784314 rgBT	/gyerlock	10 Tf 50 34
174	Hysteresis-free organic field-effect transistors and inverters using photocrosslinkable poly(vinyl) Tj ETQq0 0 0 rgBT	10yerlock	2 10 Tf 50 3
175	Bending-stress-driven phase transitions in pentacene thin films for flexible organic field-effect transistors. Applied Physics Letters, 2008, 92, .	3.3	124
176	Low-operating-voltage pentacene field-effect transistor with a high-dielectric-constant polymeric gate dielectric. Applied Physics Letters, 2006, 89, 183516.	3.3	90
177	Low-voltage pentacene field-effect transistors with ultrathin polymer gate dielectrics. Applied Physics Letters, 2006, 88, 173507.	3.3	123

	Enhanced Electrical Percolation Due to Interconnection of Three-Dimensional Pentacene Islands in		
178	Thin Films on Low Surface Energy Polyimide Gate Dielectrics. Journal of Physical Chemistry B, 2006,	2.6	22
	110, 20302-20307.		