
Talia Jane Stockmann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1346729/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	lon-transfer electrochemistry at arrays of nanoscale interfaces between two immiscible electrolyte solutions arranged in hexagonal format. Journal of Electroanalytical Chemistry, 2022, 909, 116113.	3.8	3
2	Simultaneous electropolymerization/Au nanoparticle generation at an electrified liquid/liquid micro-interface. Electrochimica Acta, 2022, 426, 140749.	5.2	5
3	(Invited) Electrochemical Detection of Pseudomonas Aeruginosa Quorum Sensing Molecules at Micro Liquid Liquid Interface Via Facilitated Proton Transfer Mechanism. ECS Meeting Abstracts, 2022, MA2022-01, 1862-1862.	0.0	0
4	Electrochemically controlled Au nanoparticle nucleation at a micro liquid/liquid interface using ferrocene as reducing agent. Electrochemistry Communications, 2021, 122, 106894.	4.7	9
5	Electrochemical Characterization of Fe(II) Complexation Reactions at an Electrified Micro Liquidâ€Liquid Interface. ChemElectroChem, 2021, 8, 1580-1587.	3.4	1
6	Detection of <i>Pseudomonas aeruginosa</i> quorum sensing molecules at an electrified liquid liquid micro-interface through facilitated proton transfer. Analyst, The, 2020, 145, 7000-7008.	3.5	12
7	Electrochemical Detection of <i>Pseudomonas aeruginosa</i> Quorum Sensing Molecules at a Liquid Liquid Interface. Journal of Physical Chemistry C, 2019, 123, 24643-24650.	3.1	11
8	Optical Nanoimpacts of Dielectric and Metallic Nanoparticles on Gold Surface by Reflectance Microscopy: Adsorption or Bouncing?. Journal of Analysis and Testing, 2019, 3, 175-188.	5.1	21
9	Single LiBH4 nanocrystal stochastic impacts at a micro water ionic liquid interface. Electrochimica Acta, 2019, 299, 222-230.	5.2	13
10	Gold Nanofilms at Liquid–Liquid Interfaces: An Emerging Platform for Redox Electrocatalysis, Nanoplasmonic Sensors, and Electrovariable Optics. Chemical Reviews, 2018, 118, 3722-3751.	47.7	113
11	Simulations employing finite element method at liquid liquid interfaces. Current Opinion in Electrochemistry, 2018, 7, 200-207.	4.8	10
12	Preparation and crystal structure of tetraoctylphosphonium tetrakis(pentafluorophenyl)borate ionic liquid for electrochemistry at its interface with water. Catalysis Today, 2017, 295, 89-94.	4.4	14
13	Platinum Nanoparticle Impacts at a Liquid Liquid Interface. Angewandte Chemie, 2017, 129, 13678-13682.	2.0	13
14	Platinum Nanoparticle Impacts at a Liquid Liquid Interface. Angewandte Chemie - International Edition, 2017, 56, 13493-13497.	13.8	44
15	Trends in Hydrophilicity/Lipophilicity of Phosphonium Ionic Liquids As Determined by Ion-Transfer Electrochemistry. Langmuir, 2016, 32, 12966-12974.	3.5	16
16	Facilitated Lewis Acid Transfer by Phospholipids at a (Water CHCl ₃) Liquid Liquid Interface toward Biomimetic and Energy Applications. Journal of Physical Chemistry C, 2016, 120, 11977-11983.	3.1	18
17	Scanning Electrochemical Microscopy of Belousov–Zhabotinsky Reaction: How Confined Oscillations Reveal Short Lived Radicals and Auto-Catalytic Species. Analytical Chemistry, 2015, 87, 9621-9630.	6.5	20
18	Decamethylruthenocene Hydride and Hydrogen Formation at Liquid Liquid Interfaces. Journal of Physical Chemistry C, 2015, 119, 25761-25769.	3.1	31

TALIA JANE STOCKMANN

#	Article	IF	CITATIONS
19	Electrochemical behaviour of ferrocenes in tributylmethylphosphonium methyl sulfate mixtures with water and 1,2-dichloroethane. Canadian Journal of Chemistry, 2015, 93, 13-21.	1.1	5
20	Surprising acidity of hydrated lithium cations in organic solvents. Chemical Communications, 2014, 50, 5554-5557.	4.1	23
21	Kinetic differentiation of bulk/interfacial oxygen reduction mechanisms at/near liquid/liquid interfaces using scanning electrochemical microscopy. Journal of Electroanalytical Chemistry, 2014, 732, 101-109.	3.8	18
22	Mechanism of oxygen reduction by metallocenes near liquid liquid interfaces. Journal of Electroanalytical Chemistry, 2014, 729, 43-52.	3.8	23
23	Electrochemical oxygen reduction at soft interfaces catalyzed by the transfer of hydrated lithium cations. Journal of Electroanalytical Chemistry, 2014, 731, 28-35.	3.8	27
24	Electrochemical assessment of water ionic liquid biphasic systems towards cesium extraction from nuclear waste. Analytica Chimica Acta, 2014, 821, 41-47.	5.4	21
25	Formal transfer potentials of strontium and uranyl ions at water 1,2-dichloroethane interfaces. Canadian Journal of Chemistry, 2012, 90, 836-842.	1.1	11
26	Tetraoctylphosphonium Tetrakis(pentafluorophenyl)borate Room Temperature Ionic Liquid toward Enhanced Physicochemical Properties for Electrochemistry. Journal of Physical Chemistry B, 2012, 116, 12826-12834.	2.6	23
27	Correlation of Stoichiometries for Rb ⁺ Extraction Determined by Mass Spectrometry and Electrochemistry at Liquid Liquid Interfaces. Analytical Chemistry, 2012, 84, 6143-6149.	6.5	12
28	Facile determination of formal transfer potentials for hydrophilic alkali metal ions at water ionic liquid microinterfaces. Physical Chemistry Chemical Physics, 2012, 14, 13949.	2.8	12
29	Determination of alkali metal ion transfers at liquid liquid interfaces stabilized by a micropipette. Journal of Electroanalytical Chemistry, 2012, 684, 6-12.	3.8	41
30	Hydrophobic alkylphosphonium ionic liquid for electrochemistry at ultramicroelectrodes and micro liquid liquid interfaces. Electrochimica Acta, 2012, 62, 8-18.	5.2	27
31	Uranyl Ion Extraction with Conventional PUREX/TRUEX Ligands Assessed by Electroanalytical Chemistry at Micro Liquid/Liquid Interfaces. Analytical Chemistry, 2011, 83, 7542-7549.	6.5	25
32	Evaluation of Gibbs Energy of Dioxouranium Transfer at an Electrified Liquid Liquid Interface Supported on a Microhole. Electroanalysis, 2011, 23, 2677-2686.	2.9	12
33	Interfacial Complexation Reactions of Sr ²⁺ with Octyl(phenyl)â€ <i>N</i> Nâ€diisobutylcarbamoylmethylphosphine Oxide for Understanding Its Extraction in Reprocessing Spent Nuclear Fuels. Chemistry - A European Journal, 2011, 17, 13206-13216.	3.3	34
34	Hydrophobicity of room temperature ionic liquids assessed by the Galvani potential difference established at micro liquid/liquid interfaces. Journal of Electroanalytical Chemistry, 2010, 649, 23-31.	3.8	32
35	Single entity electrochemical detection of asâ€prepared metallic and dielectric nanoparticle stochastic impacts in a phosphonium ionic liquid. ChemElectroChem, 0, , .	3.4	3
36	Single Entity Electrochemical Detection of Asâ€prepared Metallic and Dielectric Nanoparticle Stochastic Impacts in a Phosphonium Ionic Liquid. ChemElectroChem, 0, , .	3.4	0

#	Article	IF	CITATIONS
37	Single Entity Electrochemical Detection of Asâ€Prepared Metallic and Dielectric Nanoparticle Stochastic Impacts in a Phosphonium Ionic Liquid. ChemElectroChem, 0, , .	3.4	0