
## Kyu-Seop Kim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1347791/publications.pdf Version: 2024-02-01



KVU-SEOD KIM

| #  | Article                                                                                                                                                                                            | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Scaling and Evaluation of Pt/Al2O3 Catalytic Reactor for Hydrogen Peroxide Monopropellant<br>Thruster. Journal of Propulsion and Power, 2009, 25, 1041-1045.                                       | 2.2  | 59        |
| 2  | Design, fabrication, and testing of MEMS solid propellant thruster array chip on glass wafer. Sensors<br>and Actuators A: Physical, 2010, 157, 126-134.                                            | 4.1  | 53        |
| 3  | Ignition of boron-based green hypergolic fuels with hydrogen peroxide. Fuel, 2019, 255, 115729.                                                                                                    | 6.4  | 53        |
| 4  | Green hypergolic combination: Diethylenetriamine-based fuel and hydrogen peroxide. Acta<br>Astronautica, 2017, 137, 25-30.                                                                         | 3.2  | 47        |
| 5  | Sodium borohydride hydrogen generator using Co–P/Ni foam catalysts for 200ÂW proton exchange<br>membrane fuel cell system. Energy, 2015, 90, 1163-1170.                                            | 8.8  | 42        |
| 6  | Performance evaluation of hydrogen generation system with electroless-deposited Co–P/Ni foam<br>catalyst for NaBH4 hydrolysis. International Journal of Hydrogen Energy, 2013, 38, 6425-6435.      | 7.1  | 41        |
| 7  | Chugging Instability of H2O2 Monopropellant Thrusters with Reactor Aspect Ratio and Pressures.<br>Journal of Propulsion and Power, 2011, 27, 422-427.                                              | 2.2  | 40        |
| 8  | Mixing efficiency of a multilamination micromixer with consecutive recirculation zones. Chemical Engineering Science, 2009, 64, 1223-1231.                                                         | 3.8  | 37        |
| 9  | Catalyst preparation for fabrication of a MEMS fuel reformer. Chemical Engineering Journal, 2006, 123, 93-102.                                                                                     | 12.7 | 31        |
| 10 | Electrocatalysts supported on multiwalled carbon nanotubes for direct borohydride–hydrogen<br>peroxide fuel cell. International Journal of Hydrogen Energy, 2014, 39, 6977-6986.                   | 7.1  | 31        |
| 11 | Lanthanum doping for longevity of alumina catalyst bed in hydrogen peroxide thruster. Aerospace<br>Science and Technology, 2015, 46, 197-203.                                                      | 4.8  | 29        |
| 12 | Ultrafast igniting, low toxicity hypergolic hybrid solid fuels and hydrogen peroxide oxidizer. Fuel,<br>2021, 286, 119307.                                                                         | 6.4  | 28        |
| 13 | Simple catalyst bed sizing of a NaBH 4 hydrogen generator with fast startup for small unmanned aerial vehicles. International Journal of Hydrogen Energy, 2016, 41, 1018-1026.                     | 7.1  | 26        |
| 14 | Chugging Instability of H2O2 Monopropellant Thrusters with Catalyst Reactivity and Support Sizes.<br>Journal of Propulsion and Power, 2011, 27, 920-924.                                           | 2.2  | 24        |
| 15 | The proton exchange membrane fuel cell systems using methanolysis of sodium borohydride as a<br>hydrogen source with cobalt catalysts. International Journal of Green Energy, 2016, 13, 1224-1231. | 3.8  | 24        |
| 16 | Ground simulation of a hybrid power strategy using fuel cells and solar cells for high-endurance unmanned aerial vehicles. Energy, 2017, 141, 1547-1554.                                           | 8.8  | 24        |
| 17 | Fuel cell system with sodium borohydride hydrogen generator for small unmanned aerial vehicles.<br>International Journal of Green Energy, 2018, 15, 385-392.                                       | 3.8  | 24        |
| 18 | Design of Multiport Grain with Hydrogen Peroxide Hybrid Rocket. Journal of Propulsion and Power,<br>2018, 34, 1189-1197.                                                                           | 2.2  | 23        |

ΚΥΊ-SEOP ΚΙΜ

| #  | Article                                                                                                                                                                                        | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Performance evaluation of direct borohydride–hydrogen peroxide fuel cells with electrocatalysts<br>supported on multiwalled carbon nanotubes. Energy, 2014, 76, 911-919.                       | 8.8 | 22        |
| 20 | Autoignition and combustion characteristics of sodium borohydride-based non-toxic hypergolic fuel droplet at elevated temperatures. Combustion and Flame, 2017, 181, 149-156.                  | 5.2 | 22        |
| 21 | All-in-one portable electric power plant using proton exchange membrane fuel cells for mobile applications. International Journal of Hydrogen Energy, 2018, 43, 6331-6339.                     | 7.1 | 22        |
| 22 | Autoignitable and Restartable Hybrid Rockets Using Catalytic Decomposition of an Oxidizer. Journal of Propulsion and Power, 2014, 30, 514-518.                                                 | 2.2 | 19        |
| 23 | Fabrication of a liquid monopropellant microthruster with built-in regenerative micro-cooling channels. Sensors and Actuators A: Physical, 2017, 263, 332-340.                                 | 4.1 | 19        |
| 24 | Estimating the energy density of direct borohydride–hydrogen peroxide fuel cell systems for<br>air-independent propulsion applications. Energy, 2015, 90, 980-986.                             | 8.8 | 16        |
| 25 | Rapid ignition of "green―bipropellants enlisting hypergolic copper (II) promoter-in-fuel. Fuel, 2021, 297,<br>120734.                                                                          | 6.4 | 16        |
| 26 | Transient behavior of proton exchange membrane fuel cells over a cobalt–phosphorous/nickel foam catalyst with sodium borohydride. International Journal of Hydrogen Energy, 2016, 41, 524-533. | 7.1 | 15        |
| 27 | Integration validation of key components for small sounding rockets. Aerospace Science and Technology, 2020, 100, 105823.                                                                      | 4.8 | 15        |
| 28 | Effect of H2O2 injection patterns on catalyst bed characteristics. Acta Astronautica, 2017, 130, 75-83.                                                                                        | 3.2 | 14        |
| 29 | Effect of dual-catalytic bed using two different catalyst sizes for hydrogen peroxide thruster.<br>Aerospace Science and Technology, 2018, 78, 26-32.                                          | 4.8 | 14        |
| 30 | Effect of heat treatment of electrodes on direct borohydride-hydrogen peroxide fuel cell performance. Journal of Power Sources, 2014, 268, 63-68.                                              | 7.8 | 13        |
| 31 | Experimental analysis of hydrogen peroxide film-cooling method for nontoxic hypergolic thruster.<br>Aerospace Science and Technology, 2017, 71, 751-762.                                       | 4.8 | 13        |
| 32 | High performance microthruster with ammonium-dinitramide-based monopropellant. Sensors and Actuators A: Physical, 2018, 283, 211-219.                                                          | 4.1 | 12        |
| 33 | A MEMS Piston-Cylinder Device Actuated by Combustion. Journal of Heat Transfer, 2003, 125, 487-493.                                                                                            | 2.1 | 11        |
| 34 | Microcatalytic Combustion of H <sub>2</sub> on Pt/Al <sub>2</sub> O <sub>3</sub> -Coated Nickel<br>Foam. Combustion Science and Technology, 2009, 181, 211-225.                                | 2.3 | 11        |
| 35 | NUMERICAL SIMULATION OF FLAME PROPAGATION NEAR EXTINCTION CONDITION IN A MICRO COMBUSTOR.<br>Microscale Thermophysical Engineering, 2004, 8, 71-89.                                            | 1.2 | 10        |
| 36 | Synergistic effect of a hybrid additive for hydrogen peroxide-based low toxicity hypergolic propellants. Combustion and Flame, 2021, 231, 111450.                                              | 5.2 | 10        |

ΚΥΊ-SEOP ΚΙΜ

| #  | Article                                                                                                                                                                                                                    | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Scaling of catalyst bed for hydrogen peroxide monopropellant thrusters using catalytic decomposition modeling. Acta Astronautica, 2021, 187, 167-180.                                                                      | 3.2 | 10        |
| 38 | Optimum Nozzle Angle of a Micro Solid-Propellant Thruster. Nanoscale and Microscale<br>Thermophysical Engineering, 2011, 15, 165-178.                                                                                      | 2.6 | 9         |
| 39 | Compact design of oxidative steam reforming of methanol assisted by blending hydrogen peroxide.<br>International Journal of Hydrogen Energy, 2015, 40, 12697-12704.                                                        | 7.1 | 9         |
| 40 | Port diameter design of multiport solid fuel in hydrogen peroxide hybrid rockets. Aerospace Science<br>and Technology, 2021, 110, 106485.                                                                                  | 4.8 | 9         |
| 41 | Stall inception and warning in a single-stage transonic axial compressor with axial skewed slot casing treatment. Journal of Mechanical Science and Technology, 2014, 28, 3569-3581.                                       | 1.5 | 8         |
| 42 | Micro Shear-Stress Sensor for Separation Detection During Flight of Unmanned Aerial Vehicles Using<br>a Strain Gauge. IEEE Sensors Journal, 2014, 14, 1012-1019.                                                           | 4.7 | 7         |
| 43 | A mixture of hydrogen peroxide and tetraglyme as a green energetic monopropellant. Combustion and Flame, 2019, 210, 43-53.                                                                                                 | 5.2 | 7         |
| 44 | Conceptual design of high-speed underwater jet engine using high concentration of hydrogen peroxide. Ocean Engineering, 2018, 153, 193-200.                                                                                | 4.3 | 6         |
| 45 | Design and fabrication of micromachined internal combustion engine as a power source for microsystems. , 0, , .                                                                                                            |     | 5         |
| 46 | Performance of MEMS-Based Monopropellant Microthruster With Insulating Effect. Journal of Microelectromechanical Systems, 2022, 31, 612-624.                                                                               | 2.5 | 5         |
| 47 | Evaluation of Silver-coated Magnesium Bipolar Plate for Lightweight PEM Fuel Cell Stack.<br>International Journal of Green Energy, 0, , 141111165052003.                                                                   | 3.8 | 4         |
| 48 | Manganese oxide lanthanum-doped alumina catalyst for application in 95Âwt.% hydrogen peroxide<br>thruster. CEAS Space Journal, 2021, 13, 189-196.                                                                          | 2.3 | 4         |
| 49 | Effect of Unsteadiness and Nozzle Asymmetry on Thrust of a Microthruster. Nanoscale and<br>Microscale Thermophysical Engineering, 2012, 16, 50-63.                                                                         | 2.6 | 3         |
| 50 | Performance Evaluation of Small-scale Liquid Pump using a Radial Turbine with<br>H <sub>2</sub> O <sub>2</sub> Gas Generator. Transactions of the Japan Society<br>for Aeronautical and Space Sciences, 2015, 58, 253-260. | 0.7 | 3         |
| 51 | Parametric Study of Solid Fuel for Hydrogen Peroxide Hybrid Rocket Design. Journal of Propulsion and Power, 2022, 38, 229-240.                                                                                             | 2.2 | 3         |
| 52 | Statistical analysis of the fractal nature of turbulent premixed flames. Combustion Science and Technology, 2003, 175, 1317-1332.                                                                                          | 2.3 | 2         |
| 53 | Hydrogen Peroxide-Based Gas Generator Design and Performance Testing as an Aircraft Emergency<br>Power Unit. Journal of Engineering for Gas Turbines and Power, 2010, 132, .                                               | 1.1 | 2         |
| 54 | Geostationary Orbit Transfer with Lunar Gravity Assist from Non-equatorial Launch Site. Journal of the Astronautical Sciences, 2021, 68, 1014-1033.                                                                        | 1.5 | 2         |

Күи-Ѕеор Кім

| #  | Article                                                                                                                                                                                                                                              | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Optical visualization of hypergolic burning spray structure using blue light spectrum. Acta<br>Astronautica, 2022, 193, 230-236.                                                                                                                     | 3.2 | 2         |
| 56 | The Effect of Volume Expansion on the Propagation of Wrinkled Laminar Premixed Flame. Combustion Science and Technology, 1999, 146, 85-103.                                                                                                          | 2.3 | 1         |
| 57 | Design and performance evaluation of a bellows-type mixture ratio stabilizer for a liquid bipropellant rocket engine. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2009, 223, 723-731. | 2.1 | 1         |
| 58 | Lightweight Magnesium Bipolar Plates of Direct NaBH4/H2O2 Fuel Cell for AIP Application.<br>International Journal of Turbo and Jet Engines, 2015, 32, .                                                                                              | 0.7 | 1         |
| 59 | Preparation and Performance Evaluation of Platinum Barium Hexaaluminate Catalyst for Green<br>Propellant Hydroxylamine Nitrate Thrusters. Materials, 2021, 14, 2828.                                                                                 | 2.9 | 1         |
| 60 | Integrated fabrication of a micro methanol reformer and a hydrogen peroxide heat source. , 2007, , .                                                                                                                                                 |     | 0         |
| 61 | Ground Simulation of High Altitude Test of Turbo-Refrigeration Cycle. International Journal of Turbo and Jet Engines, 2018, 35, 281-290.                                                                                                             | 0.7 | 0         |
| 62 | Combustion Characteristics of Multi-Element Swirl Coaxial Jet Injectors under Varying Momentum<br>Ratios. Energies, 2021, 14, 4064.                                                                                                                  | 3.1 | 0         |