
Sulay A Tovar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1347600/publications.pdf Version: 2024-02-01

SIII AV Δ ΤΟΥΛΡ

#	Article	IF	CITATIONS
1	Hypothalamic AMPK and fatty acid metabolism mediate thyroid regulation of energy balance. Nature Medicine, 2010, 16, 1001-1008.	30.7	581
2	Hypothalamic Fatty Acid Metabolism Mediates the Orexigenic Action of Ghrelin. Cell Metabolism, 2008, 7, 389-399.	16.2	417
3	Effects of Obestatin on Energy Balance and Growth Hormone Secretion in Rodents. Endocrinology, 2007, 148, 21-26.	2.8	228
4	Agouti-Related Peptide, Neuropeptide Y, and Somatostatin-Producing Neurons Are Targets for Ghrelin Actions in the Rat Hypothalamus. Endocrinology, 2003, 144, 544-551.	2.8	209
5	Expression and Regulation of Adiponectin and Receptor in Human and Rat Placenta. Journal of Clinical Endocrinology and Metabolism, 2005, 90, 4276-4286.	3.6	203
6	Interleukin-6 Signaling in Liver-Parenchymal Cells Suppresses Hepatic Inflammation and Improves Systemic Insulin Action. Cell Metabolism, 2010, 12, 237-249.	16.2	192
7	Role for Insulin Signaling in Catecholaminergic Neurons in Control of Energy Homeostasis. Cell Metabolism, 2011, 13, 720-728.	16.2	156
8	Tamoxifen-Induced Anorexia Is Associated With Fatty Acid Synthase Inhibition in the Ventromedial Nucleus of the Hypothalamus and Accumulation of Malonyl-CoA. Diabetes, 2006, 55, 1327-1336.	0.6	143
9	Regulation of Growth Hormone Secretagogue Receptor Gene Expression in the Arcuate Nuclei of the Rat by Leptin and Ghrelin. Diabetes, 2004, 53, 2552-2558.	0.6	122
10	Central Resistin Regulates Hypothalamic and Peripheral Lipid Metabolism in a Nutritional-Dependent Fashion. Endocrinology, 2008, 149, 4534-4543.	2.8	102
11	Regulation of in vivo TSH secretion by leptin. Regulatory Peptides, 2000, 92, 25-29.	1.9	98
12	Central administration of resistin promotes short-term satiety in rats. European Journal of Endocrinology, 2005, 153, R1-R5.	3.7	93
13	Exendin-4 Potently Decreases Ghrelin Levels in Fasting Rats. Diabetes, 2007, 56, 143-151.	0.6	89
14	Peripheral tissue–brain interactions in the regulation of food intake. Proceedings of the Nutrition Society, 2007, 66, 131-155.	1.0	74
15	The dependence receptor Ret induces apoptosis in somatotrophs through a Pit-1/p53 pathway, preventing tumor growth. EMBO Journal, 2007, 26, 2015-2028.	7.8	73
16	PEG-PGA enveloped octaarginine-peptide nanocomplexes: An oral peptide delivery strategy. Journal of Controlled Release, 2018, 276, 125-139.	9.9	70
17	Proteasome Dysfunction Associated to Oxidative Stress and Proteotoxicity in Adipocytes Compromises Insulin Sensitivity in Human Obesity. Antioxidants and Redox Signaling, 2015, 23, 597-612.	5.4	68
18	Leptin receptor gene expression and number in the brain are regulated by leptin level and nutritional status. Journal of Physiology, 2009, 587, 3573-3585.	2.9	61

SULAY A TOVAR

#	Article	IF	CITATIONS
19	Sensory Stimuli Directly Acting at the Central Nervous System Regulate Gastric Ghrelin Secretion. An ex Vivo Organ Culture Study. Endocrinology, 2007, 148, 3998-4006.	2.8	55
20	Sensing the fat: Fatty acid metabolism in the hypothalamus and the melanocortin system. Peptides, 2005, 26, 1753-1758.	2.4	51
21	Rational design of polyarginine nanocapsules intended to help peptides overcoming intestinal barriers. Journal of Controlled Release, 2017, 263, 4-17.	9.9	51
22	Pregnancy Induces Resistance to the Anorectic Effect of Hypothalamic Malonyl-CoA and the Thermogenic Effect of Hypothalamic AMPK Inhibition in Female Rats. Endocrinology, 2015, 156, 947-960.	2.8	50
23	The interaction of protamine nanocapsules with the intestinal epithelium: A mechanistic approach. Journal of Controlled Release, 2016, 243, 109-120.	9.9	45
24	Hepatic p63 regulates steatosis via IKKβ/ER stress. Nature Communications, 2017, 8, 15111.	12.8	45
25	Orexin-A regulates growth hormone-releasing hormone mRNA content in a nucleus-specific manner and somatostatin mRNA content in a growth hormone-dependent fashion in the rat hypothalamus. European Journal of Neuroscience, 2004, 19, 2080-2088.	2.6	44
26	Regulation of Peptide YY Levels by Age, Hormonal, and Nutritional Status. Obesity, 2004, 12, 1944-1950.	4.0	40
27	O-GlcNAcylated p53 in the liver modulates hepatic glucose production. Nature Communications, 2021, 12, 5068.	12.8	36
28	The stimulation of GLP-1 secretion and delivery of GLP-1 agonists <i>via</i> nanostructured lipid carriers. Nanoscale, 2018, 10, 603-613.	5.6	35
29	Oleoylethanolamide: Effects on hypothalamic transmitters and gut peptides regulating food intake. Neuropharmacology, 2011, 60, 593-601.	4.1	34
30	Thyroid status regulates CART but not AgRP mRNA levels in the rat hypothalamus. NeuroReport, 2002, 13, 1775-1779.	1.2	31
31	Leptin, 20years of searching for glucose homeostasis. Life Sciences, 2015, 140, 4-9.	4.3	31
32	Delta-Like 1 Homologue (DLK1) Protein in Neurons of the Arcuate Nucleus That Control Weight Homeostasis and Effect of Fasting on Hypothalamic DLK1 mRNA. Neuroendocrinology, 2014, 100, 209-220.	2.5	27
33	Protamine nanocapsules as carriers for oral peptide delivery. Journal of Controlled Release, 2018, 291, 157-168.	9.9	26
34	Hypothalamic Mitochondrial Dysfunction as a Target in Obesity and Metabolic Disease. Frontiers in Endocrinology, 2018, 9, 283.	3.5	26
35	KATP-Channel-Dependent Regulation of Catecholaminergic Neurons Controls BAT Sympathetic Nerve Activity and Energy Homeostasis. Cell Metabolism, 2013, 18, 445-455.	16.2	25
36	mTOR signaling in the arcuate nucleus of the hypothalamus mediates the anorectic action of estradiol. Journal of Endocrinology, 2018, 238, 177-186.	2.6	25

SULAY A TOVAR

#	Article	IF	CITATIONS
37	Regulation of NUCB2/nesfatin-1 production in rat's stomach and adipose tissue is dependent on age, testosterone levels and lactating status. Molecular and Cellular Endocrinology, 2015, 411, 105-112.	3.2	21
38	The MST3/STK24 kinase mediates impaired fasting blood glucose after a high-fat diet. Diabetologia, 2017, 60, 2453-2462.	6.3	19
39	Adiponectin receptor 2 is regulated by nutritional status, leptin and pregnancy in a tissue-specific manner. Physiology and Behavior, 2010, 99, 91-99.	2.1	18
40	Effect of Oral Glucose Administration on Rebound Growth Hormone Release in Normal and Obese Women: The Role of Adiposity, Insulin Sensitivity and Ghrelin. PLoS ONE, 2015, 10, e0121087.	2.5	18
41	Levels of the Novel Endogenous Antagonist of Ghrelin Receptor, Liver-Enriched Antimicrobial Peptide-2, in Patients with Rheumatoid Arthritis. Nutrients, 2020, 12, 1006.	4.1	17
42	Circulating LEAP-2 is associated with puberty in girls. International Journal of Obesity, 2021, 45, 502-514.	3.4	17
43	Negative energy balance and leptin regulate neuromedin-U expression in the rat pars tuberalis. Journal of Endocrinology, 2006, 190, 545-553.	2.6	16
44	A nanoemulsion/micelles mixed nanosystem for the oral administration of hydrophobically modified insulin. Drug Delivery and Translational Research, 2021, 11, 524-545.	5.8	15
45	Prolactin and Energy Homeostasis: Pathophysiological Mechanisms and Therapeutic Considerations. Endocrinology, 2014, 155, 659-662.	2.8	14
46	LEAP-2 Counteracts Ghrelin-Induced Food Intake in a Nutrient, Growth Hormone and Age Independent Manner. Cells, 2022, 11, 324.	4.1	14
47	Pre-Clinical Evaluation of a Modified Cyclodextrin-Based Nanoparticle for Intestinal Delivery of Liraglutide. Journal of Pharmaceutical Sciences, 2021, 110, 292-300.	3.3	9
48	Editorial: Crosstalk of Mitochondria With Brain Insulin and Leptin Signaling. Frontiers in Endocrinology, 2018, 9, 761.	3.5	8
49	Regulation of Chemerin and CMKLR1 Expression by Nutritional Status, Postnatal Development, and Gender. International Journal of Molecular Sciences, 2018, 19, 2905.	4.1	8
50	Pharmacological inhibition of cannabinoid receptor 1 stimulates gastric release of nesfatin-1 via the mTOR pathway. World Journal of Gastroenterology, 2017, 23, 6403-6411.	3.3	8
51	p107 Deficiency Increases Energy Expenditure by Inducing Brownâ€Fat Thermogenesis and Browning of White Adipose Tissue. Molecular Nutrition and Food Research, 2019, 63, e1801096.	3.3	7
52	Obesity induces resistance to central action of BMP8B through a mechanism involving the BBSome. Molecular Metabolism, 2022, 59, 101465.	6.5	6
53	Physiology of the Hypothalamus Pituitary Unit. Endocrinology, 2018, , 1-33.	0.1	2
54	Bioinspired pollen microcapsules to overcome mucosal barriers. , 2021, , .		0

Bioinspired pollen microcapsules to overcome mucosal barriers. , 2021, , . 54