Nigel E Stork

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1346913/publications.pdf

Version: 2024-02-01

130 11,142 47
papers citations h-index

h-index g-index

142 11157
times ranked citing authors

30922

102

142 all docs 142 docs citations

#	Article	IF	CITATIONS
1	Forest Cover Change and Ecosystem Services: A Case Study of Community Forest in Mechinagar and Buddhashanti Landscape (MBL), Nepal. Environmental Management, 2021, 67, 963-973.	2.7	10
2	The effect of drought on wood-boring in trees and saplings in tropical rainforests. Forest Ecology and Management, 2021, 489, 119078.	3.2	2
3	Forest restoration and support for sustainable ecosystems in the Gandaki Basin, Nepal. Environmental Monitoring and Assessment, 2021, 193, 563.	2.7	4
4	Land use/land cover change and ecosystem services in the Bagmati River Basin, Nepal. Environmental Monitoring and Assessment, 2021, 193, 651.	2.7	11
5	Forest Cover and Sustainable Development in the Lumbini Province, Nepal: Past, Present and Future. Remote Sensing, 2021, 13, 4093.	4.0	8
6	Recovery of decomposition rates and decomposer invertebrates during rain forest restoration on disused pasture. Biotropica, 2020, 52, 230-241.	1.6	14
7	Is insect vertical distribution in rainforests better explained by distance from the canopy top or distance from the ground?. Biodiversity and Conservation, 2020, 29, 1081-1103.	2.6	14
8	How do herbivorous insects respond to drought stress in trees?. Biological Reviews, 2020, 95, 434-448.	10.4	114
9	Quantifying the drivers of urban expansion in Nepal. Environmental Monitoring and Assessment, 2020, 192, 633.	2.7	16
10	Assessment of Changes in Land Use/Land Cover and Land Surface Temperatures and Their Impact on Surface Urban Heat Island Phenomena in the Kathmandu Valley (1988–2018). ISPRS International Journal of Geo-Information, 2020, 9, 726.	2.9	35
11	Scientists' warning to humanity on insect extinctions. Biological Conservation, 2020, 242, 108426.	4.1	458
12	Final countdown for biodiversity hotspots. Conservation Letters, 2019, 12, e12668.	5.7	73
13	Effects of land use and land cover change on ecosystem services in the Koshi River Basin, Eastern Nepal. Ecosystem Services, 2019, 38, 100963.	5.4	173
14	Lianas as a food resource for herbivorous insects: a comparison with trees. Biological Reviews, 2019, 94, 1416-1429.	10.4	14
15	Simulating urban expansion in a rapidly changing landscape in eastern Tarai, Nepal. Environmental Monitoring and Assessment, 2019, 191, 255.	2.7	41
16	Temporal variation in abundance of leaf litter beetles and ants in an Australian lowland tropical rainforest is driven by climate and litter fall. Biodiversity and Conservation, 2018, 27, 2625-2640.	2.6	9
17	How Many Species of Insects and Other Terrestrial Arthropods Are There on Earth?. Annual Review of Entomology, 2018, 63, 31-45.	11.8	777
18	Spatial Assessment of the Potential Impact of Infrastructure Development on Biodiversity Conservation in Lowland Nepal. ISPRS International Journal of Geo-Information, 2018, 7, 365.	2.9	12

#	Article	IF	CITATIONS
19	Urban Expansion Occurred at the Expense of Agricultural Lands in the Tarai Region of Nepal from 1989 to 2016. Sustainability, 2018, 10, 1341.	3.2	71
20	Seasonal variation in a diverse beetle assemblage along two elevational gradients in the Australian Wet Tropics. Scientific Reports, 2018, 8, 8559.	3.3	18
21	Edge effects and beta diversity in ground and canopy beetle communities of fragmented subtropical forest. PLoS ONE, 2018, 13, e0193369.	2.5	9
22	Increasing biodiversity in urban green spaces through simple vegetation interventions. Journal of Applied Ecology, 2017, 54, 1874-1883.	4.0	180
23	Conserving herbivorous and predatory insects in urban green spaces. Scientific Reports, 2017, 7, 40970.	3.3	54
24	Beetle assemblages in rainforest gaps along a subtropical to tropical latitudinal gradient. Biodiversity and Conservation, 2017, 26, 1689-1703.	2.6	2
25	Consistency of effects of tropicalâ€forest disturbance on species composition and richness relative to use of indicator taxa. Conservation Biology, 2017, 31, 924-933.	4.7	20
26	Modeling of ecosystem services informs spatial planning in lands adjacent to the Sarvelat and Javaherdasht protected area in northern Iran. Land Use Policy, 2017, 61, 487-500.	5.6	42
27	Anthropogenic Decline of Ecosystem Services Threatens the Integrity of the Unique Hyrcanian (Caspian) Forests in Northern Iran. Forests, 2016, 7, 51.	2.1	32
28	Ecosystem Service Changes and Livelihood Impacts in the Maguri-Motapung Wetlands of Assam, India. Land, 2016, 5, 15.	2.9	31
29	Vertical stratification of beetles in tropical rainforests as sampled by light traps in North Queensland, Australia. Austral Ecology, 2016, 41, 168-178.	1.5	15
30	Preface: Professor Roger Kitching. Austral Ecology, 2016, 41, 117-119.	1.5	1
31	Growing City and Rapid Land Use Transition: Assessing Multiple Hazards and Risks in the Pokhara Valley, Nepal. Land, 2015, 4, 957-978.	2.9	53
32	Ecosystem services and livelihoods in a changing climate: Understanding local adaptations in the Upper Koshi, Nepal. International Journal of Biodiversity Science, Ecosystem Services & Management, 2015, 11, 145-155.	2.9	86
33	The conservation value of urban green space habitats for Australian native bee communities. Biological Conservation, 2015, 187, 240-248.	4.1	163
34	New approaches narrow global species estimates for beetles, insects, and terrestrial arthropods. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 7519-7523.	7.1	300
35	Logging cuts the functional importance of invertebrates in tropical rainforest. Nature Communications, 2015, 6, 6836.	12.8	127
36	The specialization and structure of antagonistic and mutualistic networks of beetles on rainforest canopy trees. Biological Journal of the Linnean Society, 2015, 114, 287-295.	1.6	19

#	Article	IF	CITATIONS
37	Can biodiversity hotspots protect more than tropical forest plants and vertebrates?. Journal of Biogeography, 2014, 41, 421-428.	3.0	38
38	Canopy invertebrate community composition on rainforest trees: Different microhabitats support very different invertebrate communities. Austral Ecology, 2014, 39, 367-377.	1.5	11
39	Low host specificity of beetles associated with fruit falls in lowland tropical rainforest of northâ€east <scp>A</scp> ustralia. Austral Entomology, 2014, 53, 75-82.	1.4	4
40	Economic evaluation of ecosystem goods and services under different landscape management scenarios. Land Use Policy, 2014, 39, 54-64.	5.6	60
41	Spatial assessment and mapping of biodiversity and conservation priorities in a heavily modified and fragmented production landscape in north-central Victoria, Australia. Ecological Indicators, 2014, 36, 552-562.	6.3	123
42	Measuring and managing ecosystem goods and services in changing landscapes: a south-east Australian perspective. Journal of Environmental Planning and Management, 2014, 57, 961-983.	4.5	43
43	Revisiting crisis, change and institutions in the tropical forests: The multifunctional transition in Australia's Wet Tropics. Journal of Rural Studies, 2014, 36, 99-107.	4.7	8
44	Biodiversity: Conservation., 2014,, 59-65.		0
45	Species richness and temporal partitioning in the beetle fauna of oak trees (<i>Quercus robur</i> L.) in Richmond Park, UK. Insect Conservation and Diversity, 2013, 6, 67-81.	3.0	13
46	Body size variation among invertebrates inhabiting different canopy microhabitat: flower visitors are smaller. Ecological Entomology, 2013, 38, 101-111.	2.2	11
47	Variation in beetle community structure across five microhabitats in <scp>A</scp> ustralian tropical rainforest trees. Insect Conservation and Diversity, 2013, 6, 463-472.	3.0	19
48	Estimating global arthropod species richness: refining probabilistic models using probability bounds analysis. Oecologia, 2013, 171, 357-365.	2.0	51
49	Can We Name Earth's Species Before They Go Extinct?. Science, 2013, 339, 413-416.	12.6	479
50	Insects on flowers. Communicative and Integrative Biology, 2013, 6, e22509.	1.4	1
51	Response to Comments on "Can We Name Earth's Species Before They Go Extinct?― Science, 2013, 341 237-237.	'12.6	22
52	Spatial assessment of ecosystem goods and services in complex production landscapes: A case study from south-eastern Australia. Ecological Complexity, 2013, 13, 35-45.	2.9	83
53	Specialization of rainforest canopy beetles to host trees and microhabitats: not all specialists are leaf-feeding herbivores. Biological Journal of the Linnean Society, 2013, 109, 215-228.	1.6	24
54	Feeding guild structure of beetles on Australian tropical rainforest trees reflects microhabitat resource availability. Journal of Animal Ecology, 2012, 81, 1086-1094.	2.8	44

#	Article	IF	Citations
55	The Overlooked Biodiversity of Flower-Visiting Invertebrates. PLoS ONE, 2012, 7, e45796.	2.5	37
56	Status and Threats in the Dynamic Landscapes of Northern Australia's Tropical Rainforest Biodiversity Hotspot: The Wet Tropics. , 2011, , 311-332.		12
57	Re-assessing current extinction rates. Biodiversity and Conservation, 2010, 19, 357-371.	2.6	161
58	Geography and Indonesian oil-palm expansion. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, E171; author reply E172.	7.1	5
59	Quantifying Uncertainty in Estimation of Tropical Arthropod Species Richness. American Naturalist, 2010, 176, 90-95.	2.1	199
60	Rainforest Science and its Application. , 2009, , 610-617.		1
61	Lessons for Other Tropical Forest Landscapes. , 2009, , 618-622.		0
62	Environmental Impacts of Tourism and Recreation in the Wet Tropics., 2009,, 349-356.		1
63	How do beetle assemblages respond to cyclonic disturbance of a fragmented tropical rainforest landscape?. Oecologia, 2009, 161, 591-599.	2.0	24
64	Seasonality of a Diverse Beetle Assemblage Inhabiting Lowland Tropical Rain Forest in Australia. Biotropica, 2009, 41, 328-337.	1.6	71
65	Vulnerability and Resilience of Tropical Forest Species to Landâ€Use Change. Conservation Biology, 2009, 23, 1438-1447.	4.7	90
66	The Potential for Species Conservation in Tropical Secondary Forests. Conservation Biology, 2009, 23, 1406-1417.	4.7	489
67	Impacts of Tropical Cyclones on Forests in the Wet Tropics of Australia. , 2009, , 47-58.		15
68	Catchment to Reef: Water Quality and Ecosystem Health in Tropical Streams., 2009,, 557-576.		4
69	Re-assessing current extinction rates. Topics in Biodiversity and Conservation, 2009, , 45-59.	1.0	1
70	Do edge effects increase the susceptibility of rainforest fragments to structural damage resulting from a severe tropical cyclone?. Austral Ecology, 2008, 33, 525-531.	1.5	14
71	What determines whether a species of insect is described? Evidence from a study of tropical forest beetles. Insect Conservation and Diversity, 2008, 1, 114-119.	3.0	34
72	Temporal and spatial variation in an Australian tropical rainforest. Austral Ecology, 2007, 32, 10-20.	1.5	46

#	Article	IF	CITATIONS
73	Tropical rainforest canopies and climate change. Austral Ecology, 2007, 32, 105-112.	1.5	15
74	Ant mosaics in a tropical rainforest in Australia and elsewhere: A critical review. Austral Ecology, 2007, 32, 93-104.	1.5	105
75	World of insects. Nature, 2007, 448, 657-658.	27.8	41
76	Vertical stratification of feeding guilds and body size in beetle assemblages from an Australian tropical rainforest. Austral Ecology, 2007, 32, 77-85.	1.5	74
77	Australian tropical forest canopy crane: New tools for new frontiers. Austral Ecology, 2007, 32, 4-9.	1.5	36
78	Editorial: Dynamics and processes in the canopy of an Australian tropical rainforest. Austral Ecology, 2007, 32, 2-3.	1.5	1
79	Beetle assemblages from an Australian tropical rainforest show that the canopy and the ground strata contribute equally to biodiversity. Proceedings of the Royal Society B: Biological Sciences, 2006, 273, 1969-1975.	2.6	112
80	Bottom-up control and co-occurrence in complex communities: honeydew and nectar determine a rainforest ant mosaic. Oikos, 2004, 106, 344-358.	2.7	196
81	Biodiversity Meets the Atmosphere: A Global View of Forest Canopies. Science, 2003, 301, 183-186.	12.6	295
82	Finding the host tree species of Notiobia nebrioides Perty (Coleoptera, Carabidae), a member of the seed-feeding guild at fruit falls in Amazonian non-inundated lowland rainforest. Journal of Natural History, 2003, 37, 839-844.	0.5	5
83	The diversity and abundance of ants in relation to forest disturbance and plantation establishment in southern Cameroon. Journal of Applied Ecology, 2002, 39, 18-30.	4.0	78
84	The Structure of Ground Beetle Assemblages (Coleoptera: Carabidae) at Fruit Falls of Melastomataceae Trees in a Brazilian Terra Firme Rain Forest1. Biotropica, 2002, 34, 368-375.	1.6	15
85	The structure of ground beetle assemblages (Coleoptera: Carabidae) at fig fruit falls (Moraceae) in a terra firme rain forest near Manaus (Brazil). Journal of Tropical Ecology, 2001, 17, 549-561.	1.1	26
86	Title is missing!. Biodiversity and Conservation, 2001, 10, 793-813.	2.6	65
87	The management implications of canopy research. Plant Ecology, 2001, 153, 313-317.	1.6	8
88	The spatial distribution of beetles within the canopies of oak trees in Richmond Park, U.K Ecological Entomology, 2001, 26, 302-311.	2.2	41
89	The management implications of canopy research. Forestry Sciences, 2001, , 313-317.	0.4	0
90	An inordinate fondness for beetles. Invertebrate Systematics, 2000, 14, 733.	1.3	52

#	Article	IF	Citations
91	The Conservation of Saproxylic Insects in Tropical Forests: A Research Agenda. Journal of Insect Conservation, 1999, 3, 67-74.	1.4	31
92	Estimating the number of species on Earth. , 1999, , 1-7.		5
93	Biodiversity inventories, indicator taxa and effects of habitat modification in tropical forest. Nature, 1998, 391, 72-76.	27.8	930
94	BEETLE SPECIES RESPONSES TO TROPICAL FOREST FRAGMENTATION. Ecological Monographs, 1998, 68, 295-323.	5.4	347
95	Beetle Species Responses to Tropical Forest Fragmentation. Ecological Monographs, 1998, 68, 295.	5.4	21
96	Biodiversity and Landscapes Journal of Ecology, 1997, 85, 551.	4.0	2
97	Impact of Forest Management on Insect Abundance and Damage in a Lowland Tropical Forest in Southern Cameroon. Journal of Applied Ecology, 1997, 34, 985.	4.0	47
98	Craning for a better view: the canopy crane network. Trends in Ecology and Evolution, 1997, 12, 418-420.	8.7	19
99	Biodiversity Measurement and Estimation. Journal of Animal Ecology, 1996, 65, 530.	2.8	0
100	Tropical forest dynamics: the faunal components. Monographiae Biologicae, 1996, , 1-20.	0.1	3
101	Insects in fragmented forests: a functional approach. Trends in Ecology and Evolution, 1996, 11, 255-260.	8.7	555
102	Inventorying and monitoring biodiversity. Trends in Ecology and Evolution, 1996, 11, 39-40.	8.7	39
103	Composition of spider communities in the canopies of rainforest trees in Borneo. Journal of Tropical Ecology, 1995, 11, 223-235.	1.1	25
104	Abundance and diversity of spiders from the canopy of tropical rainforests with particular reference to Sulawesi, Indonesia. Journal of Tropical Ecology, 1994, 10, 545-558.	1.1	42
105	How many species are there?. Biodiversity and Conservation, 1993, 2, 215-232.	2.6	172
106	Extinction or 'co-extinction' rates?. Nature, 1993, 366, 307-307.	27.8	115
107	Relationships between abundance and body size: where do tourists fit?. Ecological Entomology, 1993, 18, 310-314.	2.2	30
108	The Relationship between Abundance and Body Size in Natural Animal Assemblages. Journal of Animal Ecology, 1993, 62, 519.	2.8	170

#	Article	IF	CITATIONS
109	Abundance, Body Size and Biomass of Arthropods in Tropical Forest. Oikos, 1993, 67, 483.	2.7	89
110	Temporal dynamics of body size of beetles on oaks: a cautionary tale. Ecological Entomology, 1993, 18, 399-401.	2.2	5
111	Reproductive seasonality of the ground and tiger beetle (Coleoptera: Carabidae, Cicindelidae) fauna in North Sulawesi (Indonesia). Studies on Neotropical Fauna and Environment, 1992, 27, 101-115.	1.0	4
112	Invertebrates as determinants and indicators of soil quality. Renewable Agriculture and Food Systems, 1992, 7, 38-47.	0.5	189
113	The Role of Ground Beetles in Ecological and Environmental Studies. Journal of Animal Ecology, 1991, 60, 1103.	2.8	0
114	The composition of the arthropod fauna of Bornean lowland rain forest trees. Journal of Tropical Ecology, 1991, 7, 161-180.	1.1	163
115	New evidence on the phylogeny and biogeography of the Amphizoidae: Discovery of a new species from China (Coleoptera). Systematic Entomology, 1991, 16, 253-256.	3.9	2
116	Densities and biomass of invertebrates in stands of rotationally managed coppice woodland. Biological Conservation, 1990, 51, 167-176.	4.1	14
117	Species number, species abundance and body length relationships of arboreal beetles in Bornean lowland rain forest trees. Ecological Entomology, 1988, 13, 25-37.	2.2	224
118	Insect diversity: facts, fiction and speculation*. Biological Journal of the Linnean Society, 1988, 35, 321-337.	1.6	397
119	Guild structure of arthropods from Bornean rain forest trees. Ecological Entomology, 1987, 12, 69-80.	2.2	155
120	Canopy fogging, a method of collecting living insects for investigations of life history strategies. Journal of Natural History, 1987, 21, 563-566.	0.5	14
121	Arthropod faunal similarity of Bornean rain forest trees. Ecological Entomology, 1987, 12, 219-226.	2.2	66
122	The seasonality and distribution of Neuroptera, Raphidioptera and Mecoptera on oaks in Richmond Park, Surrey, as revealed by insecticide knock-down sampling. Journal of Natural History, 1986, 20, 1321-1331.	0.5	20
123	The Hiletini, an ancient and enigmatic tribe of Carabidae with a pantropical distribution (Coleoptera). Systematic Entomology, 1985, 10, 405-451.	3.9	14
124	The adherence of beetle tarsal setae to glass. Journal of Natural History, 1983, 17, 583-597.	0.5	90
125	A comparison of the adhesive setae on the feet of lizards and arthropods. Journal of Natural History, 1983, 17, 829-835.	0.5	93
126	A scanning electron microscope study of tarsal adhesive setae in the Coleoptera. Zoological Journal of the Linnean Society, 1980, 68, 173-306.	2.3	177

#	Article	IF	CITATION
127	ROLE OF WAXBLOOMS IN PREVENTING ATTACHMENT TO BRASSICAS BY THE MUSTARD BEETLE, <i>PHAEDON COCHLEARIAE</i> Lentomologia Experimentalis Et Applicata, 1980, 28, 100-107.	1.4	106
128	Experimental Analysis of Adhesion Of <i>Chrysolina Polita</i> (Chrysomelidae: Coleoptera) On A Variety of Surfaces. Journal of Experimental Biology, 1980, 88, 91-108.	1.7	247
129	Tarsal setae in Coleoptera. Arthropod Structure and Development, 1976, 5, 219-221.	0.4	29
130	Food versus wildlife: Will biodiversity hotspots benefit from healthier diets?. Global Ecology and Biogeography, 0, , .	5.8	1